涂盛輝,胡亞平,張 婷,朱敏劍,梁海營(yíng),彭海龍,杜 軍
(南昌大學(xué) 資源環(huán)境與化工學(xué)院, 南昌 330031)
?
石墨烯-CuO/TiO2復(fù)合催化劑的合成及光催化制氫活性*
涂盛輝,胡亞平,張 婷,朱敏劍,梁海營(yíng),彭海龍,杜 軍
(南昌大學(xué) 資源環(huán)境與化工學(xué)院, 南昌 330031)
采用溶劑熱法合成了石墨烯-CuO/TiO2復(fù)合催化劑,通過(guò)掃描電鏡(SEM)、透射電鏡(TEM)、X射線衍射(XRD)、傅里葉變換紅外光譜(FT-IR)、紫外-可見(jiàn)漫反射(DRS)表征復(fù)合催化劑的微觀形貌、結(jié)構(gòu)和光學(xué)特性。以H2PtCl6為無(wú)機(jī)前驅(qū)體對(duì)其進(jìn)行Pt負(fù)載,研究了不同石墨烯負(fù)載量對(duì)制氫活性的影響及太陽(yáng)光下的制氫活性。結(jié)果表明,石墨烯負(fù)載量為0.5%(質(zhì)量分?jǐn)?shù))時(shí),復(fù)合催化劑制氫活性最高,石墨烯和CuO協(xié)同作用提高了TiO2對(duì)可見(jiàn)光的利用及光催化分解C2H5OH/H2O制氫活性。在可見(jiàn)光下照射5 h后,樣品的產(chǎn)氫量達(dá)到1 083.54 μmol,太陽(yáng)光光照5 h后產(chǎn)氫量(4 374.51 μmol)為P25(1598.25 μmol)的2.74倍。
溶劑熱法;光催化;制氫
近年來(lái),隨著化石燃料的消耗不斷加劇,能源危機(jī)成為世界各國(guó)廣泛的共識(shí),H2被認(rèn)為是最清潔的可再生能源,而光催化裂解水制氫作為一種綠色的產(chǎn)氫途徑,備受關(guān)注[1]。TiO2因化學(xué)性質(zhì)穩(wěn)定、環(huán)境友好、催化活性高等[2-4]優(yōu)點(diǎn)成為廣泛研究的n型半導(dǎo)體催化劑,但其禁帶寬度(3.2 eV)較大,只能對(duì)紫外光有響應(yīng),為了克服這些不足,研究者嘗試對(duì)其進(jìn)行改性,如貴金屬沉積[5-7]、非金屬摻雜[8-10]、 半導(dǎo)體復(fù)合[11-13]等方法增加其在可見(jiàn)區(qū)域光的吸收。CuO是禁帶寬度(1.7 eV)較小的p型半導(dǎo)體,能被可見(jiàn)光激發(fā),與TiO2復(fù)合可拓寬光響應(yīng)范圍[14]。Bandara、Choi、Jin等[15-17]制備出的CuO/TiO2復(fù)合半導(dǎo)體在可見(jiàn)光下均表現(xiàn)出較高的光催化產(chǎn)氫活性。
石墨烯是Geim等在2004年首次得到的一種由碳原子以sp2雜化軌道組成六角型呈蜂巢晶格的平面薄膜,具有優(yōu)越的導(dǎo)電性能,是抑制光催化過(guò)程中CuO/TiO2復(fù)合半導(dǎo)體表面光生電子-空穴對(duì)快速?gòu)?fù)合的良好導(dǎo)體。Zhang等[8]采用一步水熱法制備出TiO2/石墨烯復(fù)合催化劑,水熱過(guò)程中氧化石墨還原與TiO2生成同步發(fā)生,得到的復(fù)合材料中TiO2粒子分布在片狀石墨烯上,具有較高的產(chǎn)氫活性。Fan[18]等分別采用紫外輔助法、水熱法、還原劑還原法制備石墨烯/P25用于光催化產(chǎn)氫實(shí)驗(yàn),結(jié)果發(fā)現(xiàn)石墨烯的引入能明顯提高TiO2的產(chǎn)氫效率。Wang等[19]采用兩步法合成了對(duì)可見(jiàn)光有響應(yīng)的石墨烯-CuO/TiO2復(fù)合催化劑,F(xiàn)ang等[20]通過(guò)簡(jiǎn)單水熱法制備出催化活性較高的石墨烯-CuO/TiO2,在紫外-可見(jiàn)光下降解亞甲基藍(lán)表現(xiàn)出優(yōu)越的催化性能。
本研究以P25和氧化石墨(GO)等為原料經(jīng)溶劑熱反應(yīng)合成了石墨烯-CuO/TiO2復(fù)合光催化劑,考察該復(fù)合材料在可見(jiàn)光和太陽(yáng)光下分解C2H5OH/H2O溶液制氫活性,并分析了復(fù)合催化劑中石墨烯、CuO共同提高TiO2制氫活性的機(jī)理。
1.1 實(shí)驗(yàn)試劑與儀器
試劑:石墨粉、硝酸鈉、濃硫酸(98%)、高錳酸鉀、過(guò)氧化氫(30%)、硝酸銅、P25、氯鉑酸、無(wú)水乙醇、試劑均為分析純,實(shí)驗(yàn)用水為去離子水。
儀器:微觀形貌在Quanta 200F環(huán)境掃描電子顯微鏡及JEM-2100透射電鏡下觀察,物質(zhì)結(jié)構(gòu)由德國(guó)布魯克BrukerD8型X-射線衍射儀、Spectrum 2000型FT-IR紅外光譜儀進(jìn)行表征,采用Y44.2型紫外-可見(jiàn)漫反射光譜儀等進(jìn)行光學(xué)特性分析,H2由GC102M型氣相色譜儀檢測(cè)。
1.2 催化劑的制備
1.2.1 氧化石墨(GO)的制備
采用改進(jìn)的Hummer法合成氧化石墨:0.5 g石墨粉和0.5 g NaNO3加入到23 mL濃H2SO4中,并置于0 ℃冰水浴中,磁力攪拌30 min。緩慢加入3 g KMnO4于上述溶液,保持磁力攪拌防止溫度急速上升,水浴溫度升至35 ℃反應(yīng)60 min。緩慢加入40 mL去離子水,溫度升至90 ℃反應(yīng)30 min。逐滴加入100 mL去離子水,3 mL H2O2,攪拌10 min至無(wú)氣泡產(chǎn)生。溶液由棕色變?yōu)辄S色,離心,洗滌至中性,60 ℃真空干燥48 h,得到氧化石墨。
1.2.2 CuO/TiO2的制備
準(zhǔn)確稱取一定量的P25加入到15 mL去離子水中,磁力攪拌10 min,加入一定量Cu(NO3)2·3H2O。超聲,攪拌5 h,使其混合均勻,得到淺藍(lán)色糊狀物,水浴60 ℃蒸發(fā)其中的水分,然后置于烘箱中105 ℃干燥12 h,馬弗爐中350 ℃焙燒4 h,得到的即為CuO/TiO2復(fù)合半導(dǎo)體。通過(guò)改變Cu(NO3)2·3H2O的加入量,使得制備的復(fù)合光催化劑中CuO的含量不同,分別為 1%,2%,3%,5%和10%(質(zhì)量分?jǐn)?shù)),記為1-CuO/TiO2、2-CuO/TiO2、3-CuO/TiO2、5-CuO/TiO2和10-CuO/TiO2。
1.2.3 石墨烯-CuO/TiO2的制備
稱取一定量的GO于80 mL無(wú)水乙醇中超聲1 h,得到棕色分散液,加入制備的制氫效果最佳的5-CuO/TiO2,攪拌2 h,混合均勻,轉(zhuǎn)移至100 mL聚四氟乙烯內(nèi)襯不銹鋼高壓反應(yīng)釜中,置于烘箱中180 ℃水熱反應(yīng)10 h,自然冷卻至室溫,離心,洗滌,60 ℃干燥48 h,得到的樣品即為石墨烯-5-CuO/TiO2,記為G-5-CuO/TiO2,通過(guò)改變GO的加入量,使得制備的復(fù)合光催化劑中石墨烯的含量不同,分別為0.1%,0.5%,1%和5%(質(zhì)量分?jǐn)?shù)),記為G0.1-5-CuO/TiO2、G0.5-5-CuO/TiO2、G1-5-CuO/TiO2和G5-5- CuO/TiO2。
1.3 光催化實(shí)驗(yàn)
0.1 g催化劑,100 mL C2H5OH/H2O(nC2H5OH∶nH2O=1∶7)溶液,1.42 mL 0.0018 mol/L H2PtC16·6H2O溶液加入360 mL反應(yīng)瓶中。反應(yīng)液超聲15 min,氮?dú)馀趴?0 min,瓶口用橡膠塞密封,置于光源下磁力攪拌,每次取樣1 mL,采用GC102M型氣相色譜儀檢測(cè),載氣為N2。20 W紫外燈為紫外光光源;450 W作為可見(jiàn)光光源,高壓汞燈置于暗室中,光束經(jīng)過(guò)水夾套和紫外截止濾光片(λ>420 nm)照射有平面窗口的燒瓶;太陽(yáng)光為自然太陽(yáng)光,實(shí)驗(yàn)時(shí)間為2013年8月10日(實(shí)驗(yàn)地點(diǎn):江西南昌,實(shí)驗(yàn)時(shí)間:10:00~15:00),試驗(yàn)期間天氣晴朗,日光充足,氣溫穩(wěn)定(38~40 ℃)。
2.1 晶相結(jié)構(gòu)分析(XRD)
圖1為G0.5-5-CuO/TiO2,5-CuO/TiO2及TiO2的XRD圖譜。從圖1可以看出,樣品G0.5-5-CuO/TiO2,5-CuO/TiO2均出現(xiàn)與P25相似的峰型,銳鈦礦型TiO2(PDF 21-1272)標(biāo)準(zhǔn)特征峰出現(xiàn)在2θ為25.3,37.8,48.1,54.2,62.9和75.1處。5-CuO/TiO2復(fù)合半導(dǎo)體在2θ=38.7°時(shí)出現(xiàn)CuO(PDF 48-1548)的微弱衍射峰,這是因?yàn)镃uO的含量低,其它處的特征峰與TiO2的衍射峰重疊,經(jīng)過(guò)水熱過(guò)程負(fù)載石墨烯后,CuO的衍射峰變強(qiáng),說(shuō)明結(jié)晶度提高,樣品中出現(xiàn)的TiO2的衍射峰分別對(duì)應(yīng)銳鈦礦相和金紅石相的晶面,但G0.5-5-CuO/TiO2的圖譜中沒(méi)有出現(xiàn)石墨烯的衍射峰,這是因?yàn)槭┑暮刻?,特征峰靠近銳鈦礦相TiO2在2θ=25.3°強(qiáng)衍射峰,被TiO2的特征峰所覆蓋。
圖1 G0.5-5-CuO/TiO2,5-CuO/TiO2及TiO2的XRD圖
Fig 1 XRD patterns of G0.5-5-CuO/TiO2,5-CuO/TiO2and TiO2
2.2 微觀形貌分析(SEM、TEM)
圖2為樣品G0.5-5-CuO/TiO2和石墨烯的SEM、TEM圖。圖2(a)中可以看出,石墨烯為薄片狀,邊緣處有明顯的褶皺,經(jīng)過(guò)溶劑熱反應(yīng),TiO2、CuO的顆粒附著在石墨烯上,且主要集中在石墨烯的邊緣處(圖2(b)),樣品G0.5-5-CuO/TiO2的TEM圖2(c)和(d)中,可以看出石墨烯的形貌,表面被CuO、TiO2的顆粒堆積,這是因?yàn)槭郾谎趸裳趸┖?,表面出現(xiàn)—COOH,—OH等官能團(tuán),氧化石墨烯經(jīng)溶劑熱反應(yīng),表面的官能團(tuán)消失,TiO2粒子與石墨烯通過(guò)這些基團(tuán)形成新的化學(xué)鍵而復(fù)合在一起,得到新的復(fù)合材料[8]。
2.3 紅外光譜分析(FT-IR)
圖2 石墨烯及G0.5-5-CuO/TiO2的SEM、TEM照片
圖3 樣品G0.5-5-CuO/TiO2、GO、石墨烯及TiO2的FT-IR圖譜
Fig 3 FT-IR patterns of the sample G0.5-5-CuO/TiO2, GO, graphene and TiO2
2.4 紫外-可見(jiàn)漫反射光譜分析(DRS)
圖4為樣品G0.5-5-CuO/TiO2、5-CuO/TiO2復(fù)合半導(dǎo)體及TiO2(P25)的UV-Vis漫反射光譜。
圖4 G0.5-5-CuO/TiO2、5-CuO/TiO2及TiO2的UV-Vis漫反射光譜
可以看出,CuO負(fù)載TiO2后,可見(jiàn)光區(qū)的吸收明顯增強(qiáng),且吸收邊有輕度紅移,5-CuO/TiO2復(fù)合半導(dǎo)體負(fù)載石墨烯以后,可見(jiàn)光區(qū)的吸收和吸收邊的紅移均進(jìn)一步增強(qiáng),這是因?yàn)镃uO與TiO2兩種半導(dǎo)體的復(fù)合,降低了TiO2的禁帶寬度,拓寬了TiO2的光響應(yīng)范圍,此外,石墨烯的引入樣品的顏色變黑,在可見(jiàn)光區(qū)有較強(qiáng)的背景吸收。
2.5 光催化制氫
2.5.1 光催化制氫機(jī)理分析
圖5為Pt/G-CuO/TiO2在太陽(yáng)光下分解C2H5OH/H2O溶液產(chǎn)氫機(jī)理。光照條件下,TiO2的價(jià)帶電子被激發(fā)到導(dǎo)帶,在價(jià)帶留下大量空穴,由于石墨烯的氧化還原電勢(shì)(-0.08 eV)[22],低于TiO2導(dǎo)帶的氧化還原電勢(shì)(-0.5 eV)[23],復(fù)合材料中石墨烯作為電子的受體,電子在石墨烯二維共軛平面上被轉(zhuǎn)移到Pt上,Pt作為良好的放氫反應(yīng)催化劑,溶液中游離的H+會(huì)在其表面得電子產(chǎn)生H2[24-25]。CuO的價(jià)帶能級(jí)較低,具有比H+/H2更負(fù)的電位電勢(shì),TiO2導(dǎo)帶的光生電子也會(huì)向CuO的導(dǎo)帶流動(dòng),在光催化反應(yīng)中CuO既可作為電子的受體又是產(chǎn)氫的活性位點(diǎn)[19],H+在CuO的表面得電子生成H2。CuO的禁帶寬度較小,對(duì)太陽(yáng)光中的可見(jiàn)光有響應(yīng),被激發(fā)產(chǎn)生光生電子,而且與TiO2復(fù)合可窄化TiO2的禁帶寬度,從而有效提高催化劑對(duì)太陽(yáng)光的利用率。以上分析可知,石墨烯優(yōu)異的導(dǎo)電性能為電子的轉(zhuǎn)移提供了高速通道[26],光生載流子快速?gòu)腡iO2導(dǎo)帶轉(zhuǎn)移到CuO導(dǎo)帶和Pt上,TiO2價(jià)帶留下的大量空穴吸附更多的C2H5OH分子和H2O分子,H2O分子在TiO2的表面空穴作用下去質(zhì)子化,產(chǎn)生羥基自由基(·OH)、自由電子(e-)和H+。C2H5OH分子在TiO2表面空穴和·OH作用下去質(zhì)子化,與·OH結(jié)合形成過(guò)渡態(tài)有機(jī)物,過(guò)渡態(tài)有機(jī)物不穩(wěn)定脫水縮合生成CO2(g)、H2O,從催化劑的表面脫附[27-28]。由以上分析可知,C2H5OH分子和H2O分子在催化劑的表面去質(zhì)子化產(chǎn)生大量的H+,為CuO、Pt上的放氫反應(yīng)提供了源源不斷的“原料”。因此,復(fù)合催化劑中CuO與石墨烯產(chǎn)生了共同促進(jìn)作用,不僅提高了樣品對(duì)太陽(yáng)光的利用率,還促使了產(chǎn)氫反應(yīng)發(fā)生[12]。
圖5 光催化分解C2H5OH/H2O溶液產(chǎn)氫機(jī)理
2.5.2 紫外光下CuO負(fù)載量對(duì)制氫活性影響
圖6為紫外光下CuO/TiO2復(fù)合催化劑中CuO的含量光催化產(chǎn)氫活性的影響。由圖可以看出,CuO負(fù)載TiO2以后,光催化產(chǎn)氫活性增加,其中CuO的最佳負(fù)載量為5%(質(zhì)量分?jǐn)?shù))。光照5 h后,5-CuO/TiO2復(fù)合催化劑的產(chǎn)生量為1 024.80 μmol,為相同條件下P25產(chǎn)氫量(775.50 μmol)的1.32倍。CuO、TiO2兩種半導(dǎo)體復(fù)合后,在光照條件下,TiO2的光生電子從TiO2的導(dǎo)帶向CuO的導(dǎo)帶流動(dòng),有利于光生電子和空穴的分離,空穴吸附反應(yīng)液中的H2O分子和C2H5OH分子,促進(jìn)了產(chǎn)氫反應(yīng)。
圖6 紫外光下CuO含量對(duì)產(chǎn)氫量的影響
2.5.3 可見(jiàn)光下石墨烯負(fù)載量對(duì)制氫活性影響
圖7為復(fù)合材料中石墨烯的負(fù)載量對(duì)產(chǎn)氫量的影響。圖中可以看出,石墨烯的最佳負(fù)載量為0.5%(質(zhì)量分?jǐn)?shù)),即其產(chǎn)氫活性最高,可見(jiàn)光下反應(yīng)5 h后,產(chǎn)氫量達(dá)到1 083.54 μmol。復(fù)合材料中石墨烯的含量較低時(shí),5-CuO/TiO2不能完全負(fù)載在石墨烯上,抑制了光生電子的轉(zhuǎn)移,影響了樣品的光催化產(chǎn)氫活性;當(dāng)石墨烯含量較高時(shí),光吸收增強(qiáng),減弱了5-CuO/TiO2表面光的吸收,光生電子、空穴的數(shù)量減少,光催化產(chǎn)氫反應(yīng)過(guò)程中C2H5OH、H2O在催化劑表面的吸附減弱,抑制了產(chǎn)氫反應(yīng)。因此,復(fù)合材料中石墨烯含量為0.5%(質(zhì)量分?jǐn)?shù))時(shí)產(chǎn)氫活性最高。實(shí)驗(yàn)還在相同條件下以TiO2做催化劑,光照反應(yīng)5 h后,幾乎檢測(cè)不到H2產(chǎn)生,這是因?yàn)門(mén)iO2對(duì)可見(jiàn)光沒(méi)有響應(yīng),但與CuO、石墨烯復(fù)合后TiO2的禁帶寬度變窄,能被可見(jiàn)光激發(fā),與圖4中DRS的結(jié)果相一致。
圖7 樣品Gx-5-CuO/TiO2(x=0,0.1,0.5,2,5)在可見(jiàn)光下的光催化產(chǎn)氫活性
2.5.4 樣品在太陽(yáng)光下的產(chǎn)氫活性
圖8為樣品G0.5-5-CuO/TiO2、5-CuO/TiO2及TiO2在太陽(yáng)光下產(chǎn)氫量隨時(shí)間的變化曲線。光照反應(yīng)5 h后,樣品G0.5-5-CuO/TiO2光催化產(chǎn)氫量達(dá)到4 374.51 μmol,遠(yuǎn)大于相同條件下5-CuO/TiO2(2 243.52 μmol)及P25的產(chǎn)氫量(1 598.25 μmol)。這是因?yàn)镻25只能對(duì)太陽(yáng)光中的紫外部分有響應(yīng),樣品G0.5-5-CuO/TiO2中CuO禁帶寬度只有1.7 eV,與TiO2復(fù)合使催化劑對(duì)光的響應(yīng)范圍向可見(jiàn)區(qū)發(fā)生紅移,此外,復(fù)合材料中石墨烯、CuO作為助催化劑產(chǎn)生了共同促進(jìn)作用,進(jìn)一步提高了TiO2的光催化產(chǎn)氫活性。
圖8 樣品G0.5-5-CuO/TiO2、5-CuO/TiO2及TiO2在太陽(yáng)光下的產(chǎn)氫活性
圖9為樣品G0.5-5-CuO/TiO2、5-CuO/TiO2及TiO2在太陽(yáng)光下產(chǎn)氫速率變化曲線,圖中可以看出,樣品G0.5-5-CuO/TiO2的產(chǎn)氫速率始終高于5-CuO/TiO2及TiO2,這是因?yàn)镃uO、石墨烯的引入提高了TiO2對(duì)可見(jiàn)光的響應(yīng),有效抑制了電子和空穴的復(fù)合,促進(jìn)了產(chǎn)氫反應(yīng)。光照4 h后,三者的產(chǎn)氫速率均開(kāi)始下降,可能是催化劑失活,失活的機(jī)理有待進(jìn)一步研究。
圖9 樣品G0.5-5-CuO/TiO2、5-CuO/TiO2及TiO2在太陽(yáng)光下的產(chǎn)氫速率
采用溶劑熱法制備了G-CuO/TiO2復(fù)合光催化劑,并通過(guò)原位光沉積法對(duì)其進(jìn)行Pt負(fù)載,研究了其在紫外光、可見(jiàn)光和太陽(yáng)光下分解C2H5OH/H2O溶液的產(chǎn)氫活性,實(shí)驗(yàn)結(jié)果表明,CuO、TiO2兩種半導(dǎo)體復(fù)合拓寬了光響應(yīng)范圍,石墨烯作為催化反應(yīng)中光生電子的轉(zhuǎn)移通道,明顯提高了產(chǎn)氫活性,樣品中CuO與石墨烯在產(chǎn)氫過(guò)程中產(chǎn)生了共同促進(jìn)作用,快速轉(zhuǎn)移光生電子,抑制電子和空穴對(duì)的復(fù)合,促進(jìn)了光催化產(chǎn)氫反應(yīng)。光催化分解C2H5OH/H2O溶液制氫技術(shù)的發(fā)展為處理工業(yè)有機(jī)廢水提供了借鑒,可實(shí)現(xiàn)廢水中有機(jī)污染物降解與制氫雙重目標(biāo)[29],達(dá)到“變廢為寶”的目的。
[1] Xu Shiping, Du Jianhong, Liu Jincheng,et al. Highly efficient CuO incorporated TiO2nanotube photocatalyst for hydrogen production from water [J]. International Journal of Hydrogen Energy, 2011, 36(11):6560-6568.
[2] Hoffmann M R,Martin S T,Choi W. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1):69-96.
[3] Fujishima A, Rao Tata N, Tryk D A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1):1-21.
[4] Fujishima A, Rao Tata N, Tryk D A. TiO2photocatalysts and diamond electrodes [J]. Electrochimica Acta, 2000, 45(28):4683-4690.
[5] Reddy Kakarla Raghava, Nakata Kazuya, Ochiai Tsuyoshi, et al. Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2nanofiber composites [J]. Journal of Nanoscience and Nanotechnology, 2011, 11(4) 3692-3695.
[6] Lalitha Kannekanti, Reddy Jakkidi Krishna, Sharma Mangalampalli Venkata Phanikrishna, et al. Continuous hydrogen production activity over finely dispersed Ag2O/TiO2catalysts from methanol: water mixtures under solar irradiation: a stucture-activity correlation [J]. International Journal of Hydrogen Energy, 2010, 35(9):3991-4001.
[7] Neppolian Bernaurdshaw, Bruno Andrea, Bianchi Claudia L, et al. Graphene oxide based Pt-TiO2photocatalyst: ultrasound assisted synthesis characteriz ation and catalytic efficiency [J]. Ultrasoics Sonochemistry, 2012, 19(1):9-15.
[8] Zhang Xiaoyan, Sun Yujun, Cui Xiaoli, et al. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution [J]. International Journal of Hydrogen Energy, 2012, 37(1):811-815.
[9] Dang Mingming, Zhou Yi, Li Hong, et al. Preparation and photocatalytic activity of N-doped TiO2nanotube array films [J]. Journal of Materials Science-Materials in Electronics, 2012, 23(1):320-324.
[10] Ju Jianfeng, Chen Xi, Shi Yujun, et al. Hydrothermal preparation and photocatalytic performance of N, S-doped nanometer TiO2under sunshine irradiation [J]. Powder Technology, 2013, 237:616-622.
[11] Xu Shiping, Sun Darren Delai. Significant improvement of photocatalytic hydrogen genera tion rate over TiO2with deposited CuO [J]. International Journal of Hydrogen Energy, 2009, 34(15):6096-6104.
[12] Yu Jiaguo, Hai Yang, Jaroniec Mietek. Photocatalytic hydrogen production over CuO-modified titania [J]. Journal of Colloid and Interface Science, 2011, 357(1):223-228.
[13] Vijayalakshmi K, Karthick K. High quality ZnO/CuO nanocomposites synthesized by microwave assisted reaction [J]. Journal of Materials Science-Materials in Electronics, 2014 25(2):832-836.
[14] Xu Bin, Dong Lin, Chen Yi. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2(anatase) system [J]. Journal of the Chemical Society-Faraday Transactions, 1998, 94(13):1905-1909.
[15] Bandara J,Udawatta C P K,Rajapakse C S K.Highly stable CuO incorporated TiO2catalyst for photocatalytic hydrogen production from H2O [J]. Photochemical & Photobiological Sciences, 2005, 4(11): 857-861.
[16] Choi Hyung-Joo,Kang Misook. International Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3841-3848.
[17] Jin Zhiliang, Zhang Xiaojie, Li Yuexiang. 5.1% apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2photocatalyst under visible light irradiation [J]. Catalysis Communications, 2007, 8(8): 1267-1273.
[18] Fan Wenqing, Lai Qinghua, Zhang Qinghong, et al. Nanocomposites of TiO2and reduced graphene oxide as efficient photocatalysts for hydrogen evolution [J]. Journal of Physical Chemistry C, 2011, 115(21): 10694-10701.
[19] Wang Baowei, Sun Qimei, Liu Sihan, et al. Synergetic catalysis of CuO and graphene additiveson TiO2for photocatalytic water splitting [J]. International Journal of Hydrogen Energy, 2013, 38(18): 7232-7240.
[20] Fang Yuan, Wang Rijing,Jiang Guohua, et al. CuO/TiO2nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials [J]. Bulletin of Materials Science, 2012, 35(4): 495-499.
[21] Zhang Hao, Lv Xiaojun, Li Yueming, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2010, 4(1): 380-386.
[22] Gao Erping, Wang Wenzhong, Shang Meng, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6composite [J]. Physical Chemistry Chemical Physics, 2011, 13(7):2887-2893.
[23] Bessekhouad Y, Chaoui N, Trzpit M, et al. UV-Vis versus visible degradation of acid orange Ⅱ in a coupled CdS/TiO2semiconductors suspension [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2006, 183(1-2):218-224.
[24] Sakata Tadayoshi, Kawai Tomoji. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water [J]. Chemical Physics Letters, 1981, 80(2):341-344.
[25] Baba R, Nakabayashi S, Fujishima A, et al. Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders [J]. Journal of Physical Chemistry, 1985, 89(10):1902-1905.
[26] Hummers William S J R, Offeman Richard E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80:1339.
[27] Chen Tao, Feng Zhaochi, Wu Guopeng, et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2by in situ Fourier transform IR and time-resolved IR spectroscopy [J]. Journal of Physical Chemistry C, 2007, 111(22):8005-8014.
[28] Lin Wenchurng, Yang Wenduo, Huang llun, et al. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNxcatalyst [J]. Energy & Fuels, 2009, 23:2192-2196.
[29] Patsoura A, Kondarides D I, Verykios X E. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen [J]. Catalysis Today, 2007, 124 (3-4):94-102.
Fabrication and photocatalytic activity for hydrogen evolution of graphene-CuO/TiO2composite photocatalysts
TU Shenghui, HU Yaping, ZHANG Ting,ZHU Minjian, LIANG Haiying,PENG Hailong, DU Jun
(College of Resource Environment and Chemistry Engineering, Nanchang University,Nanchang 330031, China)
Graphene-CuO/TiO2composite catalyst was prepared by and solvent thermal methods. The micromorphology, structure and optical properties of the composite catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR), UV-Vis diffuse reflectance (DRS). The inorganic precursor of H2PtCl6was used to load Pt. The effects of the content of graphene loading on hydrogen production activity under different irradiation were investigated. The results showed that the photocatalytic activity for hydrogen production was best with the graphene content of 0.5wt%. The co-existence of CuO and graphene could produce a synergistic effect, which could improve the utilization of visible light and further enhance the photocatalytic activity for hydrogen production of decompositing C2H5OH/H2O of TiO2. The hydrogen production was up to 1 083.54 μmol under visible light irradition for 5 h, while its hydrogen production (4 374.51 μmol) was 2.74 times of P25 (1 598.25 μmol) under sunlight irradition for 5 h.
solvent thermal method; photocatalysis; hydrogen production
1001-9731(2016)04-04011-06
國(guó)家自然科學(xué)基金資助項(xiàng)目(21201098,51162022)
2015-09-20
2015-12-15 通訊作者:涂盛輝,E-mail: tshnc@163.com
涂盛輝 (1964-),男,南昌人,教授,主要從事光催化及納米材料研究。
O643
A
10.3969/j.issn.1001-9731.2016.04.003