黃 進(jìn), 吳雷澤, 游 園, 黃曉凱, 聶 彬, 張 輝
(1.中國石化江漢油田分公司石油工程技術(shù)研究院,湖北武漢 430030;2.油氣鉆采工程湖北省重點(diǎn)實(shí)驗(yàn)室(長江大學(xué)),湖北武漢 430100)
?
涪陵頁巖氣水平井工程甜點(diǎn)評(píng)價(jià)與應(yīng)用
黃 進(jìn)1, 吳雷澤1, 游 園1, 黃曉凱1, 聶 彬2, 張 輝1
(1.中國石化江漢油田分公司石油工程技術(shù)研究院,湖北武漢 430030;2.油氣鉆采工程湖北省重點(diǎn)實(shí)驗(yàn)室(長江大學(xué)),湖北武漢 430100)
針對(duì)涪陵頁巖氣水平井多段分簇射孔壓裂時(shí)加砂量符合率低、產(chǎn)氣量低的問題,提出了尋找水平段工程甜點(diǎn)、并結(jié)合地質(zhì)甜點(diǎn)進(jìn)行壓裂優(yōu)化設(shè)計(jì)的方法。首先利用聲波時(shí)差和密度測(cè)井資料,擬合得到涪陵頁巖氣藏橫波時(shí)差計(jì)算模型,再結(jié)合密度、自然伽馬等測(cè)井資料,利用地應(yīng)力剖面計(jì)算軟件求取涪陵頁巖氣藏水平井水平段的巖石力學(xué)參數(shù),然后通過分析已壓裂井段產(chǎn)氣剖面測(cè)試結(jié)果與巖石力學(xué)參數(shù)的相關(guān)性,得到涪陵頁巖氣藏工程甜點(diǎn)參數(shù)為:水平應(yīng)力差小于8 MPa、脆性指數(shù)0.45~0.50。焦頁30-1HF井采用了工程甜點(diǎn)與地質(zhì)甜點(diǎn)相結(jié)合的壓裂設(shè)計(jì)方法,其壓裂施工壓力平穩(wěn),總液量和總砂量符合率較好,壓后無阻流量 88.54×104m3/d,取得了較好的增產(chǎn)效果?,F(xiàn)場試驗(yàn)表明,工程甜點(diǎn)與地質(zhì)甜點(diǎn)相結(jié)合的壓裂設(shè)計(jì)方法,能夠提高涪陵頁巖氣水平井壓裂的加砂量符合率和產(chǎn)氣量,有助于實(shí)現(xiàn)頁巖氣的高效開發(fā)。
頁巖氣;水平井;分段壓裂;工程甜點(diǎn);測(cè)井?dāng)?shù)據(jù);脆性指數(shù);焦頁30-1HF井
頁巖氣藏工程甜點(diǎn)是指有利于提高儲(chǔ)層改造體積和裂縫復(fù)雜程度的巖石力學(xué)參數(shù),主要包括水平應(yīng)力差、脆性指數(shù)、最小水平主應(yīng)力等。國外很多文獻(xiàn)都報(bào)道過工程甜點(diǎn)參數(shù)對(duì)水力裂縫擴(kuò)展和水平井產(chǎn)能的影響[1-2]。文獻(xiàn)[3]分析了Barnett頁巖氣藏一口3級(jí)壓裂水平井生產(chǎn)測(cè)井結(jié)果與地應(yīng)力的關(guān)系,發(fā)現(xiàn)射孔簇的產(chǎn)量與地應(yīng)力有直接聯(lián)系,70%的產(chǎn)氣量來自水平段低地應(yīng)力區(qū)的射孔簇,50%的射孔簇不產(chǎn)氣,而這些射孔簇全部位于水平段的高地應(yīng)力區(qū)。
目前,涪陵頁巖氣水平井在進(jìn)行分段壓裂設(shè)計(jì)時(shí),主要考慮了地質(zhì)甜點(diǎn)參數(shù),如總有機(jī)碳含量(TOC)、滲透率、巖性和密度等,對(duì)工程甜點(diǎn)的認(rèn)識(shí)不深入,導(dǎo)致部分井段加砂符合率低、同一層段內(nèi)加砂量差異較大[4-8]。統(tǒng)計(jì)涪陵頁巖氣田已壓裂井的資料發(fā)現(xiàn),壓裂后產(chǎn)氣量低的井總加砂量符合率較低(平均為65.3%),儲(chǔ)層的壓裂改造效果未達(dá)到預(yù)期要求。研究與現(xiàn)場實(shí)踐表明,工程甜點(diǎn)參數(shù)、井筒起裂點(diǎn)對(duì)頁巖氣水平井壓裂裂縫的延伸擴(kuò)展起著關(guān)鍵作用[7],在進(jìn)行頁巖氣井壓裂設(shè)計(jì)時(shí),必須要考慮儲(chǔ)層的工程甜點(diǎn)參數(shù)。
頁巖氣藏的工程甜點(diǎn)參數(shù),如水平應(yīng)力差、脆性指數(shù)(利用楊氏模量、泊松比計(jì)算[9]),其實(shí)質(zhì)就是巖石力學(xué)參數(shù)。目前,求取巖石力學(xué)參數(shù)的方法主要有2種[10-12]:一種是巖心試驗(yàn)測(cè)定法,另一種是利用常規(guī)測(cè)井及偶極聲波測(cè)井、成像測(cè)井等資料進(jìn)行計(jì)算。巖心試驗(yàn)測(cè)定法數(shù)據(jù)準(zhǔn)確,但取心困難、成本高。測(cè)井資料求取法具有連續(xù)性強(qiáng)、地質(zhì)信息豐富、數(shù)據(jù)準(zhǔn)確等優(yōu)點(diǎn)。因此,目前普遍利用測(cè)井資料求取工程甜點(diǎn)參數(shù)。
聲波時(shí)差反映地層的抗壓、抗剪等特性,是求取楊氏模量和泊松比等巖石力學(xué)參數(shù)的基礎(chǔ)數(shù)據(jù)。求取巖石力學(xué)參數(shù)時(shí),應(yīng)用的是橫波時(shí)差,而在常規(guī)測(cè)井中大多只測(cè)量縱波時(shí)差。為此,筆者選取進(jìn)行了橫波時(shí)差測(cè)井的重點(diǎn)探井的測(cè)井資料,通過回歸密度縱波時(shí)差比與橫波時(shí)差的關(guān)系,求取未進(jìn)行橫波時(shí)差測(cè)井的開發(fā)井的橫波時(shí)差測(cè)井曲線。
焦頁1井密度縱波時(shí)差比與橫波時(shí)差的關(guān)系曲線如圖1所示。對(duì)圖1中的曲線進(jìn)行擬合,得到密度縱波時(shí)差比與橫波時(shí)差的關(guān)系式為:
Δts=2×10-6Z2-115 131Z+2 101.6
(1)
R2=0.86
其中
(2)
式中:Δts為橫波時(shí)差,μs/m;ρ為巖石密度,g/cm3;Δtp為縱波時(shí)差,μs/m。
將焦頁11-4HF井和焦頁41-5HF井的縱波時(shí)差和密度測(cè)井?dāng)?shù)據(jù)代入式(1)計(jì)算橫波時(shí)差,并將計(jì)算出的橫波時(shí)差與實(shí)測(cè)橫波時(shí)差進(jìn)行對(duì)比,結(jié)果見圖2和圖3。由圖2和圖3可知,利用式(1)計(jì)算的橫波時(shí)差準(zhǔn)確度較高,與實(shí)測(cè)橫波時(shí)差相比,相對(duì)誤差在5%以內(nèi)。
圖1 焦頁1井密度縱波時(shí)差比與橫波時(shí)差的關(guān)系曲線Fig.1 Relationships between density/P-wave transit time and S-wave transit time in Well Jiaoye 1
圖2 焦頁11-4HF井橫波時(shí)差計(jì)算值與實(shí)測(cè)值對(duì)比Fig.2 Calculated and measured S-wave transit time for Well Jiaoye 11-4HF
圖3 焦頁41-5HF井橫波時(shí)差計(jì)算值與實(shí)測(cè)值對(duì)比Fig.3 Calculated and measured S-wave transit time for Well Jiaoye 41-5HF
利用式(1),根據(jù)密度和縱波時(shí)差測(cè)井?dāng)?shù)據(jù)求取橫波時(shí)差數(shù)據(jù)后,再結(jié)合密度、自然伽馬等測(cè)井?dāng)?shù)據(jù),利用地應(yīng)力剖面計(jì)算軟件求取涪陵頁巖水平井的巖石力學(xué)參數(shù)。圖4為利用地應(yīng)力剖面計(jì)算軟件求取的焦頁12-1HF井水平段巖石力學(xué)參數(shù)。由圖4可知,該井計(jì)算出的最小水平主應(yīng)力為49~51 MPa,與巖石力學(xué)試驗(yàn)測(cè)得的最小水平主應(yīng)力(48~52 MPa)吻合較好。由于圖4中的楊氏模量和泊松比是動(dòng)態(tài)的,而巖石力學(xué)試驗(yàn)測(cè)得的楊氏模量和泊松比是靜態(tài)的,因此,通過相關(guān)轉(zhuǎn)換得到焦頁12-1HF井的靜態(tài)楊氏模量為32.0~35.2 GPa、靜態(tài)泊松比為0.20~0.22,與通過巖石力學(xué)試驗(yàn)測(cè)得的楊氏模量(32.0~34.0 GPa)和泊松比(0.21~0.23)相吻合。由此可知,根據(jù)式(1)的計(jì)算結(jié)果求取的巖石力學(xué)參數(shù)與巖石力學(xué)試驗(yàn)測(cè)得巖石力學(xué)參數(shù)的相對(duì)誤差小于5%,計(jì)算結(jié)果準(zhǔn)確可靠。
圖4 焦頁12-1HF井水平段巖石力學(xué)參數(shù)計(jì)算結(jié)果Fig.4 Rock mechanics parameters calculated for the horizontal section in Well Jiaoye 12-1HF
對(duì)焦頁7-1HF井、焦頁12-1HF井、焦頁6-2HF井、焦頁8-2HF井、焦頁4HF井和焦頁10-4井等6口井壓裂后73段的產(chǎn)氣剖面測(cè)試結(jié)果與巖石力學(xué)參數(shù)的相關(guān)性進(jìn)行分析,發(fā)現(xiàn)產(chǎn)氣剖面測(cè)試結(jié)果與水平應(yīng)力差、脆性指數(shù)的相關(guān)性較好(見圖5和圖6)。從圖5可以看出:隨著水平應(yīng)力差增大,單段產(chǎn)氣量逐漸降低;水平應(yīng)力差低于8.0 MPa時(shí),單段產(chǎn)氣量不小于6 000 m3的概率較大。從圖6可以看出:脆性指數(shù)在0.45~0.50時(shí),單段產(chǎn)氣量不小于6 000 m3的段數(shù)較多;脆性指數(shù)大于0.50時(shí),單段產(chǎn)氣量小于6 000 m3的段數(shù)反而增多。綜合以上分析結(jié)果,得到涪陵頁巖氣藏的工程甜點(diǎn)參數(shù):水平應(yīng)力差小于8.0 MPa,脆性指數(shù)為0.45~0.50。
利用焦頁30-1HF井的測(cè)井資料計(jì)算其水平段的巖石力學(xué)參數(shù),并根據(jù)涪陵頁巖氣藏的工程甜點(diǎn)參數(shù)評(píng)價(jià)指標(biāo),找到焦頁30-1HF井的工程甜點(diǎn)區(qū)域(見圖7)。依據(jù)預(yù)測(cè)的工程甜點(diǎn)區(qū),在分段時(shí),盡量將工程甜點(diǎn)井段整合在一起,使工程甜點(diǎn)井段得到充分壓裂改造;射孔位置選擇在最小水平主應(yīng)力低值區(qū),并且考慮同一段內(nèi)的應(yīng)力平衡,射孔簇之間的應(yīng)力差應(yīng)盡可能??;在優(yōu)化壓裂規(guī)模時(shí),將大規(guī)模壓裂段設(shè)計(jì)在工程甜點(diǎn)區(qū)。該井的壓裂設(shè)計(jì)結(jié)果如圖8所示。由圖8可知,該井8段大規(guī)模壓裂段中有6段設(shè)計(jì)在工程甜點(diǎn)區(qū)(紅色豎線、藍(lán)色豎線分別表示大、小規(guī)模壓裂段,大規(guī)模壓裂段設(shè)計(jì)液量1 900 m3、加砂量70 m3;小規(guī)模壓裂段設(shè)計(jì)液量1 700 m3、加砂量60 m3)。
圖5 產(chǎn)氣量與水平應(yīng)力差的關(guān)系Fig.5 Relationship between gas production and the horizontal stress difference
圖6 產(chǎn)氣量與脆性指數(shù)的關(guān)系Fig.6 Relationship between gas production and the brittleness index
焦頁30-1HF井整個(gè)壓裂過程中壓力平穩(wěn)(52~75 MPa),壓裂液用量34 938.74 m3,符合率較好(99.1%);總加砂量1 099.90 m3,符合率較高(86.3%),平均單段加砂量61.10 m3,高于已壓裂試氣井平均單段加砂量54.70 m3。該井壓裂后采用φ12.0 mm油嘴測(cè)試,平均無阻流量88.54×104m3/d,取得了較好的增產(chǎn)效果。
圖7 焦頁30-1HF井預(yù)測(cè)工程甜點(diǎn)區(qū)Fig.7 Forecasted engineering sweet spot area in Well Jiaoye 30-1HF
圖8 焦頁30-1HF井壓裂設(shè)計(jì)結(jié)果Fig.8 Schematic diagram of the fracturing scale designed for Well Jiaoye 30-1HF
1) 由頁巖氣井壓裂段產(chǎn)氣量與巖石力學(xué)參數(shù)的相關(guān)性分析可知,涪陵頁巖氣藏工程甜點(diǎn)參數(shù)為水平應(yīng)力差小于8 MPa、脆性指數(shù)0.45~0.50。
2) 現(xiàn)場試驗(yàn)表明,通過評(píng)價(jià)得到頁巖氣井的工程甜點(diǎn),并與地質(zhì)甜點(diǎn)相結(jié)合,對(duì)壓裂設(shè)計(jì)進(jìn)行優(yōu)化,可以提高頁巖氣井的壓裂效果。
[1] NUTTALL B C,DRAHOVZAL J A,EBLE C F,et al.Analysis of the Devonian black shale in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production[R].Lexington:Kentucky Geological Survey,2005.
[2] FRANTZ J H Jr.White paper:shale gas[R].Houston:Schlumberger,2005.
[3] JARVIE D M,HILL R J,POLLASTRO R M,et al.Evaluation of hydrocarbon generation and storage in the Barnett Shale,Ft Worth Basin,Texas:Barnett Shale and other Fort Worth Basin Plays Ellison Miles Memorial Symposium,Texas,June 22-23,2004[C].
[4] 牛新明.涪陵頁巖氣田鉆井技術(shù)難點(diǎn)及對(duì)策[J].石油鉆探技術(shù),2014,42(4):1-6.
NIU Xinming.Drilling technology challenges and resolutions in Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2014,42(4):1-6.
[5] 葛洪魁,王小瓊,張義.大幅度降低頁巖氣開發(fā)成本的技術(shù)途徑[J].石油鉆探技術(shù),2013,41(6):1-5.
GE Hongkui,WANG Xiaoqiong,ZHANG Yi.A technical approach to reduce shale gas development cost[J].Petroleum Drilling Techniques,2013,41(6):1-5.
[6] 周德華,焦方正,賈長貴,等.JY1HF頁巖氣水平井大型分段壓裂技術(shù)[J].石油鉆探技術(shù),2014,42(1):75-80.
ZHOU Dehua,JIAO Fangzheng,JIA Changgui,et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques,2014,42(1):75-80.
[7] 曾義金.頁巖氣開發(fā)的地質(zhì)與工程一體化技術(shù)[J].石油鉆探技術(shù),2014,42(1):1-6.
ZENG Yijin.Integration technology of geology & engineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-6.
[8] 邵尚奇,田守嶒,李根生,等.泥頁巖地層水力裂縫延伸方位研究[J].石油鉆探技術(shù),2014,42(3):27-31.
SHAO Shangqi,TIAN Shouceng,LI Gensheng,et al.Propagating orientation of hydraulic fractures in muddy shale formation[J].Petroleum Drilling Techniques,2014,42(3):27-31.
[9] 蔣廷學(xué),卞曉冰,蘇瑗,等.頁巖可壓性指數(shù)評(píng)價(jià)新方法及應(yīng)用[J].石油鉆探技術(shù),2014,42(5):16-20.
JIANG Tingxue,BIAN Xiaobing,SU Yuan,et al.A new method for evaluating shale fracability index and its application[J].Petroleum Drilling Techniques,2014,42(5):16-20.
[10] 李玉梅,李軍,柳貢慧,等.頁巖氣藏水平井水力壓裂裂縫敏感參數(shù)數(shù)值分析[J].斷塊油氣田,2015,22(2):258-262.
LI Yumei,LI Jun,LIU Gonghui,et al.Numerical analysis of fracture sensitive parameters in a hydraulically fractured horizontal well in layered shale reservoir[J].Fault-Block Oil & Gas Field,2015,22(2):258-262.
[11] 陳勉,葛洪魁,趙金洲,等.頁巖油氣高效開發(fā)的關(guān)鍵基礎(chǔ)理論與挑戰(zhàn)[J].石油鉆探技術(shù),2015,43(5):7-14.
CHEN Mian,GE Hongkui,ZHAO Jinzhou,et al.The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges[J].Petroleum Drilling Techniques,2015,43(5):7-14.
[12] 楊恒林,申瑞臣,付利.含氣頁巖組分構(gòu)成與巖石力學(xué)特性[J].石油鉆探技術(shù),2013,41(5):31-35.
YANG Henglin,SHEN Ruichen,FU Li.Composition and mechanical properties of gas shale[J].Petroleum Drilling Techniques,2013,41(5):31-35.
[編輯 劉文臣]
The Evaluation and Application of Engineering Sweet Spots in a Horizontal Well in the Fuling Shale Gas Reservoir
HUANG Jin1, WU Leize1, YOU Yuan1, HUANG Xiaokai1, NIE Bin2, ZHANG Hui1
(1. Research Institute of Petroleum Engineering and Technology, Sinopec Jianghan Oilfield Company, Wuhan, Hubei,430030, China; 2. Hubei Provincial Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University), Wuhan, Hubei,430100, China)
Due to the fact that shale gas reservoirs possess heterogeneity, sectional perforation and multi-stage fracturing in horizontal wells in the reservoir may generate very different effects. The engineering sweet spot parameter can affect the crack initiation, extension and reconstruction of hydraulic fractures. Accordingly, the parameter can be used to guide the sectional perforation of shale gas horizontal wells, which can be helpful in improving the reservoir and productivity. With the P-wave transit time and density logging data, the calculation model of S-wave transit time was established for the Fuling shale gas reservoir, and the calculation method of determining the engineering sweet spot was defined for the Fuling shale gas reservoir based on the experimental results of rock mechanics. Combined with the test results for 73 gas production sections in six wells, including Well Jiaoye 7-1HF, the evaluation indicators for the engineering sweet spot in the Fuling shale gas reservoir were summarized, namely, that the horizontal stress difference was less than 8MPa, and the brittleness index ranged from 45% to 50%. Optimum design for fracturing the Well Jiaoye 30-1HF was conducted based on the engineering sweet spot data, and then total liquid volume and total sand content were matched well with stable operation pressure. Post-frac open flow was 88.54×104m3/d, and better stimulation results were achieved.
shale gas; horizontal well; section fracturing; engineering sweet spot; log data; brittleness index; Well Jiaoye 30-1HF
2015-12-08;改回日期:2016-03-02。
黃進(jìn)(1985—),男,湖北武漢人,2009年畢業(yè)于長江大學(xué)石油工程專業(yè),2012年獲西南石油大學(xué)油氣井工程專業(yè)碩士學(xué)位,工程師,主要從事儲(chǔ)層改造方面的研究與應(yīng)用工作。E-mail:niebin19880918@163.com。
國家科技重大專項(xiàng)“涪陵頁巖氣開發(fā)示范工程”(編號(hào):2016ZX05060)和國家自然科學(xué)基金項(xiàng)目“高溫高壓CO2-原油-地層水三相相平衡溶解度規(guī)律”(編號(hào):51404037)資助。
?鉆井完井?
10.11911/syztjs.201603003
TE375
A
1001-0890(2016)03-0016-05