趙清海, 陳瀟凱, 林逸
(北京理工大學(xué) 機(jī)械與車輛學(xué)院,北京電動(dòng)車輛協(xié)同創(chuàng)新中心,北京 100081)
?
基于有限體積法的穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)拓?fù)鋬?yōu)化
趙清海, 陳瀟凱, 林逸
(北京理工大學(xué) 機(jī)械與車輛學(xué)院,北京電動(dòng)車輛協(xié)同創(chuàng)新中心,北京 100081)
針對(duì)散熱結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)的研究現(xiàn)狀,提出一種基于有限體積法的穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)的拓?fù)鋬?yōu)化設(shè)計(jì),構(gòu)建兩種區(qū)域離散策略,即內(nèi)節(jié)點(diǎn)法和外節(jié)點(diǎn)法. 借助變密度法拓?fù)鋬?yōu)化理論,建立以散熱弱度為目標(biāo)函數(shù)的穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)的拓?fù)鋬?yōu)化數(shù)學(xué)模型,研究在第一、二和三類邊界條件下的優(yōu)化問題. 算例計(jì)算結(jié)果表明,基于不同區(qū)域離散格式外節(jié)點(diǎn)法和內(nèi)節(jié)點(diǎn)的拓?fù)鋬?yōu)化設(shè)計(jì)均能有效改善結(jié)構(gòu)的散熱效果,且能獲得良好的拓?fù)鋬?yōu)化構(gòu)型,對(duì)微熱源的影響也能識(shí)別最佳的散熱路徑.
拓?fù)鋬?yōu)化;熱傳導(dǎo);有限體積法;變密度法
結(jié)構(gòu)散熱設(shè)計(jì)廣泛存在于電子設(shè)備、航空航天、汽車等多個(gè)工程領(lǐng)域,通過合理設(shè)計(jì)結(jié)構(gòu)的拓?fù)錁?gòu)型,有效改善結(jié)構(gòu)的散熱效果,從而保證關(guān)鍵零部件工作的可靠性. 國(guó)內(nèi)外已有相關(guān)學(xué)者對(duì)熱傳導(dǎo)結(jié)構(gòu)優(yōu)化問題進(jìn)行研究[1-7]. Zhuang等[1]針對(duì)瞬態(tài)熱傳導(dǎo)問題進(jìn)行拓?fù)鋬?yōu)化研究,尋求最優(yōu)的熱傳導(dǎo)路徑. Akihiro等[2]研究熱-固耦合物理場(chǎng)作用下,以結(jié)構(gòu)強(qiáng)度和導(dǎo)熱系數(shù)為約束條件的結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)問題. 孫士平等[3]針對(duì)熱彈性連續(xù)體拓?fù)鋬?yōu)化存在的中間密度問題,分析了熱力耦合場(chǎng)作用下的結(jié)構(gòu)拓?fù)錁?gòu)型設(shè)計(jì).
基于上述工作基礎(chǔ),文中針對(duì)基于有限體積法的穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)的拓?fù)鋬?yōu)化設(shè)計(jì)問題,提出兩種區(qū)域離散策略,即內(nèi)節(jié)點(diǎn)法和外節(jié)點(diǎn)法,采用變密度法拓?fù)鋬?yōu)化理論,建立以散熱弱度為目標(biāo)函數(shù)的穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)的拓?fù)鋬?yōu)化數(shù)學(xué)模型,研究在第1、2和3類邊界條件下的優(yōu)化問題,最后通過兩個(gè)算例驗(yàn)證文中模型和方法的有效性.
熱傳導(dǎo)是典型的熱能傳遞方式,由能量守恒定律和傳熱問題的Fourier定律,可得瞬態(tài)熱傳導(dǎo)問題的場(chǎng)變量T(x,y,z,t)應(yīng)滿足的守恒型控制方程為
(1)
式中:λ為熱傳導(dǎo)系數(shù);ρ為材料密度;c為材料比熱容;S為結(jié)構(gòu)內(nèi)部熱源強(qiáng)度.
對(duì)微分方程的求解,須提供相應(yīng)的定解條件. 初始條件為
T|t=0=φ(x,y,z).
(2)
邊界條件為
(3)
式中:邊界ΓD上給定溫度函數(shù)值;邊界ΓN上給定熱流密度函數(shù)值;n為邊界外法線方向;邊界ΓR上給定熱對(duì)流換熱函數(shù)值;a與Tf分別為換熱系數(shù)與流體溫度.
2.1 控制容積的確定
采用互不重迭的子區(qū)域?qū)υO(shè)計(jì)區(qū)域進(jìn)行網(wǎng)格劃分,此時(shí),確定節(jié)點(diǎn)在子區(qū)域中的位置有兩種方式:外節(jié)點(diǎn)法與內(nèi)節(jié)點(diǎn)法. 外節(jié)點(diǎn)法如圖1(a)所示,節(jié)點(diǎn)位于子區(qū)域的角頂位置;內(nèi)節(jié)點(diǎn)法如圖1(b)所示,節(jié)點(diǎn)位于子區(qū)域的中心. 節(jié)點(diǎn)位置及控制容積模型如圖1所示,其中,P、W、E、N、S為節(jié)點(diǎn),界面線所圍區(qū)域w-e-n-s為節(jié)點(diǎn)P的控制容積,即陰影區(qū)域,控制容積we、ns之間的距離分別記為Δx、Δy,控制容積體積為ΔV=ΔxΔy. 節(jié)點(diǎn)P到W、E、N、S的距離分別為δxWP、δxPE、δxPN、δxSP.
2.2 控制方程離散格式
按照有限體積法的基本思想,對(duì)式(1)在控制體積內(nèi)對(duì)其進(jìn)行積分,借助Green散度定理和中心差分格式,系數(shù)歸一化處理并整理為矩陣形式,得到
(4)
界面上當(dāng)量導(dǎo)熱系數(shù)的確定方法主要有兩種:算術(shù)平均法與調(diào)和平均法. 本例選用基于線性插值的算術(shù)平均法,得到
綜上所述,建立微分方程組
(5)
式中:K為熱傳導(dǎo)系數(shù)矩陣;T為節(jié)點(diǎn)溫度列陣;Q為溫度載荷列陣.
3.1 穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)拓?fù)鋬?yōu)化模型
基于變密度法模型[4],建立單元密度與子區(qū)域中的導(dǎo)熱系數(shù)矩陣的對(duì)應(yīng)關(guān)系為
(6)
式中:ρe為設(shè)計(jì)變量,服從0-1分布;P為懲罰因子,一般取值為3;k0為子區(qū)域單元的熱傳導(dǎo)系數(shù)矩陣.
以結(jié)構(gòu)散熱弱度為目標(biāo)函數(shù),體積為約束條件,建立穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)的拓?fù)鋬?yōu)化模型為
(7)
式中:c為結(jié)構(gòu)散熱弱度;ve為單元體積;V0為設(shè)計(jì)區(qū)域體積;f為體積比;N為離散設(shè)計(jì)區(qū)域的子區(qū)域單元數(shù);ρmin為單元密度下限值,防止出現(xiàn)總剛度矩陣的奇異,取值為10-3.
文中采用優(yōu)化準(zhǔn)則法更新設(shè)計(jì)變量,其具有求解速度快,計(jì)算規(guī)模對(duì)設(shè)計(jì)變量數(shù)目的增加不敏感,適用于約束條件不多的優(yōu)化問題求解.
3.2 子區(qū)域?qū)嵯禂?shù)矩陣
優(yōu)化準(zhǔn)則法基于靈敏度信息對(duì)設(shè)計(jì)變量進(jìn)行更新,求解目標(biāo)函數(shù)c相對(duì)于設(shè)計(jì)變量ρe的敏度為
(8)
因此,子區(qū)域?qū)嵯禂?shù)矩陣k0的求解至關(guān)重要.
對(duì)于外節(jié)點(diǎn)法,子區(qū)域單元模型如圖2所示.
矩形單元中含有4個(gè)溫度節(jié)點(diǎn),對(duì)4個(gè)控制容積的界面系數(shù)產(chǎn)生影響,假設(shè)子區(qū)域?qū)嵯禂?shù)為λ. 建立子區(qū)域?qū)嵯禂?shù)矩陣為
k0Te=
(9)
對(duì)于內(nèi)節(jié)點(diǎn)法,子區(qū)域單元模型如圖3所示.
因此,子區(qū)域?qū)嵯禂?shù)λ對(duì)周圍4個(gè)控制容積產(chǎn)生影響,建立與子區(qū)域?qū)嵯禂?shù)λ相關(guān)系數(shù)矩陣為
式中:
如圖4所示平面結(jié)構(gòu),幾何尺寸為120m×120m,離散為120×120個(gè)矩形平面單元,邊界條件包括為給定恒溫邊界條件ГD=0 ℃有三處為右邊界中間位置、上邊界最右端與下邊界最右端,以及熱流密度邊界條件ГN=1W/m在左邊界中間位置,其余為絕熱邊界條件ГR. 整個(gè)區(qū)域包含兩處內(nèi)熱源強(qiáng)度Q=0.1W/m2,位置為左上端與左下端. 為了便于計(jì)算,采用熱導(dǎo)率λ=1W/(m·K)各向同性材料填充. 且給定體積分?jǐn)?shù)f為0.4. 基于外節(jié)點(diǎn)法和內(nèi)節(jié)點(diǎn)法的散熱結(jié)構(gòu)拓?fù)鋬?yōu)化結(jié)果分別如圖5和圖6所示. 不同節(jié)點(diǎn)設(shè)置方式的計(jì)算結(jié)果包含散熱弱度和優(yōu)化迭代次數(shù)列于表1.
類型散熱弱度/W優(yōu)化迭代次數(shù)/次外節(jié)點(diǎn)法18.6939677內(nèi)節(jié)點(diǎn)法17.5901806
由算例計(jì)算結(jié)果可知,基于不同區(qū)域離散格式外節(jié)點(diǎn)法和內(nèi)節(jié)點(diǎn)的拓?fù)鋬?yōu)化設(shè)計(jì)均能有效改善結(jié)構(gòu)的散熱效果,且能獲得良好的拓?fù)鋬?yōu)化構(gòu)型,對(duì)微熱源的影響也能識(shí)別最佳的散熱路徑,充分表明算法的有效性. 由表1結(jié)果可得,對(duì)于此類散熱結(jié)構(gòu)設(shè)計(jì),比較于外節(jié)點(diǎn)法,內(nèi)節(jié)點(diǎn)法能獲得較優(yōu)的散熱構(gòu)型,散熱弱度降低6%,但收斂速度降低19%.
基于變密度法并結(jié)合有限體積理論,實(shí)現(xiàn)了穩(wěn)態(tài)熱傳導(dǎo)連續(xù)體結(jié)構(gòu)的拓?fù)鋬?yōu)化設(shè)計(jì). 針對(duì)有限體積法的計(jì)算格式,提出兩種區(qū)域離散策略,即外節(jié)點(diǎn)和內(nèi)節(jié)點(diǎn)法. 建立以散熱弱度為目標(biāo)函數(shù),體積為約束條件的穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)的拓?fù)鋬?yōu)化數(shù)學(xué)模型. 數(shù)值算例對(duì)不同邊界條件下的拓?fù)鋬?yōu)化結(jié)果進(jìn)行對(duì)比分析,結(jié)果表明:相較于外節(jié)點(diǎn)法,內(nèi)節(jié)點(diǎn)法能獲得較優(yōu)的散熱構(gòu)型,但具有較低的收斂速度.
[1] Zhuang C G, Xiong Z H. A global heat compliance measure based topology optimization for the transient heat conduction problem[J]. Numerical Heat Transfer, 2014, 65(5):445-471.
[2] Takezawa A, Yoon G H, Jeong S H, et al. Structural topology optimization with strength and heat conduction constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2014,276:341-361.
[3] 孫士平,張衛(wèi)紅.熱彈性結(jié)構(gòu)的拓?fù)鋬?yōu)化設(shè)計(jì)[J].力學(xué)學(xué)報(bào),2009,41(6):878-887.
Sun Shiping, Zhang Weihong. Topology optimization design of thermo-elastic structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6):878-887. (in Chinese)
[4] Sigmund O. Tailoring materials with prescribed elastic properties [J]. Mechanics of Materials, 1995, 20(4):351-368.
[5] 朱劍峰,龍凱,陳瀟凱,等.多工況及動(dòng)態(tài)連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化中的工程約束技術(shù)[J].北京理工大學(xué)學(xué)報(bào):自然科學(xué)版,2015,35(3):251-255.
Zhu Jianfeng, Long Kai, Chen Xiaokai, et al. Multiple load cases and dynamic continuum structures topology optimization using engineering constraint technique[J]. Transactions of Beijing Institute of Technology, 2015,35(3):251-255. (in Chinese)
[6] 王文偉,李邦國(guó),陳瀟凱.基于協(xié)同優(yōu)化方法的汽車正面抗撞性優(yōu)化設(shè)計(jì)[J].北京理工大學(xué)學(xué)報(bào):自然科學(xué)版,2011(9):1046-1048.
Wang Wenwei, Li Bangguo, Chen Kaixiao. Multi-objective optimization design of automotive crashworthiness based on collaborative optimization method[J]. Transactions of Beijing Institute of Technology, 2011(9):1046-1048. (in Chinese)
[7] Chen Xiaokai, Li Bangguo, Lin Yi. Crashworthiness and mass-reduction design of vehicles based on enhanced RSM[C]∥Proceedings of the 5th IEEE Vehicle Power and Propulsion Conference. Dearborn, Michigan, USA:IEEE, 2009:1755-1758.
(責(zé)任編輯:孫竹鳳)
Topology Optimization for Steady-State Heat Conduction Structure Based on Finite Volume Method
ZHAO Qing-hai, CHEN Xiao-kai, LIN Yi
(Collaborative Innovation Center of Electric Vehicles in Beijing, School of Mechanical Engineering,Beijing Institute of Technology, Beijing 100081, China)
Considering the current status of heat dissipation structure topology optimization design, a topology optimization method was proposed based on finite volume method for the steady-state heat conduction structure design. A strategy was proposed to simulate two typical regional discrete, including the internal and the external node methods. Based on the density approach, a topology optimization mathematics model was developed with the dissipation of heat potential capacity as objective function to deal with optimization problem in three boundary conditions. Results show that, the heat dissipation of the structure can be improved effectively with both the regional discrete optimization design methods, internal and the external node methods. The topology optimization mathematics model can also identify optimal heat dissipation route for tepid influence.
topology optimization; heat conduction; the finite volume method; density approach
2015-05-20
國(guó)家自然科學(xué)基金資助項(xiàng)目(51275040)
趙清海(1985—),男,博士生,E-mail:zqhbit@163.com.
陳瀟凱(1977—),男,副教授,E-mail:chenxiaokai@263.net.
TH 122
A
1001-0645(2016)11-1117-05
10.15918/j.tbit1001-0645.2016.11.004