付宗魁+吳群英
摘 要 設(shè){X,Xn,n≥1}為嚴(yán)平穩(wěn)的NA隨機(jī)變量序列,{ani,1≤i≤n,n≥1}為實(shí)數(shù)陣列,Sn=∑ni=1aniXi,V2n=∑ni=1a2niX2i. 在適當(dāng)?shù)臈l件下, 證明了NA序列自正則加權(quán)和的幾乎處處中心極限定理.
關(guān)鍵詞 NA序列; 自正則加權(quán)和; 幾乎處處中心極限定理
中圖分類號 O211.4 文獻(xiàn)標(biāo)識碼 A 文章編號 1000-2537(2016)05-0089-06
Abstract Let {X,Xn,n≥1} be a sequence of strictly stationary negatively associated random variables, {ani,1≤i≤n,n≥1} be an array of real numbers with Sn=∑ni=1aniXi,V2n=∑ni=1a2niX2i. Under some suitable assumptions, we proved almost sure central limit theorem for self-normalized weighted sums of negatively associated random variables.
Key words negatively associated random variables; self-normalized weighted sums; almost sure central limit theorem
稱隨機(jī)變量X1,X2,…,Xn,n≥2是Negatively Associated (簡記為NA)的,若對集合{1,2,…,n}的任意兩個(gè)非空不交子集A1, A2, 均有cov(f1(Xi;i∈A1),f2(Xj;j∈A2))≤0.其中,fi,i=1,2是使上式有意義且對各變元不降(或不升)的函數(shù).稱隨機(jī)變量序列{Xn,n≥1}是NA列,如果對任意n≥2,X1,X2,…,Xn是NA的. 近年來,自正則極限理論是概率論研究的一個(gè)熱門話題,許多學(xué)者已得到了很多結(jié)果.文獻(xiàn)[1]得到了混合序列自正則隨機(jī)和乘積的漸近性;文獻(xiàn)[2]得到了自正則和在正態(tài)吸引律下的幾乎處處中心極限定理,文獻(xiàn)[3]得到了φ混合序列自正則加權(quán)和的中心極限定理等.但關(guān)于自正則加權(quán)和的極限理論研究不多,本文討論了NA序列自正則加權(quán)和的幾乎處處中心極限定理.
參考文獻(xiàn):
[1]LIU W D, Lin Z Y. Asymptotics for self-normalized random products of sums for mixing sequences[J]. Stoch Anal Appl, 2007,25(2):293-315.
[2]WU Q Y. A note on the almost sure limit theorem for self-normalized partial sums of random variables in the domain of attraction of the normal law[J]. Inequal Appl, 2012,17(1):242-252.
[3]劉 影,張 勇,董志山.φ混合序列自正則加權(quán)和的中心極限定理[J]. 吉林大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008,46(3):643-648.
[4]NEWMAN C M. Normal fluctuations and the FKG inequalities[J]. Comm Math Phys, 1980,74(2):119-128.
[5]群 英.混合序列的概率極限理論[M]. 北京:科學(xué)出版社,2006.
[6]BILLINGSLEY P. Convergence of probability measures[M]. New York: Wiley, 1968.
[7]PELIGRAD M, SHAO Q M. A note on the almost sure central limit theorem for weakly dependent random variables[J]. Statist Probab Lett, 1995,22(2):131-136.
[8]ZHANG L X. The weak convergence for functions of negatively associated random variables[J]. Multivar Anal, 2001,78(6):272-298.
[9]WU Q Y. Almost sure central limit theory for self-normalized products of sums of partial sums[J]. J Math Anal Appl, 2012,27(2):243-257.
(編輯 HWJ)