国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

干旱和臭氧濃度升高對(duì)元寶楓早生和晚生葉片色素和脫落酸含量的影響

2016-12-28 06:05??》?/span>王效科
生態(tài)學(xué)報(bào) 2016年21期
關(guān)鍵詞:生葉元寶楓脫落酸

李 麗, ??》? 文 志, 崔 健, 王效科,*

1 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100085 2 中國(guó)科學(xué)院華南植物園, 廣州 510650 3 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081

干旱和臭氧濃度升高對(duì)元寶楓早生和晚生葉片色素和脫落酸含量的影響

李 麗1, 牛俊峰2, 文 志1, 崔 健3, 王效科1,*

1 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100085 2 中國(guó)科學(xué)院華南植物園, 廣州 510650 3 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081

臭氧和干旱是威脅我國(guó)北方城市植物生長(zhǎng)的兩大重要因素。于2012年利用開頂式氣室,通過設(shè)置4個(gè)處理(AW-大氣環(huán)境和水分充足;AW+60-大氣增加60 nL/L臭氧+水分充足;AD-大氣+干旱處理;AD+60-大氣增加60 nL/L臭氧+干旱處理),開展了大氣臭氧濃度升高(以下簡(jiǎn)稱“臭氧”)和干旱對(duì)元寶楓秋季變色期主要色素含量及脫落酸(ABA)含量的影響研究。結(jié)果表明:(1)早生葉在臭氧處理后,總?cè)~綠素和類胡蘿卜素分別下降了21%和29.6%、花青苷和類黃酮相對(duì)含量顯著升高了34.1%和7.3%、脫落酸含量增加了19.8%。干旱處理后,早生葉總?cè)~綠素顯著下降了18.7%、花青苷和類黃酮相對(duì)含量分別顯著升高了37%和7.4%、脫落酸含量顯著升高了13%。葉片的上述生理變化將會(huì)導(dǎo)致葉片提前變紅、葉片早衰和提前脫落。(2)晚生葉在干旱處理后總?cè)~綠素含量減少了18.8%,脫落酸含量增加了33.4%,臭氧以及與干旱共同處理未對(duì)晚生葉產(chǎn)生顯著影響。(3)臭氧和干旱共同處理后,早生葉總?cè)~綠素含量、花青苷和葉片脫落酸含量存在顯著交互作用,交互作用緩解了葉片總?cè)~綠素的下降和花青苷的上升,但未緩解葉片脫落酸含量的增加。綜上,早生葉和晚生葉對(duì)臭氧和干旱處理的響應(yīng)不同,早生葉對(duì)臭氧處理響應(yīng)大于晚生葉,而晚生葉對(duì)干旱更敏感。臭氧和干旱處理均加速了葉片衰老,二者共同處理后葉片脫落風(fēng)險(xiǎn)增加。

元寶楓;臭氧;干旱;光合色素;花青苷;類黃酮;脫落酸

臭氧是一種重要的具有氧化性的污染氣體,過高的濃度會(huì)威脅植物的生長(zhǎng)、農(nóng)作物產(chǎn)量及人類健康[1- 2]。由于化石燃料的使用和城市化的快速發(fā)展,大量臭氧前體物體NOx被排放到大氣中,導(dǎo)致了我國(guó)各大城市空氣中臭氧濃度不斷升高[3- 5]。據(jù)文獻(xiàn)報(bào)道,2012年北京城郊7—8月份臭氧極值達(dá)到195.8 nL/L[6],如此高的臭氧濃度將會(huì)對(duì)植物生長(zhǎng)造成傷害,如葉片出現(xiàn)黃褐色、黑色或紫紅色集中于葉脈兩側(cè)的密集斑點(diǎn),在北京城區(qū)及郊區(qū)已發(fā)現(xiàn)多種植物葉片受害癥狀[6-7]。同時(shí),干旱也是限制我國(guó)北方樹木生長(zhǎng)的重要因素。在全球氣候變化背景下,頻繁出現(xiàn)的干旱和不斷升高的大氣臭氧濃度將會(huì)共同對(duì)城市樹木生長(zhǎng)產(chǎn)生嚴(yán)重威脅,增加了植物響應(yīng)的不確定性和復(fù)雜性。

葉片色素含量對(duì)植物生長(zhǎng)具有重要意義。葉綠素和類胡蘿卜素不僅是主要的光合色素,同時(shí)也與花青苷和類黃酮共同參與調(diào)節(jié)葉片顏色,葉片葉綠素和類胡蘿卜素的降解,花色素苷的積累,使元寶楓等彩葉樹的葉片在秋季由綠色轉(zhuǎn)為紅色[8-9]。因此葉片秋季色素含量和脫落酸含量的變化能夠反映著葉片秋季變色的時(shí)間和長(zhǎng)度,也影響著城市的秋季景觀。已有研究表明,臭氧會(huì)通過植物氣孔進(jìn)行葉片內(nèi)部,直接攻擊原生質(zhì)膜上的類脂或蛋白質(zhì),造成光合色素合成降低,葉綠素分解[10-11]。花青苷是一種水溶性的黃酮多酚類化合物,是秋季紅葉植物呈現(xiàn)紅色的主要色素,也是一些彩葉樹種葉片衰老的標(biāo)志[12-13]。類黃酮也是植物體內(nèi)重要的色素,用于吸收UV-B,調(diào)控葉片顏色和亮度[14-15]?;ㄇ嘬站哂泻軓?qiáng)的抗氧化性,能夠清除臭氧等污染物導(dǎo)致的活性氧自由基,一些研究結(jié)果表明臭氧濃度升高后葉片花青苷和類黃酮的含量增加[16-17]。因?yàn)榛ㄇ嘬站哂兴苄?干旱脅迫后葉片花青苷含量上升以降低細(xì)胞滲透勢(shì)[16,18]。但目前對(duì)臭氧和干旱復(fù)合影響植物葉片花青苷和類黃酮的研究還很少。

元寶楓(AcertruncatumBunge)是我國(guó)特有的槭樹科落葉喬木,因其秋季葉片鮮艷的紅色,葉片能夠吸附粉塵,苗木易栽培等特點(diǎn)在北方城市廣泛種植,是重要的具有觀賞價(jià)值,生態(tài)和經(jīng)濟(jì)價(jià)值的城市綠化樹種。目前對(duì)于秋色葉樹種-元寶楓葉色表達(dá)影響的研究有光照影響[19],K元素影響[20],季節(jié)變化[21],溫濕度及外源蔗糖[9]以及轉(zhuǎn)色機(jī)理[8]研究等,目前未見有關(guān)于元寶楓色素含量對(duì)于大氣污染物臭氧,干旱及其協(xié)同作用響應(yīng)的相關(guān)研究。

本研究選擇一年生元寶楓幼苗為研究對(duì)象,于2012年在北京市昌平區(qū)利用開頂式氣室,設(shè)置兩個(gè)臭氧濃度和兩個(gè)水分梯度,對(duì)葉片總?cè)~綠素、花青苷和類黃酮相對(duì)含量以及葉片脫落酸含量進(jìn)行了測(cè)定。本實(shí)驗(yàn)?zāi)康氖茄芯砍粞鯘舛壬吆透珊祵?duì)元寶楓葉片的主要色素和脫落酸含量的變化,為評(píng)價(jià)我國(guó)北方城市面臨的大氣污染和干旱共同對(duì)樹木生長(zhǎng)影響提供數(shù)據(jù)支持,研究結(jié)果對(duì)于模擬和預(yù)測(cè)未來氣候變化對(duì)城市樹木生長(zhǎng)及觀賞價(jià)值影響具有重要意義。

1 材料與方法

1.1 實(shí)驗(yàn)地點(diǎn)

實(shí)驗(yàn)地點(diǎn)位于北京市昌平區(qū)種子管理站(40°12′N,116°08′E),屬暖溫帶大陸性季風(fēng)氣候,年均降水量為550.3 mm[22]。土壤類型為潮土,質(zhì)地為砂壤,有機(jī)質(zhì)含量為16.4 g/kg,全氮0.9 g/kg,速效磷38.1 mg/kg,速效鉀102.1 mg/kg,pH 8.3。

1.2 實(shí)驗(yàn)設(shè)計(jì)和實(shí)驗(yàn)材料

實(shí)驗(yàn)在開頂式氣室內(nèi)進(jìn)行,氣室的設(shè)計(jì)在之前的基礎(chǔ)上有所改進(jìn)[5]。氣室材料為陽(yáng)光板(透光率85%),形狀為圓柱體 (直徑2 m,高2.5 m),頂部有高于頂端的透明擋板用于防止雨水進(jìn)入,罩子內(nèi)外氣體自由流通,每個(gè)罩子周圍挖有25 cm寬,75 cm深的水溝,內(nèi)鋪設(shè)透明薄膜用于防止外部雨水進(jìn)入以及內(nèi)外水分交換。共12個(gè)罩子,每?jī)蓚€(gè)之間的距離為2 m (開頂式氣室及細(xì)節(jié)描述見文獻(xiàn)[10])。實(shí)驗(yàn)設(shè)置4個(gè)處理,分別為:AW-大氣臭氧+水分充足,AW+60-大氣增加60 nL/L臭氧+水分充足,AD-大氣臭氧+干旱,AD+60-大氣加60 nL/L臭氧+干旱。共12個(gè)開頂式氣室,每個(gè)處理3個(gè)重復(fù),因此每個(gè)罩子為1個(gè)重復(fù)。干旱設(shè)置為土壤田間持水量的50%,實(shí)驗(yàn)開始后所有罩子停止?jié)菜?待土壤水分下降到相同值后進(jìn)行不同水量灌溉。通過土壤水分(EC- 5,Decagon Device,UK)和土壤水勢(shì)(MPS- 2,Decagon Device,UK)監(jiān)測(cè),定量澆水的方法控制干旱。對(duì)照處理土壤水分為田間持水量,不存在干旱脅迫。臭氧熏氣時(shí)間為7月28日開始,10月25日結(jié)束,每天熏氣時(shí)間8:30—17:30,陰雨天氣停止熏氣,總處理時(shí)間為57d,熏氣期間大氣臭氧均值為34 nL/L,臭氧累計(jì)量AOT40為28.2 μL L-1h。

實(shí)驗(yàn)材料為1年生元寶楓(Acertruncatum)幼苗,由北京本地苗圃購(gòu)入,2012年4月份移栽到氣室外緩苗,5月30日選取長(zhǎng)勢(shì)一致的120株幼苗移入開頂式氣室內(nèi)進(jìn)行適應(yīng),每個(gè)罩子內(nèi)種植10株元寶楓。每個(gè)罩子內(nèi)種植10株元寶楓。為避免花盆限制根系生長(zhǎng),幼苗直接種植于開頂式氣室內(nèi)。元寶楓為落葉樹種,選擇植株頂端向陽(yáng)位置,將7月1日—7日間展開的葉片作為早生葉進(jìn)行掛牌標(biāo)記。將9月1日—7日間展開的葉片作為晚生葉進(jìn)行掛牌標(biāo)記。從葉片展開到采樣結(jié)束,早生葉臭氧累計(jì)量AOT40約為28.2 μL L-1h,晚生葉臭氧累積量AOT40約為14.2 μL L-1h。

1.3 指標(biāo)測(cè)定

采樣時(shí)間為10月10日上午,采樣時(shí)植株株高為(80±7) cm,基徑為(11±1) mm,處理間株高,基徑無顯著差異。每個(gè)開頂式氣室內(nèi)選擇3株長(zhǎng)勢(shì)良好的植株,每個(gè)植株分別選擇2—3片標(biāo)記的早生葉和晚生葉進(jìn)行采樣,取樣時(shí)葉片避開葉脈分為兩部分,一部分用保溫箱快速轉(zhuǎn)移到4 ℃冰箱中,于2—3d內(nèi)完成葉綠素a和b、類胡蘿卜素、花青苷和類黃酮的測(cè)定,另一部分用液氮罐轉(zhuǎn)移到-80 ℃冰箱內(nèi)用于生長(zhǎng)激素測(cè)定。

葉綠素的測(cè)定取50 mg新鮮葉片,在4℃環(huán)境下剪碎后用4 mL 95% 的乙醇溶液浸泡提取,取提取液用分光光度計(jì)(型號(hào))測(cè)定664、648、470 nm 波長(zhǎng)吸光度,根據(jù)Lichtenthaler[23]的修正公式計(jì)算葉綠素a、b總量以及類胡蘿卜素含量。

花青苷和類黃酮相對(duì)含量的測(cè)定分別參照Pirie[24]和Caldwell[25]的方法并略作改進(jìn),取100 mg新鮮葉片,用5mL 0.1% HCl甲醇4 ℃浸泡提取24 h,取提取液用分光光度計(jì)(型號(hào))于530 nm(花色素苷)和 300 nm(類黃酮)處測(cè)定吸光值。用每g葉片在530 nm處的吸收值OD530/g鮮重表示葉片中花色素苷相對(duì)含量,OD300/g鮮重作為葉片中類黃酮相對(duì)含量[26]。

脫落酸(ABA)含量的測(cè)定酶聯(lián)免疫吸附測(cè)定法(ELISA)[27]。

1.4 數(shù)據(jù)分析

臭氧和干旱分別作為影響因子對(duì)各指標(biāo)的作用以及交互作用利用雙因素方差Two-way ANOVA分析進(jìn)行。處理間多因素比較采用LSD法。所有數(shù)據(jù)在處理前均進(jìn)行了方差齊性和正態(tài)分布檢驗(yàn)。數(shù)據(jù)分析采用SPSS 17.0 軟件進(jìn)行,并利用Sigmaplot 11.0進(jìn)行繪圖。

2 結(jié)果

2.1 總?cè)~綠素和類胡蘿卜素含量

圖1 臭氧濃度增加和干旱處理對(duì)早生葉和晚生葉總?cè)~綠素和類胡蘿卜素含量的影響 Fig.1 The effects of elevated ozone and drought stress on total chlorophyll (Chl (a+b)) and carotenoid (Car) contents in early-flush and late-flush leaves圖中不同字母表示處理間多重比較差異顯著 (P<0.05)

早生葉總?cè)~綠素和類胡蘿卜素含量在臭氧處理后顯著降低,降低百分比分別為21%和29.6%(圖1,表1)。早生葉總?cè)~綠素含量在干旱處理后顯著降低了18.7%。共同處理對(duì)早生葉片總?cè)~綠素含量具有顯著交互作用,交互作用表明總?cè)~綠素下降了18.6%,介于單獨(dú)臭氧和干旱處理之間(圖1,表1)。晚生葉總?cè)~綠素在干旱處理后顯著降低了18.8%,臭氧單獨(dú)或共同處理未對(duì)晚生葉上述指標(biāo)產(chǎn)生顯著影響(圖1,表1)。

2.2 花青苷和類黃酮色素相對(duì)含量

早生葉花青苷和類黃酮相對(duì)含量在臭氧處理后分別顯著增加了34.1%和7.3%,在干旱處理后分別顯著增加了37%和7.4%。共同處理對(duì)早生葉中花青苷相對(duì)含量產(chǎn)生了顯著的交互作用,處理后花青苷相對(duì)含量升高了34.2%,介于單獨(dú)臭氧和干旱處理之間(圖2,表1)。臭氧、干旱以及共同處理未對(duì)晚生葉葉片花青苷和類黃酮相對(duì)含量產(chǎn)生顯著影響。

圖2 臭氧增加和干旱處理對(duì)早生葉和晚生葉花色素苷和類黃酮相對(duì)含量的影響Fig.2 The effects of elevated ozone and drought stress on anthocyanin and flavonoid relative contents in early-flush and late-flush leaves圖中不同小寫字母表示處理間多重比較差異顯著 (P<0.05)

因素Factors葉齡Leafage總?cè)~綠素Chlorophyll類胡蘿卜Carotenoid花青苷Anthocyanin類黃酮Flavonoid脫落酸ABA臭氧Ozone早生葉0.02?0.01??0.03?0.02?0.01??晚生葉0.580.620.540.110.95干旱Drought早生葉0.05?0.060.02?0.02?0.01??晚生葉0.04?0.110.520.480.01??臭氧×干旱早生葉0.02?0.190.02?0.250.03?Ozone×Drought晚生葉0.320.330.260.170.96

表中數(shù)值為P值,*P<0.05,**P<0.01,***P<0.001

2.3 脫落酸含量

早生葉脫落酸含量在臭氧和干旱單獨(dú)處理后均顯著升高,升高幅度分別為19.8%和13%。共同處理對(duì)早生葉脫落酸含量有顯著交互作用,處理后脫落酸含量升高了20.8% (圖3,表1),略高于單獨(dú)的臭氧和干旱處理。晚生葉在干旱處理后脫落酸含量顯著上升了33.4%。臭氧和共同處理未對(duì)晚生葉葉片脫落酸含量產(chǎn)生顯著影響。

3 討論

圖3 臭氧增加和干旱處理對(duì)早生葉 和晚生葉 葉片脫落酸(ABA)含量的影響Fig.3 The effects of elevated ozone and drought stress on abscisic acid (ABA) contents in early-flush and late-flush leaves圖中不同小寫字母表示處理間多重比較差異顯著 (P<0.05)

葉綠素和類胡蘿卜是重要的光合色素也同時(shí)影響著葉片的顏色,光合色素含量的下降意味著葉片光合能力的降低。臭氧和干旱脅迫對(duì)葉綠素的分解作用已經(jīng)被大量研究證實(shí)[5,10,28],本實(shí)驗(yàn)結(jié)果也表明臭氧濃度升高和干旱處理導(dǎo)致早生葉總?cè)~綠素含量下降(圖1)。交互作用表明葉片早生葉總?cè)~綠素含量介于單獨(dú)臭氧和干旱處理之間,說明干旱保護(hù)和減緩了臭氧對(duì)葉片葉綠素的下降作用(圖1,表1)。可能的解釋是氣孔是臭氧進(jìn)入葉片的主要通道,而干旱能夠降低葉片的氣孔導(dǎo)度[12],從而減少了葉片對(duì)臭氧的攝入量[29-30]。

元寶楓是一種具有秋季觀賞價(jià)值的彩葉樹種,花青苷和相關(guān)的可溶性糖結(jié)合形成紅色,樹木秋季葉片呈現(xiàn)的鮮紅色便是葉綠素含量減少花青苷的合成增加的結(jié)果[12,31],類黃酮也能在秋季提升葉片的亮度[14]。本實(shí)驗(yàn)結(jié)果表明,臭氧和干旱處理后早生葉葉片花青苷和類黃酮相對(duì)含量均顯著增加(圖2,表1),研究表明花青苷作為一種可溶性黃酮類物質(zhì),其含量的增加能夠降低滲透壓減輕干旱脅迫[16,18],增加葉片對(duì)臭氧抗氧化性[17]。花青苷交互作用的結(jié)果表明,臭氧的存在緩解了干旱造成的早生葉花青苷含量的上升,目前未發(fā)現(xiàn)臭氧和干旱復(fù)合影響對(duì)花青苷影響的研究,所以具體響應(yīng)機(jī)制仍不明確。

脫落酸是能夠降低葉片氣孔導(dǎo)度、加速葉片衰老、脫落的主要植物激素[32- 34]。本實(shí)驗(yàn)結(jié)果表明,臭氧和干旱處理均導(dǎo)致葉片脫落酸含量升高,交互作用表現(xiàn)脫落酸含量大于單獨(dú)臭氧和干旱處理,變化趨勢(shì)與之前發(fā)表的光合測(cè)量結(jié)果-氣孔導(dǎo)度在處理后的下降趨勢(shì)相符合[10]。對(duì)于元寶楓等不敏感樹種,葉片氣孔臭氧、干旱等脅迫的反應(yīng)是ABA含量升高以調(diào)控氣孔關(guān)閉,減少水分散失和臭氧進(jìn)入,交互作用的結(jié)果也與一些文獻(xiàn)結(jié)果一致[35-36],脫落酸含量升高會(huì)導(dǎo)致葉片早衰,提前脫落,變色期變短。

晚生葉和早生葉對(duì)臭氧濃度升高和干旱處理的響應(yīng)不同。晚生葉總?cè)~綠素和脫落酸含量對(duì)干旱處理較為敏感,這可能與晚生葉蒸騰作用較為強(qiáng)烈有關(guān)。在早生葉中,除了類胡蘿卜素外,臭氧濃度升高和干旱處理均對(duì)早生葉相關(guān)指標(biāo)產(chǎn)生了顯著影響。早生和晚生葉對(duì)臭氧處理的響應(yīng)差異可能與以下原因有關(guān):1)臭氧對(duì)葉片的傷害具有明顯的時(shí)間累積效應(yīng)[37],受害程度與臭氧累積量正相關(guān),而早生葉接受臭氧熏蒸的時(shí)間較長(zhǎng),因此臭氧累積量大于晚生葉。2)晚生葉對(duì)臭氧的適應(yīng)性。有研究表明,植物在受到臭氧威脅后植株會(huì)產(chǎn)生更多的抗氧化類物質(zhì)如抗壞血酸等輸送到更重要的幼嫩器官如晚生葉片中[38],因此晚生葉抗氧化能力可能強(qiáng)于早生葉,這也可能是晚生葉受臭氧影響較小的原因。在本實(shí)驗(yàn)中,由于未對(duì)葉片開始變紅、變紅持續(xù)時(shí)間、落葉時(shí)間和葉片顏色色度進(jìn)行監(jiān)測(cè)和分析,所以難以詳細(xì)評(píng)價(jià)臭氧和干旱對(duì)元寶楓秋季物候變化的影響程度。

4 結(jié)論

(1)元寶楓早生葉和晚生葉對(duì)干旱和臭氧的響應(yīng)不同,早生葉對(duì)臭氧處理響應(yīng)大于晚生葉,而晚生葉對(duì)干旱處理更敏感。

(2)臭氧濃度升高和干旱均加速了葉片衰老。處理后早生葉光合色素減少、花青苷和類黃酮增加、葉片ABA含量增加,這些變化將會(huì)改變?cè)獙殫髑锛救~片秋季變色時(shí)間,影響元寶楓秋季物候和作為彩葉樹的觀賞價(jià)值。

(3)共同處理后葉片脫落酸含量增加,葉片提前脫落風(fēng)險(xiǎn)增加。

致謝:北京城市生態(tài)站宋文質(zhì)工程師和姚余輝老師在OTC設(shè)計(jì),搭建和運(yùn)行過程中給予幫助,張紅星老師在設(shè)備安裝中提供幫助,馮兆忠老師幫助寫作,特此致謝。

[1] Matyssek R, Kozovits A R, Schnitzler J P, Pretzsch H, Dieler J, Wieser G. Forest trees under air pollution as a factor of climate change // Tausz M, Grulke N, eds. Trees in a Changing Environment. Netherlands: Springer, 2014, 9: 117- 163.

[2] Matyssek R, Sandermann H Jr. Impact of ozone on trees: an ecophysiological perspective // Esser K, Lüttge U, Beyschlag W, Hellwig F, eds. Progress in Botany. Heidelberg: Springer, 2003, 64: 349- 404.

[3] Wang X K, Manning W, Feng Z W, Zhu Y G. Ground-level ozone in China: distribution and effects on crop yields. Environmental Pollution, 2007, 147(2): 394- 400.

[4] Zhang W W, Wang G H, Liu X B, Feng Z Z. Effects of elevated O3exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycinemax(L.) Merr.) in Northeast China. Plant Science, 2014, 226: 172- 181.

[5] Zheng F X, Wang X K, Lu F, Hou P Q, Zhang W W, Duan X N, Zhou X P, Ai Y P, Zheng H, Ouyang Z Y, Feng Z W. Effects of elevated ozone concentration on methane emission from a rice paddy in Yangtze River Delta, China. Global Change Biology, 2011, 17(2): 898- 910.

[6] Wan W X, Manning W J, Wang X K, Zhang H X, Sun X, Zhang Q Q. Ozone and ozone injury on plants in and around Beijing, China. Environmental Pollution, 2014, 191: 215- 222.

[7] Feng Z Z, Sun J S, Wan W X, Hu E Z, Calatayud V. Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environmental Pollution, 2014, 193: 296- 301.

[8] 陳建芳. 溫濕度及外源蔗糖對(duì)元寶楓秋葉變色的影響研究[D]. 北京: 北京林業(yè)大學(xué), 2014.

[9] 錢見平. 元寶楓轉(zhuǎn)色機(jī)理的初步研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2013.

[10] Li L, Manning W J, Tong L, Wang X K. Chronic drought stress reduced but not protected Shantung maple (AcertruncatumBunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China. Environmental Pollution, 2015, 201: 34- 41.

[11] 列淦文, 葉龍華, 薛立. 臭氧脅迫對(duì)植物主要生理功能的影響. 生態(tài)學(xué)報(bào), 2014, 34(2): 294- 306.

[12] Feild T S, Lee D W, Holbrook N M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiology, 2001, 127(2): 566- 574.

[13] Lee D W, Gould K S. Anthocyanins in leaves and other vegetative organs: an introduction. Advances in Botanical Research, 2002, 37: 1- 16.

[14] 葛雨萱, 王亮生, 周肖紅, 甘長(zhǎng)青. 香山黃櫨葉色和色素組成的相互關(guān)系及時(shí)空變化. 林業(yè)科學(xué), 2011, 47(4): 38- 42.

[15] Liu L, Gitz III D C, McClure J W. Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiologia Plantarum, 1995, 93(4): 725- 733.

[16] Chalker-Scott L. Do anthocyanins function as osmoregulators in leaf tissues?. Advances in Botanical Research, 2002, 37: 103- 127.

[17] Foot J P, Caporn S J M, Lee J A, Ashenden T W. The effect of long-term ozone fumigation on the growth, physiology and frost sensitivity ofCallunavulgaris. New Phytologist, 1996, 133(3): 503- 511.

[18] Balakumar T, Vincent V H B, Paliwal K. On the interaction of UV-B radiation (280315 nm) with water stress in crop plants. Physiologia Plantarum, 1993, 87(2): 217- 222.

[19] 梁峰, 藺銀鼎. 光照強(qiáng)度對(duì)彩葉植物元寶楓葉色表達(dá)的影響. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2009, 29(1): 41- 45.

[20] 王志紅, 藺銀鼎. K元素對(duì)元寶楓秋葉變色的影響研究. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2009, 29(2): 139- 142.

[21] 楚愛香, 張要戰(zhàn), 田永芳. 幾種秋色葉樹種秋冬轉(zhuǎn)色期葉色變化的生理特性. 東北林業(yè)大學(xué)學(xué)報(bào), 2012, 40(11): 40- 43.

[22] 佟磊, 馮宗煒, 蘇德, 畢力格, 王瓊, 耿春梅, 逯非, 王瑋, 殷寶輝, 王效科. 冬小麥氣孔臭氧通量擬合及通量產(chǎn)量關(guān)系的比較分析. 生態(tài)學(xué)報(bào), 2012, 32(9): 2890- 2899.

[23] Lichtenthaler H K. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. Journal of Plant Physiology, 1987, 131(1/2): 101- 110.

[24] Pirie A, Mullins M G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiology, 1976, 58(4): 468- 472.

[25] Caldwell M M. The effects of solar UV-B radiation (280- 315 nm) on higher plants: implications of stratospheric ozone reduction // Castellani A, ed. Research in Photobiology. New York: Springer, 1977: 597- 607.

[26] 鄭有飛, 徐衛(wèi)民, 吳榮軍, 張金恩, 劉瑞娜, 姚娟, 胡會(huì)芳. 地表臭氧濃度增加和UV-B 輻射增強(qiáng)及其復(fù)合處理對(duì)大豆光合特性的影響. 生態(tài)學(xué)報(bào), 2012, 32(8): 2515- 2524.

[27] Yang Y M, Xu C N, Wang B M, Jia J Z. Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regulation, 2001, 35(3): 233- 237.

[28] Wallin G, Karlsson P E, Selldén G, Ottosson S, Medin E L, Pleijel H, Sk?rby L. Impact of four years exposure to different levels of ozone, phosphorus and drought on chlorophyll, mineral nutrients, and stem volume of Norway spruce,Piceaabies. Physiologia Plantarum, 2002, 114(2): 192- 206.

[29] Garnier E, Berger A. The influence of drought on stomatal conductance and water potential of peach trees growing in the field. Scientia Horticulturae, 1987, 32(3/4): 249- 263.

[30] Matyssek R, Le Thiec D, L?w M, Dizengremel P, Nunn A J, H?berle K H. Interactions between Drought and O3Stress in Forest Trees. Plant Biology, 2006, 8(1): 11- 17.

[31] Matile P. Biochemistry of Indian summer: physiology of autumnal leaf coloration. Experimental Gerontology, 2000, 35(2): 145- 158.

[32] Conklin P L, Barth C. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant, Cell & Environment, 2004, 27(8): 959- 970.

[33] Pourtau N, Marès M, Purdy S, Quentin N, Ru?l A, Wingler A. Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta, 2004, 219(5): 765- 772.

[34] Miller J D, Arteca R N, Pell E J. Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiology, 1999, 120(4): 1015- 1024.

[35] Wittig V E, Ainsworth E A, Long S P. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell & Environment, 2007, 30(9): 1150- 1162.

[36] Wieser G, Havranek W M. Environmental control of ozone uptake inLarixdeciduaMill.: a comparison between different altitudes. Tree Physiology, 1995, 15(4): 253- 258.

[37] Craker L E, Starbuck J S. Leaf age and air pollutant susceptibility: Uptake of ozone and sulfur dioxide. Environmental Research, 1973, 6(1): 91- 94.

[38] Severino J F, Stich K, Soja G. Ozone stress and antioxidant substances inTrifoliumrepensandCentaureajacealeaves. Environmental Pollution, 2007, 146(3): 707- 714.

The effects of elevated ozone and chronic drought on leaf pigments and abscisic acid contents in early and late-flush leaves of Shantung maple (AcertruncatumBunge)

LI Li1, NIU Junfeng2, WEN Zhi1, CUI Jian3, WANG Xiaoke1,*

1StateKeyLaboratoryofUrbanandRegionalEcology,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China2SouthChinaBotanicalGarden,ChineseAcademyofSciences,Guangzhou510650,China3InstituteofAgricultureResourcesandRegionalPlanning,ChineseAcademyofAgricultureSciences,Beijing100081,China

The changing color of leaves in autumn is not only necessary for the growth of foliage trees but is also important for urban landscape interests. Red color in maple leaves relates to the synthesis of anthocyanin and the degraded pigments. Ozone (O3) is an important phytotoxic pollutant, which may affect the basic physiological functions of plants due to its highly reactive oxidative characteristics. The increased consumption of fossil fuels in China has led to increased emission of O3precursors and visible plant injury induced by high O3concentration frequently occurs around Beijing. In addition, trees are often subjected to periodic drought in North China with the frequency and the severity of drought events projected in the background of climate change. Drought in summer usually coincides with episodes of high O3concentrations, which, together, may affect plant growth including color expression and leaf senescence of foliage tree species in fall. Although numerous publications have reported the effects of elevated O3concentration or drought stress on trees, little is known about the possible interactions between anthocyanin and flavonoid in Asian maple species. To investigate the effects of chronic drought stress and elevated O3concentrations on leaf pigments and abscission of Shantung maple (AcertruncatumBunge), we set up 12 open-top chambers with four treatments (AW: non-filtered ambient air and well watered; AW + 60: non-filtered ambient air plus 60 nL/L O3and well watered; AD: non-filtered ambient air and drought; AD + 60: non-filtered ambient air plus 60 nL/L O3and drought) in a suburb of Beijing, China. Total chlorophyll (total Chl), carotenoid (Car), anthocyanin, flavonoid, and abscisic acid (ABA) contents in early and late-flush leaves were measured in October of the first year. Leaves that unfolded from July 1 to 7 were marked as early-flush leaves and the AOT40 (The cumulative O3 exposure, which was described as the accumulated hourly mean O3concentrations over 40 ppb during O3 fumigation period) was 28.2 μL L-1h when harvested. Late-flush leaves unfolded from September 1 to 7 and the AOT40 was 14.2 μL L-1h when harvested. The results showed: (1) For early-flush leaves, elevated O3significantly decreased the total Chl and Car contents by 21% and 29.6%, respectively, increased anthocyanin and flavonoid relative contents by 34.1% and 7.3%, respectively, and increased ABA contents by 19.8%. Drought stress decreased the total Chl by 18.7%, increased the relative contents of anthocyanin and flavonoid by 37% and 7.4%, respectively, and increased ABA contents by 13%. These physiology changes would collectively lead to leaf reddening, senescence, and abscission in advance of autumn. (2) Late-flush leaves only responded to drought treatments as indicated by a significant decrease of 18.8% in total Chl and an increase of 33.4% in ABA contents. (3) Significant interactions were found in total Chl, anthocyanin, and ABA contents of early-flush leaves, as indicated by the fact that the decrease in total Chl and increase in anthocyanin were mitigated, but the increase in ABA contents was aggravated. In conclusion, early and late-flush leaves responded differently to elevated O3and drought stress. Early-flush leaves responded more to ozone treatment, while late-flush leaves were more sensitive to drought stress. Both treatments lead to leaf early senescence and their interactive treatments may increase the risk of early abscission. This study may provide a better understanding of autumnal leaf growth and the phenology response to elevated O3and drought stress in the coming future.

AcertruncatumBunge; ozone; drought; photosynthetic pigment; anthocyanin; flavonoid; ABA

國(guó)家自然科學(xué)基金項(xiàng)目(31170424, 41571053, 71533005)

2015- 05- 06;

日期:2016- 03- 03

10.5846/stxb201505060933

*通訊作者Corresponding author.E-mail: wangxk@rcees.ac.cn

李麗, ??》? 文志, 崔健, 王效科.干旱和臭氧濃度升高對(duì)元寶楓早生和晚生葉片色素和脫落酸含量的影響.生態(tài)學(xué)報(bào),2016,36(21):6804- 6811.

Li L, Niu J F, Wen Z, Cui J, Wang X K.The effects of elevated ozone and chronic drought on leaf pigments and abscisic acid contents in early and late-flush leaves of Shantung maple (AcertruncatumBunge).Acta Ecologica Sinica,2016,36(21):6804- 6811.

猜你喜歡
生葉元寶楓脫落酸
讓元寶楓造福中國(guó)
越冬期紅葉石楠和桂花防御低溫強(qiáng)光傷害的光保護(hù)機(jī)制
溥心畬山水畫譜(九)
山東地區(qū)茶用元寶楓品系的比較與篩選
元寶楓對(duì)于干旱適應(yīng)性的研究
葉片是脫落酸合成的主要器官
越冬期廣玉蘭陽(yáng)生葉和陰生葉PSⅡ功能及捕光色素分子內(nèi)稟特性的比較研究
脫落酸的藥理作用研究進(jìn)展
陸儼少山水畫譜(九)
元寶楓成脫貧致富“金元寶”
隆昌县| 玉门市| 休宁县| 阜新市| 汤原县| 榆社县| 泸水县| 遂川县| 克东县| 固安县| 长垣县| 额济纳旗| 利津县| 昌都县| 陈巴尔虎旗| 台中市| 吴江市| 文登市| 崇州市| 五家渠市| 竹溪县| 罗定市| 新化县| 娄底市| 石城县| 突泉县| 疏勒县| 乡城县| 遂平县| 阿克苏市| 镇平县| 安塞县| 闽侯县| 康定县| 龙井市| 日土县| 正定县| 新河县| 丹东市| 临漳县| 澄城县|