国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

靶向MAPK信號通路調控脂肪細胞分化的microRNAs

2016-12-13 09:54張秀秀郭云濤黃萬龍苗向陽
畜牧獸醫(yī)學報 2016年11期
關鍵詞:成脂靶向分化

張秀秀,郭云濤,黃萬龍,李 嬡,苗向陽

(中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,北京 100193)

?

靶向MAPK信號通路調控脂肪細胞分化的microRNAs

張秀秀,郭云濤,黃萬龍,李 嬡,苗向陽*

(中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,北京 100193)

脂肪細胞分化是一個多能間充質干細胞(MSCs)逐漸向成熟脂肪細胞分化的復雜過程,該過程受很多轉錄因子、激素以及信號通路相關分子的嚴格調控。體內(nèi)外的試驗表明,microRNAs(miRNAs)也參與了脂肪細胞分化的調節(jié),且可以靶向轉錄因子和信號通路中的關鍵分子發(fā)揮作用。絲裂原活化蛋白激酶(MAPK)信號通路是真核細胞將胞外信號轉導至胞內(nèi)引起細胞反應的一類重要信號系統(tǒng),研究證明,miRNAs可以靶向MAPK信號通路中的某些基因,影響該通路的信號轉導,參與脂肪細胞分化的調控。因此本文總結了近幾年有關miRNA改變MAPK信號轉導,實現(xiàn)調控脂肪細胞分化功能的研究,以期為深入了解脂肪細胞分化的機制,為治療脂肪型疾病提供新的思路。

microRNA; MAPK信號通路; 靶基因; 脂肪細胞分化

脂肪組織不僅是一個儲存能量的組織,還是一個內(nèi)分泌組織,調控著體內(nèi)的代謝平衡,在肥胖的狀態(tài)下,脂肪組織會增生,表現(xiàn)為脂肪細胞數(shù)目的增多和體積增大,這會導致葡萄糖和脂肪代謝的失調,最終可能導致機體能量代謝失調,增加胰島素拮抗,高血壓以及血脂異常的風險[1-2]。因此對脂肪細胞分化機制的研究有助于治療肥胖疾病。

脂肪細胞分化分為很多個階段,第一步,MSCs被誘導分化為前體脂肪細胞,MSCs是一種多能干細胞,一旦被決定分化為脂肪細胞,就失去了分化為其他細胞類型的能力;其次前體脂肪細胞進行有絲分裂進入克隆增殖期;最后進入生長停滯期或終末分化期,分化為成熟的脂肪細胞。這個過程受一系列轉錄因子如CCAAT增強子結合蛋白(C/EBPs)、過氧化物酶體增殖劑激活受體γ(PPARγ)、信號通路及miRNA的嚴格調控(圖1),其中重要的信號通路有MAPK信號通路、Wnt信號通路、Insulin信號通路等。近年來研究發(fā)現(xiàn)MAPK信號通路在脂肪細胞分化中也發(fā)揮重要作用,成為研究脂肪細胞分化調控機制的熱點,且有研究證明miRNA調控脂肪細胞分化的很多靶基因都富集于MAPK通路中,所以本文著重探討靶向MAPK調控脂肪細胞分化的miRNAs,以期為今后的試驗作指導,為脂肪相關疾病的預防和治療以及動物體脂肪沉積的調控提供新的思路。

1 MAPK信號轉導通路概述

絲裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPKs)是細胞內(nèi)重要的信號通路之一,是哺乳動物體內(nèi)廣泛存在的一類絲/蘇氨酸(Ser/Thr)蛋白激酶,可使多種核轉錄因子和蛋白激酶磷酸化,且能被一系列的細胞外信號或刺激所激活,如物理應激,炎性細胞因子,生長因子,細菌復合物等。目前在哺乳動物中已鑒定了4條MAPK信號轉導通路,即ERK1/2信號通路、JNK通路、p38 MAPK通路和ERK5/BMK1通路,它們由不同的刺激因素激活,形成不同的轉導途徑,激活各不相同的轉錄因子,介導不同的生物學效應,參與細胞的增殖、分化、凋亡及細胞間的功能同步等一系列生理過程,在動物的生長發(fā)育、炎性反應等多種生命活動中發(fā)揮重要作用[3-6]。MAPK信號轉導是以三級激酶級聯(lián)的方式進行的,首先MAPKKK受有絲分裂原刺激磷酸化而激活,在此基礎上MAPKKK磷酸化激活 MAPKK,最后由MAPKK磷酸化 MAPK,然后激活的MAPK作用于相應的轉錄因子,調控特定的基因表達。研究發(fā)現(xiàn)MAPK信號通路在脂肪細胞分化的各個階段均有參與,且發(fā)揮了重要作用。

2 MAPK信號通路對脂肪細胞分化的調控

四條MAPK信號通路都與脂肪細胞分化或脂肪代謝相關,ERK1/2是最早發(fā)現(xiàn)的MAPK家族成員,其對細胞成脂分化的調控比較復雜,很多研究都得到了完全相反的結果,E. Turpin 與V. A. Constant等[7-8]發(fā)現(xiàn)ERK1/2可能抑制了脂肪細胞分化,而也有研究證明ERK1/2在脂肪細胞分化早期發(fā)揮積極的促進作用[9-12],具體調控機制可能是脂肪細胞分化早期激活的ERK1/2促進了C/EBPα和PPARγ的表達[13],從而促進脂肪細胞分化,而在后期激活的ERK1/2會磷酸化PPARγ使其失活[14-15],導致了脂肪細胞分化的抑制,所以ERK1/2對脂肪細胞分化的調控作用可能取決于該通路被激活的時間。p38MAPK是1993年J. L.Brewster等[16]發(fā)現(xiàn)的相對分子質量為38 ku的酪氨酸磷酸化的蛋白激酶,包括 p38α、p38β、p38γ、p38δ 4種亞型。M. Aouadi和J.Ji等[17-18]發(fā)現(xiàn)p38MAPK可以促進人類前體脂肪細胞和3T3-L1前體脂肪細胞的成脂分化,而M. Aouadi等[19]也發(fā)現(xiàn)p38MAPK抑制了小鼠胚胎成纖維細胞及成年鼠脂肪前體細胞成脂分化,可見p38MAPK通路對脂肪細胞分化的調控與物種和細胞類型有關。JNK(c-Jun氨基末端激酶)是相對分子質量54 ku的絲/蘇氨酸蛋白激酶,S. Tominaga等[20]證實JNK抑制劑SP600125促進了人類間充質干細胞(hMSCs)成脂分化,M. Feng等[21]發(fā)現(xiàn)微管親和調節(jié)蛋白激酶4(Mark4)可以通過激活JNK1信號通路來促進脂肪細胞分化,說明JNK信號通路在調節(jié)脂肪細胞分化方面發(fā)揮了重要作用。此外,ERK5/BMK1通路,一類非典型的MAPK通路,也參與了脂肪細胞分化及脂肪代謝的調控[22-23]。綜上可得,這些MAPK信號通路通過不同途徑,不同分子的參與,調控了脂肪細胞分化,為預防和治療肥胖相關疾病提供了重要的靶點。

3 miRNAs的特點及調控機制

miRNA 是一種長為18~22 nt的內(nèi)源性非編碼RNA,它可通過與靶基因mRNA的3′非翻譯區(qū)(3′UTR)互補配對,抑制靶基因的翻譯,對基因表達進行轉錄后調控[24-26],在動物細胞的增殖、分化、凋亡和代謝等許多生物學過程中發(fā)揮重要作用[27-29]。大量研究顯示miRNA 也參與調控動物脂肪細胞的分化[30],這些miRNAs在脂肪細胞分化的早期或者后期通過靶向作用信號通路中的分子或轉錄因子發(fā)揮調節(jié)功能。Y. F. Tang等[31]發(fā)現(xiàn)在脂肪干細胞(ADSCs)成脂分化期間miR-31和miR-326分別通過靶向轉錄因子C/EBPα和信號分子RASSF1來調節(jié)ADSCs分化,S. Y. Kim與E. K. Lee等[32-33]證明miR-27a和miR-130a也可以靶向轉錄因子PPARγ抑制脂肪細胞分化。此外有研究表明,部分miRNAs可以靶向MAPK信號通路中的信號分子ERK5、ERK1/2等在脂肪細胞分化中發(fā)揮重要調控作用。因此本文著重闡述了靶向MAPK調控脂肪細胞分化的miRNAs,有助于我們對脂肪細胞分化機制的進一步探索和研究。

4 靶向MAPK信號通路調節(jié)脂肪細胞分化的miRNAs

4.1 miRNA-143靶向MAP2K2-ERK5

C. Esau等[34]利用反義RNA寡核苷酸(ASOs)轉染技術以及芯片技術分析了參與人類脂肪細胞分化的miRNAs。結果顯示miR-143在人成熟脂肪細胞和前體脂肪細胞中存在顯著差異表達,且在成熟脂肪細胞中上調,說明miR-143可能促進脂肪細胞分化。此外Esau等還發(fā)現(xiàn)ERK5的蛋白表達水平在轉染有miR-143 ASO的細胞中明顯高于對照組,推測ERK5可能是miR-143的一個作用靶基因。在Esau研究的基礎上,L. Chen等[35]首次證明了miR-143對脂肪干細胞(ADSC)成脂分化的作用不是持續(xù)不變的,而是取決于發(fā)揮作用的階段,即miR-143在ADSC分化的克隆增殖期產(chǎn)生抑制作用,在生長停滯期或終末分化期發(fā)揮促進作用。為了探索其機制,L. Chen等利用生物信息學方法和試驗方法證實MAP2K2是miR-143調節(jié)脂肪細胞分化的一個直接靶基因,而其下游的ERK5是miR-143的間接靶基因[35],所以推測在ADSC克隆增殖期miR-143抑制了MAP2K2的表達,導致其下游ERK5活性降低,脂肪細胞分化受到抑制,而在終末分化期,miR-143抑制了MAP2K2-ERK5的活性后,ERK5介導的PPARγ磷酸化減少,從而促進了脂肪細胞分化。綜上可得miR-143通過調節(jié)MAP2K2-ERK5通路在脂肪細胞分化過程中扮演重要角色。

4.2 miRNA-21靶向SPRY2-ERK-MAPK

miR-21是脂肪細胞分化的正調控因子[36],其調控機制不斷地被探索,近年來也有研究證明miR-21靶向TGF-β信號通路中的TGFRB2來調節(jié)脂肪細胞分化[37]。在此基礎上Y. Mei等[38]發(fā)現(xiàn)ERK-MAPK信號通路也是miR-21的靶標,在MSC成脂分化的早期過表達miR-21,發(fā)現(xiàn)脂肪細胞分化標志基因PPARγ和ap2的表達水平顯著增加,且ERK-MAPK信號通路的活性顯著增強[38],由于ERK-MAPK通路在脂肪細胞分化早期發(fā)揮促進作用[13],故miR-21可能與ERK-MAPK共同參與促進了MSC成脂分化。生物信息學方法預測可知miR-21的靶基因大多與ERK-MAPK通路有關,利用轉染技術和熒光素酶報告分析法證明SPRY2是miR-21的直接靶基因[38],SPRY2蛋白是SPRY家族的成員,是ERK-MAPK通路的負調控者[39],故miR-21是通過直接抑制SPRY2活性來調節(jié)和維持ERK-MAPK通路活性,且三者構成一個反饋回路網(wǎng)絡,共同促進脂肪細胞分化。

4.3 miR-375靶向ERK1/2

研究表明,miR-375參與了胰島素分泌的調節(jié)[40],且對于維持內(nèi)環(huán)境穩(wěn)態(tài)以及抑制神經(jīng)突細胞分化有著非常重要的作用[41-43]。近來H. Y. Ling等[44]探索了miR-375在脂肪細胞分化中的作用,芯片技術檢測結果顯示miR-375在3T3-L1成熟脂肪細胞中上調,且在3T3-L1前體脂肪細胞中過表達miR-375后發(fā)現(xiàn)脂肪細胞分化標志基因PPARγ、C/EBPα、aP2表達量顯著增加,說明miR-375可以促進3T3-L1脂肪細胞的分化。此外H. Y. Ling等[44]還發(fā)現(xiàn)miR-375的過表達抑制ERK1/2的磷酸化,然而敲除 miR-375可以顯著促進ERK1/2磷酸化,且降低了PPARγ、C/EBPα、aP2的表達量,故推測ERK1/2介導了miR-375對脂肪細胞分化的調控。然而由于ERK1/2的表達量不受miR-375影響,故miR-375調控脂肪細胞分化是直接靶向ERK1/2還是其他未知的靶基因仍有待探索。

4.4 其他通過MAPK調控脂肪細胞分化的miRNAs

miR-14可以調控胰島細胞的內(nèi)分泌,調節(jié)果蠅體內(nèi)的脂肪代謝及能量代謝[45],P. Xu等[46]發(fā)現(xiàn)在果蠅中抑制miR-14的表達會導致脂肪細胞中脂滴數(shù)和甘油三酯積累的增加,即miR-14對脂肪代謝有抑制作用,且是通過靶基因p38和MAPK實現(xiàn)的[46]。此外, miR-27a和miR-27b也可以通過間接影響MAPK信號通路的信號轉導參與調控脂肪細胞的分化. MiR-27a/b是脂肪細胞分化的負調控因子[47], T. Kang等[48]利用生物信息學方法和熒光素酶檢測試驗證明抑制素(PHB)是miR-27a和miR-27b的靶基因,PHB在脂肪細胞中高度表達,與脂肪細胞分化有密切的關系[49]。在3T3-L1細胞中過表達PHB抑制了胰島素誘導的成脂分化,但是在胰島素缺乏的情況下,PHB會通過上調MAPK/ERK信號通路促進脂肪細胞分化。在脂肪來源干細胞(ASC)中轉染miR-27使得PHB沉默,脂肪細胞的分化就會被抑制[50],推測在胰島素缺乏的情況下,PHB可以作用于下游的MAPK信號通路來促進脂肪的分化,而miR-27a和miR-27b通過抑制PHB間接靶向MAPK通路抑制脂肪細胞分化。此外,miR-448[51]和miR-378[52]也可以通過直接或間接調節(jié)MAPK信號分子來調控脂肪細胞分化。綜上所述,miR-143、miR-21、miR-375、miR-27a/b等miRNAs通過直接或間接靶向MAPK信號通路中的相關分子,參與了脂肪細胞分化的調控(表1)。

圖1 MSCs成脂分化過程中的調控因素Fig.1 The regulatory factors during adipogenic differentiation of MSCs

表1 通過靶向MAPK信號通路中的靶基因調節(jié)脂肪細胞分化的miRNAs

Table 1 miRNAs in the regulation of adipocyte differentiation via targeting genes in MAPK signaling pathway

miRNAmiRNA靶基因Targetgene功能Function細胞模型Cellmodel物種Species參考文獻ReferencesmiR-143ERK5、MAP2K2-+3T3L1、ADSCsH、M[35]miR-21SPRY2、MAPK+MSC、3T3L1M[38]miR-375ERK、MAPK+3T3L1M[44]miR-14p38、MAPK-Drosophila[46]miR-27(a、b)PHB、MAPK-ADSCs、3T3L1H、M[48-50]miR-448KLF5、MAPK-3T3L1M[51]miR-378MAPK1、MAPK+3T3L1M[52]

+.miRNA促進脂肪細胞分化; -.miRNA抑制脂肪細胞分化;- +.miRNA在脂肪細胞分化的早期發(fā)揮抑制作用,而在分化后期發(fā)揮促進作用。H.人;M.小鼠

+. Promoting adipocyte differentiation by miRNA; -. Inhibiting adipocyte differentiation by miRNA ; - +. Inhibiting effect and promoting effect, respectively during the early stage and late stage of adipocyte differentiation by miRNA. H. Human; M. Mouse

5 展望

肥胖、Ⅱ型糖尿病等代謝性疾病已經(jīng)成為危害人類健康的殺手,其病理過程與脂肪細胞分化失調及脂代謝紊亂密切相關,目前脂肪細胞分化的機制已經(jīng)成為了研究的熱點。而miRNA對脂肪細胞分化的調控機制更是吸引了越來越多的科研工作者。試驗證明miRNA可以通過靶向轉錄因子和信號通路中的關鍵分子影響脂肪細胞分化,故針對特定的miRNA尋找下游靶基因,研究其如何調控脂肪細胞分化成為了研究重點。隨著分子生物學領域的不斷發(fā)展,利用新一代測序技術研究miRNA已經(jīng)越來越受歡迎,該技術快速、準確,在發(fā)現(xiàn)新的 miRNA 方面具有突出優(yōu)勢,且測序成本逐年降低。本實驗室前期已經(jīng)完成了日本黑毛和牛與荷斯坦牛皮下脂肪組織miRNA的Illumina測序,日本黑毛和牛與荷斯坦牛同為世界知名牛種,但在脂肪沉積方面二者卻形成了顯著差異,為研究脂肪細胞分化機制提供良好的素材。測序結果共鑒定出17個差異表達的已知miRNAs,以及15個新的miRNAs,對差異表達miRNAs的靶基因進行KEGG Pathway富集分析,發(fā)現(xiàn)某些差異表達miRNAs可能通過靶向甘油磷脂代謝,脂肪酸代謝及PPAR[53]等脂肪細胞分化相關信號通路中的重要基因調節(jié)了牛脂肪細胞分化或脂肪代謝,影響了牛的脂肪沉積,為研究脂肪代謝疾病提供有用的信息。

影響脂肪細胞分化的信號通路非常多,MAPK是其中較關鍵的一個通路,此外pRB-E2F[54]、Wnt[55]以及本試驗中鑒定出來的PPAR信號通路也在脂肪細胞分化中發(fā)揮了重要的作用,這些通路之間存在廣泛的“cross talk”,且與miRNA形成一個龐大的網(wǎng)絡共同調控脂肪細胞分化,本文著重闡述了靶向MAPK信號通路調節(jié)脂肪細胞分化的miRNAs,希望有助于調控網(wǎng)絡的研究,有助于miRNA調控脂肪細胞分化機制的闡明,為防治人類肥胖及其相關疾病提供新的靶點。目前,miRNA已經(jīng)被用于研發(fā)新一代治療疾病的藥物。Santaris醫(yī)藥公司進行了靶向miRNA藥物的首次人類臨床試驗,他們將SPC3649,一種miR-122的反義鎖核苷酸(locked nucleic acid,LNA)用于丙型肝炎的治療,反義鎖核苷酸能夠沉默相關的miRNAs[56],miR-122可以影響丙型肝炎病毒的復制,也可以調控膽固醇的合成[57],基于這些特點miR-122已經(jīng)成為了第一代基于miRNA治療代謝性疾病的發(fā)展對象,盡管安全、有效。但是靶向miRNA的藥物治療仍然處于研究的初期,每次藥物試驗非常昂貴且失敗風險很大,故將靶向miRNA藥物應用于臨床仍需很大的努力。

未來miRNA調控脂肪細胞分化機制的研究已經(jīng)不僅僅局限于對下游靶基因的尋找和驗證,其上游的轉錄因子、細胞因子以及環(huán)境因素等也逐漸受到學者們的關注,miRNA與其下游的靶基因、上游的轉錄因子和細胞因子等構成了復雜的網(wǎng)絡共同發(fā)揮調控作用。隨著研究的深入,miRNA調控脂肪細胞分化的機制會越來越清楚,再加上靶向miRNA藥物的治療技術日趨成熟,相信不久以后利用miRNA抵御和治療肥胖將成為現(xiàn)實。

[1] GUILHERME A, VIRBASIUS J V, PURI V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes[J].NatRevMolCellBiol, 2008, 9(5): 367-377.

[2] ABOOUF M A, HAMDY N M, AMIN A I, et al. Genotype screening of APLN rs3115757 variant in Egyptian women population reveals an association with obesity and insulin resistance[J].DiabetesResClinPract, 2015, 109(1): 40-47.

[3] CHEN H, XU X, TENG J, et al. CXCR4 inhibitor attenuates allergen-induced lung inflammation by down-regulating MMP-9 and ERK1/2[J].IntJClinExpPathol, 2015, 8(6): 6700-6707.

[4] BAO M H, ZHANG Y W, ZHOU H H. Paeonol suppresses oxidized low-density lipoprotein induced endothelial cell apoptosis via activation of LOX-1/p38MAPK/NF-kappaB pathway[J].JEthnopharmacol, 2013, 146(2): 543-551.

[5] LIU J, CHANG F, LI F, et al. Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK[J].BiochemBiophysResCommun, 2015, 463(3): 262-267.

[6] HU K H, LI W X, SUN M Y, et al. Cadmium induced apoptosis in MG63 cells by increasing ROS, activation of p38 MAPK and inhibition of ERK 1/2 pathways[J].CellPhysiolBiochem, 2015, 36(2): 642-654.

[7] TURPIN E, MUSCAT A, VATIER C, et al. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway[J].BrJPharmacol, 2013, 168(1): 139-150.

[8] CONSTANT V A, GAGNON A, YARMO M, et al. The antiadipogenic effect of macrophage-conditioned medium depends on ERK1/2 activation[J].Metabolism, 2008, 57(4): 465-472.

[9] GWON S Y, AHN J Y, JUNG C H, et al. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells[J].BMCComplementAlternMed, 2013, 13:207.

[10] KWAK D H, LEE J H, KIM D G, et al. Inhibitory effects of hwangryunhaedok-tang in 3T3-L1 adipogenesis by regulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt phosphorylation[J].EvidBasedComplementAlternatMed, 2013, 2013: 413906.

[11] LIAO Q C, LI Y L, QIN Y F, et al. Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal- regulated kinases 1/2 activity[J].JCellBiochem, 2008, 104(5): 1853-1864.

[12] CHOI J S, KIM J H, ALI M Y, et al. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKalpha/Akt pathways[J].ArchPharmRes, 2015, 38(12):2153-2162.

[13] PRUSTY D, PARK B H, DAVIS K E, et al. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma(PPAR gamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes[J].JBiolChem, 2002, 277(48): 46226-46232.

[14] TANABE Y, KOGA M, SAITO M,et al. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2[J].JCellSci, 2004, 117(Pt 16): 3605-3614.

[15] REGINATO M J, KRAKOW S L, BAILEY S T, et al. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma[J].JBiolChem, 1998, 273(4): 1855-1858.

[16] BREWSTER J L, DE VALOIR T, DWYER N D, et al. An osmosensing signal transduction pathway in yeast[J].Science, 1993, 259(5102): 1760-1763.

[17] AOUADI M, JAGER J, LAURENT K, et al. p38MAP Kinase activity is required for human primary adipocyte differentiation[J].FEBSLett, 2007, 581(29): 5591-5596.

[18] JI J, ZHU J, HU X, et al. (2S)-7,4'-dihydroxy-8-prenylflavan stimulates adipogenesis and glucose uptake through p38MAPK pathway in 3T3-L1 cells[J].BiochemBiophysResCommun, 2015, 460(3): 578-582.

[19] AOUADI M, LAURENT K, PROT M, et al. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages[J].Diabetes, 2006, 55(2): 281-289.

[20] TOMINAGA S, YAMAGUCHI T, TAKAHASHI S, et al. Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase[J].BiochemBiophysResCommun, 2005, 326(2): 499-504.

[21] FENG M, TIAN L, GAN L, et al. Mark4 promotes adipogenesis and triggers apoptosis in 3T3-L1 adipocytes by activating JNK1 and inhibiting p38MAPK pathways[J].BiolCell, 2014, 106(9): 294-307.

[22] ZHU H, GUARIGLIA S, LI W, et al. Role of extracellular signal-regulated kinase 5 in adipocyte signaling[J].JBiolChem, 2014, 289(9): 6311-6322.

[23] SHARMA G, GOALSTONE M L. Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis[J].MolCellEndocrinol, 2005, 245(1-2): 93-104.

[24] VALENCIA-SANCHEZ M A, LIU J, HANNON G J, et al. Control of translation and mRNA degradation by miRNAs and siRNAs[J].GenesDev, 2006, 20(5): 515-524.

[25] BARCKMANN B, SIMONELIG M. Control of maternal mRNA stability in germ cells and early embryos[J].BiochimBiophysActa, 2013, 1829(6-7): 714-724.

[26] LOH B, JONAS S, IZAURRALDE E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2[J].GenesDev, 2013, 27(19): 2125-2138.

[27] XUE Z, ZHAO J, NIU L, et al. Up-regulation of miR-300 promotes proliferation and invasion of osteosarcoma by targeting BRD7[J].PLoSOne, 2015, 10(5): e0127682.

[28] VIMALRAJ S, SELVAMURUGAN N. Regulation of proliferation and apoptosis in human osteoblastic cells by microRNA-15b[J].IntJBiolMacromol, 2015, 79:490-497.

[29] ZHAO M, SUN L, CHEN S, et al. Borna disease virus infection impacts microRNAs associated with nervous system development, cell differentiation, proliferation and apoptosis in the hippocampi of neonatal rats[J].MolMedRep, 2015, 12(3):3697-3703.

[30] 賈夏麗,潘洋洋,喬利英, 等. 脂肪分化相關信號通路及microRNA調節(jié)研究進展[J]. 畜牧獸醫(yī)學報, 2015,46(4): 518-525.

JIA X L, PAN Y Y, QIAO L Y, et al. Research progress in signaling pathways and microRNA regulation of adipocyte differentiation[J].ActaVeterinariaetZootechnicaSinica, 2015, 46(4): 518-525.(in Chinese)

[31] TANG Y F, ZHANG Y, LI X Y, et al. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells[J].OMICS, 2009, 13(4): 331-336.

[32] KIM S Y, KIM A Y, LEE H W, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J].BiochemBiophysResCommun, 2010, 392(3): 323-328.

[33] LEE E K, LEE M J, ABDELMOHSEN K, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression[J].MolCellBiol, 2011, 31(4): 626-638.

[34] ESAU C, KANG X, PERALTA E, et al. MicroRNA-143 regulates adipocyte differentiation[J].JBiolChem, 2004, 279(50): 52361-52365.

[35] CHEN L, HOU J, YE L, et al. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling[J].SciRep, 2014, 4:3819.

[36] SEEGER T, FISCHER A, MUHLY- REINHOLZ M, et al. Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice[J].Obesity(SilverSpring), 2014, 22(11): 2352-2360.

[37] KIM Y J, HWANG S J, BAE Y C, et al. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue[J].StemCells, 2009, 27(12): 3093-3102.

[38] MEI Y, BIAN C, LI J, et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation[J].JCellBiochem, 2013, 114(6): 1374-1384.

[39] CASCI T, VINS J, FREEMAN M. Sprouty, an intracellular inhibitor of Ras signaling[J].Cell, 1999, 96(5): 655-665.

[40] POY M N, ELIASSON L, KRUTZFELDT J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J].Nature, 2004, 432(7014): 226-230.

[41] LYNN F C. Meta-regulation: microRNA regulation of glucose and lipid metabolism[J].TrendsEndocrinolMetab, 2009, 20(9): 452-459.

[42] EL OUAAMARI A, BAROUKH N, MARTENS G A, et al. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J].Diabetes, 2008, 57(10): 2708-2717.

[43] ABDELMOHSEN K, HUTCHISON E R, LEE E K, et al. miR-375 inhibits differentiation of neurites by lowering HuD levels[J].MolCellBiol, 2010, 30(17): 4197-4210.

[44] LING H Y, WEN G B, FENG S D, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling[J].ClinExpPharmacolPhysiol, 2011, 38(4): 239-246.

[45] VARGHESE J, LIM S F, COHEN S M. Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe[J].GenesDev, 2010, 24(24): 2748-2753.

[46] XU P, VERNOOY S Y, GUO M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism[J].CurrBiol, 2003, 13(9): 790-795.

[47] 陳 晨,胡雄貴,朱 吉, 等. 豬脂肪發(fā)育相關miRNAs的功能研究進展[J]. 畜牧獸醫(yī)學報, 2015,46(12): 2117-2126.

CHEN C, HU X G, ZHU J, et al. Progress on the research of miRNAs associated with fat development in pigs[J].ActaVeterinariaetZootechnicaSinica, 2015,46(12): 2117-2126.(in Chinese)

[48] KANG T, LU W, XU W, et al. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells[J].JBiolChem, 2013, 288(48): 34394-34402.

[49] ANDE S R, XU Z, GU Y, et al. Prohibitin has an important role in adipocyte differentiation[J].IntJObes(Lond), 2012, 36(9): 1236-1244.

[50] LIN Q, GAO Z, ALARCON R M, et al. A role of miR-27 in the regulation of adipogenesis[J].FEBSJ, 2009, 276(8): 2348-2358.

[51] KINOSHITA M, ONO K, HORIE T, et al. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448 mediated repression of KLF5[J].MolEndocrinol, 2010, 24(10): 1978-1987.

[52] HUANG N, WANG J, XIE W, et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1[J].BiochemBiophysResCommun, 2015, 457(1): 37-42.

[53] PARK H J, YUN J, JANG S H, et al. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway[J].PLoSOne, 2014, 9(9): e105809.

[54] WANG Q, LI Y C, WANG J, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130[J].ProcNatlAcadSciUSA, 2008, 105(8): 2889-2894.

[55] CHEN C, PENG Y, PENG Y, et al. miR-135a-5p inhibits 3T3-L1 adipogenesis through activation of canonical Wnt/beta-catenin signaling[J].JMolEndocrinol, 2014, 52(3): 311-320.

[57] WAHID F, SHEHZAD A, KHAN T, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials[J].BiochimBiophysActa, 2010, 1803(11): 1231-1243.

(編輯 郭云雁)

Regulation of Adipocyte Differentiation via microRNAs Targeting MAPK Signaling Pathway

ZHANG Xiu-xiu, GUO Yun-tao, HUANG Wan-long, LI Yuan, MIAO Xiang-yang*

(InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China)

Adipocyte differentiation is a complicated process in which pluripotent mesenchymal stem cells (MSCs) differentiate into mature adipocytes. The process of adipocyte differentiation is strictly regulated by a number of transcription factors, hormones and signaling pathway molecules.Invivoandinvitroresearch has revealed that microRNAs (miRNAs) are also involved in adipocyte differentiation and play a role by targeting transcription factors and key signaling molecules. MAPK signaling pathway is one of important signaling systems which transduce the extracellular signal to intracellular space and cause cell response. The studies showed that, miRNAs can target certain genes in MAPK and affect its signal transduction, thus regulating adipocyte differentiation. Therefore, a summary of researches how miRNAs change the signal transduction of MAPK pathway and regulate adipocyte differentiation was performed in order to further understand the adipocyte differentiation mechanism and offer new ideas for curing the fat-associated diseases.

microRNA; MAPK signaling pathway; target gene; adipocyte differentiation

10.11843/j.issn.0366-6964.2016.11.002

2016-03-01

轉基因生物新品種培育科技重大專項(2009ZX08008-004B;2008ZX08008-003);國家“863”計劃項目(2008AA10Z140);國家自然科學基金項目(30571339);中國農(nóng)業(yè)科學院農(nóng)業(yè)科技創(chuàng)新項目(ASTIP-IAS05);國家重點基礎研究發(fā)展計劃(“973”計劃)(2015CB943100);中國農(nóng)業(yè)科學院創(chuàng)新基金項目(2004-院-1);中央級公益性科研院所基本科研業(yè)務費專項資金項目(2013ywf-yb-5;2013ywf-zd-2)

張秀秀(1989-),女,山西大同人,碩士,主要從事轉基因與細胞工程研究,E-mail:13261953358@163.com

*通信作者:苗向陽,研究員,博士,博士生導師,主要從事基因工程與功能基因組學及轉基因動物研究,E-mail:mxy32@sohu.com

S813.2

A

0366-6964(2016)11-2159-08

猜你喜歡
成脂靶向分化
新型抗腫瘤藥物:靶向藥物
如何判斷靶向治療耐藥
兩次中美貨幣政策分化的比較及啟示
分化型甲狀腺癌切除術后多發(fā)骨轉移一例
魯政委:房地產(chǎn)同城市場初現(xiàn)分化
中藥誘導骨髓間充質干細胞成脂分化的研究進展※
靶向治療 精準施治 為“危改”開“良方”
左、右歸丸對去卵巢大鼠BMSCs成骨、成脂分化后Caspase-3/Bcl-2的影響
轉化生長因子β受體Ⅰ影響脂肪細胞分化的研究
靶向超聲造影劑在冠心病中的應用
广灵县| 山丹县| 安图县| 宜都市| 麻栗坡县| 漠河县| 凉山| 长兴县| 潞西市| 绥芬河市| 富源县| 静海县| 安化县| 青田县| 缙云县| 五莲县| 和平县| 镇巴县| 祁阳县| 长沙县| 临安市| 克山县| 枣强县| 巧家县| 松阳县| 江孜县| 湖州市| 丰顺县| 石楼县| 钟山县| 三都| 林甸县| 蒙山县| 石景山区| 登封市| 汉寿县| 贵州省| 易门县| 肥城市| 长治市| 错那县|