鄭化杰,孟繁梅,關(guān) 毅,朱 嬌
(天津大學 化工學院,天津 300072)
摻雜型Bi2WO6可見光光催化材料的最新研究進展*
鄭化杰,孟繁梅,關(guān) 毅,朱 嬌
(天津大學 化工學院,天津 300072)
Bi2WO6的禁帶寬度窄(2.7 eV),能吸收紫外光和可見光,同時具有形貌可控,氧化性強,耐光腐蝕,無毒無污染等優(yōu)點,是一類非常有前途的可見光光催化材料。近年來的相關(guān)研究,主要是通過改性來解決單質(zhì)Bi2WO6的光量子效率一般和光生電子-空穴易復(fù)合問題。最為常用的是摻雜改性,其對Bi2WO6的電子結(jié)構(gòu)、外觀形貌、粒子尺寸、比表面積、表面特性的調(diào)控均有重要作用,能夠提高該類催化劑的量子效率、縮小禁帶寬度、降低電子-空穴復(fù)合率以提高其光催化性能。從金屬摻雜、非金屬摻雜、共摻雜等方面集中介紹了各種摻雜手段對Bi2WO6光催化性能的研究進展,闡明了光催化反應(yīng)機理,并對其下一步的研究重點進行了展望。
Bi2WO6;可見光;光催化;摻雜;改性
Bi2WO6是最簡單的Aurivillius型氧化物[1],由[Bi2O2]2+層狀結(jié)構(gòu)和[WO4]2-八面體構(gòu)成(如圖1(a))。其中,Bi6s軌道與O2p軌道雜化形成價帶,W5d軌道作為導(dǎo)帶,兩者之間為禁帶。Bi2WO6的禁帶寬度僅有2.7 eV,能被紫外光和可見光激發(fā),因此可以直接利用自然光(太陽光)。同時,Bi2WO6具有氧化能力強、形貌可控、耐光腐蝕等優(yōu)點[2-5],是目前極具前途的新型可見光光催化劑之一。近年來,國內(nèi)外研究工作者針對Bi2WO6存在的光量子效率不理想,光生電子-空穴易復(fù)合等問題,利用摻雜改性、負載改性[6-7]、復(fù)合改性[8-9]、控制形貌[10]、金屬沉積[11]等手段進行了廣泛深入的探索。其中,摻雜改性是最主要的改性方法,取得了大量研究成果。
本文從金屬離子摻雜、非金屬離子摻雜、共摻雜改性3個方面,集中介紹了國內(nèi)外摻雜型Bi2WO6光催化劑性能和摻雜機理的最新研究進展。
摻雜是指將雜質(zhì)離子摻雜到Bi2WO6晶格內(nèi)部,取代Bi、W、O中一種或兩種元素的位置,從而改變原有的晶格結(jié)構(gòu)、電子結(jié)構(gòu)及光催化性能。如圖1(a)所示,Bi2WO6的晶體構(gòu)造中,氧存在3種不同狀態(tài),分別為Bi—O—W,W—O—W,Bi—O—Bi。離子摻雜時,O位置的取代,一般是指W—O—W鍵中的O被取代。
經(jīng)多年研究,目前關(guān)于摻雜作用機理,現(xiàn)形成了如下幾種有影響的觀點:
(1) 如圖1(b)所示,Bi2WO6晶體中引入晶格缺陷,生成光生電子、空穴的淺勢捕獲阱或者O2的吸附中心,從而降低電子-空穴的復(fù)合概率,有利于超氧自由基生成。Wang等[12]的研究表明,Zr摻入后生成的氧空位可作為電子和O2的捕獲中心,促進了·O-產(chǎn)生,使光催化效率提高34.6%。
(2) 如圖1(c)所示,摻入離子后,與原有離子軌道進行雜化,形成了新的能級,導(dǎo)致禁帶寬度變窄。Huang等[13]通過摻入F,在Bi2WO6價帶上部生成新的能級,使禁帶寬度由2.77 eV降低到2.68 eV,在可見光照射下,光催化效率提高了約23%。
(3) 如圖1(d)所示,摻雜在Bi2WO6的禁帶中引入雜質(zhì)能級(IL),光激發(fā)電子首先躍遷到雜質(zhì)能級,再從雜質(zhì)能級躍遷到導(dǎo)帶,這種電子的躍遷途徑的改變,拓寬了可見光吸收范圍。Tan等[14]將Cu引入后,光激發(fā)電子先由Bi2WO6的禁帶激發(fā)到Cu雜質(zhì)能級,繼而激發(fā)到導(dǎo)帶,禁帶寬度降低了0.09 eV,光催化效率提高20%。
2.1 堿土金屬摻雜
目前,常用于摻雜的堿土金屬有Sr、Ba、Mg等。堿土金屬最外層充滿兩個電子,特別容易失去而成為相應(yīng)的離子,并且具有較強的導(dǎo)電性,常被用于半導(dǎo)體的改性研究[16]。
近期究結(jié)果表明,摻雜粒子的尺寸會直接影響催化劑的形貌、晶粒尺寸、比表面積、氧空位等,進而影響禁帶寬度和電子空穴復(fù)合率,最終影響光催化活性。
圖1 Bi2WO6結(jié)構(gòu) [15]與摻雜機理示意圖
Song等[17]將Ba摻雜Bi2WO6后得到無定型的催化劑,Wang等[18]制備的Sr-Bi2WO6卻是三維鳥巢狀。另外,Ba的摻雜使比表面積由56.364 m2/g提高到63.756 m2/g,還作為電子捕獲劑,降低了電子-空穴的復(fù)合率。Sr的摻雜使催化劑粒徑減小8.6 nm,禁帶寬度降低0.1 eV。二者光催化活性依次提高約46%和9%。Fung等[19]利用固態(tài)反應(yīng)法將Mg摻雜到Bi2WO6形成固溶體,當Mg與W的原子比為1∶4時,700 ℃下導(dǎo)電性為1.12×10-1Ω/cm,表明引入氧空位使導(dǎo)電性大大提高。
離子的半徑是能否成功摻雜的主要影響因素。而Be2+和Ra2+的離子半徑分別為0.03和0.162 nm,離子半徑太大或者太小均造成了摻雜困難,Ca2+的離子半徑為0.114 nm,與Bi3+的離子半徑0.103 nm相差不大,有望進行摻雜研究。
2.2 過渡金屬摻雜
過渡金屬一般具有多種價態(tài)、未充滿的d電子層,能級低而密,可容納較多的電子,結(jié)合能高[20],摻入后,常可改變Bi2WO6禁帶寬度或形成淺勢捕獲阱,促進其光催化活性提高。
如表1所示,常用于摻雜的過渡金屬有Cu、Ag、Zn、Ni、Zr、Nb、Mo、Cd等。金屬離子摻雜受其半徑等因素影響,一般都取代Bi2WO6的Bi位。而Mo6+[27]、Nb5+、Ta5+、Zr4+[12]離子半徑分別為0.073,0.078, 0.078和0.08 nm,近似等于W6+的離子半徑0.074 nm,又因為三者在元素周期表中位于W的鄰位或?qū)ξ?,有相似的化學性質(zhì),因而主要取代W位。
Ag[2, 23]與Cu[14, 21]同屬IB族,在降解羅丹明B(RhB)或苯酚的過程中,摻雜Ag的降解率略高于Cu,Ag具有SPR效應(yīng),在光照過程中可形成局部高溫,利于光降解反應(yīng)的進行。研究表明[26],Cd的摻入并未改變Bi2WO6可見光的吸收范圍,但由于引入了淺勢捕獲阱,降低了電子-空穴的復(fù)合概率,使降解率由43.6%提高到了100%,優(yōu)于其它金屬。另外, Mo[27]、Ni[29]、Zr[12]的摻入,均可生成電子捕獲阱、減小Bi2WO6的禁帶寬度,可使催化效率提高30%以上,且對光降解物質(zhì)沒有明顯的選擇性。
2.3 稀土金屬摻雜
稀土元素具有豐富的電子能級,其未充滿的4f電子軌道,其作為摻雜離子可引入電子淺勢捕獲阱,降低電子空穴的復(fù)合率,引入雜質(zhì)能級,使得光生電子可在f-f或f-d軌道之間發(fā)生躍遷,又因為稀土金屬具有上轉(zhuǎn)換發(fā)光功能,以稀土離子取代Bi3+位置,能明顯提高的光催化活性。Blasse和Ksen[31]系統(tǒng)研究了Bi2WO6中摻雜La、Pr、Sm、Eu、Tb、 Dy、Er 等稀土離子,結(jié)果證明稀土離子的摻入有利于量子效率的提高。
目前用于摻雜的稀土離子還有Y、Gd、Ce、Eu等。表2總結(jié)了上述離子的摻雜方法及效果。
Y[32]和Eu[35]摻入后,它們的4f軌道插入在Bi2WO6的禁帶中間,雜質(zhì)能級引入降低了禁帶寬度,作為子捕獲劑的Y3+和Eu3+降低了電子-空穴復(fù)合率,從而提高了光催化效率,使得RhB的降解率提高超過40%。
Gd3+[34]具有半充滿的4f軌道,當捕獲光生電子后,變得不穩(wěn)定,與O2相互作用生成·O-;類似的是,Ce3+[13]的4f軌道僅有1個電子,與O2相互作用失去該電子生成·O-,空的4f軌道更易接受新的光生電子,降低電子-空穴復(fù)合概率。這使摻入Gd和Ce后,Bi2WO6禁帶寬度雖有所增加,但其RhB降解率仍有20%的增加。
表1 常見過渡金屬摻雜Bi2WO6的方法及摻雜效果的比較
注:①元素下標表示的摻雜比例統(tǒng)一為摻雜原子與Bi原子的摩爾比,下同;②摻雜結(jié)果欄“()”內(nèi)部為未摻雜時純Bi2WO6的相關(guān)數(shù)據(jù)。
表2 稀土金屬摻雜Bi2WO6的方法及摻雜效果的比較
2.4 其它金屬摻雜
除了以上提到的各類金屬離子以外,還有Sn、Sb等被用來作為摻雜離子。
有報道[36-37]表明,水熱法制備的Sn-Bi2WO6,Sn的5s軌道與O的2p軌道進行雜化,可使禁帶寬度從2.7eV降低到2.5 eV,并增加了可見光吸收范圍。在可見光RhB降解研究中,90~120 min,降解率達98%~100%,而未摻雜時僅為81%。
利用固態(tài)反應(yīng)法等方法[38-39]制備的光催化劑, Sb5+部分取代了W6+或Bi3+,提高催化劑表面氧空位數(shù)量和導(dǎo)電性。當Sb取代W達4%時,催化劑電導(dǎo)率可達0.02 S/cm。當Sb取代Bi達5%時,催化劑的可見光RhB降解率為70%,比未摻雜時提高了21%。
綜合金屬摻雜研究結(jié)果,離子半徑和摻雜量是影響催化劑形貌和摻雜效果的重要因素,離子半徑過大或過小都難以形成有效的取代。取代Bi位時,摻雜金屬離子半徑范圍在0.08~0.13 nm之間,摻雜量不超過5%時,一般可保持原有形貌。
近年來,在非金屬離子摻雜Bi2WO6的研究中,以N的摻雜為主,對B、F、I、S、C等離子的摻雜研究也有相當涉及。研究表明,非金屬離子的摻雜不但能夠減小Bi2WO6禁帶寬度,增加對可見光的吸收,還能在Bi2WO6晶格中引入氧空位,有效避免電子-空穴的分離,從而增加光催化效率。
3.1 N摻雜
關(guān)于N的摻雜情況,詳見表3,研究結(jié)果表明[40-42],N主要取代O位,由于N的粒子半徑比O大,當N摻入后晶格尺寸會發(fā)岐變,從而影響催化劑的尺寸和形貌。
N摻雜可使Bi2WO6的光催化活性提高40%左右,禁帶寬度也有不同程度的降低,約0.07~0.19 eV。
Wang等[41]認為這是由合適的禁帶寬度、電子遷移率的提高、電子空穴復(fù)合率的降低導(dǎo)致;而Zhu等[40]認為,N的2p軌道提高了的價帶位置,而對導(dǎo)帶無影響,從而使得禁帶寬度降低。雖然N的摻雜研究相對較多,但其摻雜機理并沒有統(tǒng)一的認識,有待進一步探究。
3.2 其它非金屬元素摻雜
用于摻雜Bi2WO6的非金屬還有B、C、F、I等,摻雜效果如表4所示。
表3 N摻雜Bi2WO6的方法及摻雜效果的比較
表4 其它非金屬摻雜Bi2WO6的方法及摻雜效果的比較
B[43]、C[44]可使光催化效率提高40%~60%,摻雜效果較好,摻雜后催化劑對RhB的降解率達90%以上。而F[13]、I[45]摻雜時,僅能提高20%~30%,催化劑催化效率低于90%。
B[43]具有親電子和O2的性質(zhì),可作為電子捕獲劑,促進電子空穴分離和·O-的生成,使得RhB的降解速率增加到原來的8.8倍,可達100%。C[44]、F[13]的加入,在價帶頂部生成了新的能級,導(dǎo)致禁帶寬度變窄,使得光吸收范圍紅移。
從已發(fā)表文章數(shù)量和取得的成果來看,與金屬摻雜相比較,非金屬摻雜無論從涉及的元素種類,還是研究深度都不夠深入,因此有待于進一步探討研究。
共摻雜是指兩種以上(包含兩種)金屬、非金屬離子摻雜到Bi2WO6晶格中,或者離子摻雜后與金屬氧化物復(fù)合,提高其光催化活性的方法。研究表明,多種原子摻雜或復(fù)合可產(chǎn)生協(xié)同作用,在拓寬吸光范圍、抑制載流子復(fù)合、提高催化劑表面羥基含量等方面有重要作用。
目前報道的共摻雜研究有Ce/F、N/Mo、Pt/Cl、Yb/Tm/Li、Er3+-Bi2WO6/TiO2、Bi2O3/Bi2WO6-xF2x、TiO2/N-Bi2WO6、S-Bi2WO6/Bi2O3等,其制備方法主要是水熱法,摻雜效果如表5所示。
表5 未摻雜、單摻雜、共摻雜型Bi2WO6催化性能比較
多種元素摻雜時,離子的取代位置與單元素摻雜相同,如F-Ce-Bi2WO6[13],單摻雜時F取代W位,Ce取代Bi位,二者共摻雜時,取代位置不變。共摻雜催化劑禁帶寬度位于各元素單獨摻雜時所得禁帶寬度范圍之內(nèi),如N-Mo-Bi2WO6[46],N摻雜后禁帶寬度為1.56 eV,Mo摻雜后為1.62 eV,共摻雜為1.59 eV。與單元素摻雜相比,共摻雜或與其它半導(dǎo)體復(fù)合具有更高的降解率、降解速率,如TiO2/N-Bi2WO6[42],N的摻雜,使其光催化效率提高了44%,TiO2復(fù)合后,其光催化效率進一步提高了5%,這是由于多種元素摻雜或復(fù)合,產(chǎn)生協(xié)同作用導(dǎo)致。通過摻雜或復(fù)合制備多元催化劑,將是今后的研究的熱點之一。
綜上所述,摻雜型Bi2WO6制備方法簡單,制備條件(溫度、pH值等)容易控制,在降解有機污染物領(lǐng)域尤其特有的優(yōu)勢,如催化效率高、能直接利用可見光、節(jié)約能源、無二次污染等。并且通過摻雜改性等手段,相關(guān)研究已經(jīng)取得了較大的進展,使得Bi2WO6成為最具前景的可見光光催化材料之一。
然而,就目前研究來看,催化效果并不理想。制備方法以水熱法為主,比較單一;在共摻雜和摻雜復(fù)合方面研究不足;催化機理大都從影響禁帶寬度和電子空穴復(fù)合率的共性展開,針對性不強等。
因此,在今后的研究中應(yīng)在以下3個方面尋求改進:第一,優(yōu)化現(xiàn)有制備方法并尋求新的制備方法,如固態(tài)反應(yīng)法[28]、低溫燃燒法等[51],通過改進制備方法來提高光催化性能;第二,重視摻雜,包括多種金屬摻雜、金屬非金屬共摻雜以及摻雜復(fù)合型多元催化劑研究,充分發(fā)揮多種元素摻雜復(fù)合的協(xié)同作用;第三,加強摻雜機理的研究,尤其是特定離子對光催化影響的機理研究,為以后的摻雜提供可靠的指導(dǎo)作用。
[1] Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis [J]. Catalysis Today, 2008, 131(1-4): 15-20.
[2] Zhang Z J, Wang W Z, Gao E P,et al. Photocatalysis coupled with thermal effect induced by SPR on Ag-Loaded Bi2WO6with enhanced photocatalytic activity [J]. J Phys Chem C, 2012, 116(49): 25898-25903.
[3] Bhattacharya C, Lee H C, Bard A J. Rapid screening by scanning electrochemical microscopy (SECM) of dopants for Bi2WO6improved photocatalytic water oxidation with Zn doping [J]. J Phys Chem C, 2013, 117 (19): 9633-9640.
[4] Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6Nano-and microstructures: shape control and associated visible-light-driven photocatalytic activities [J]. Small, 2007, 3 (9): 1618-1625.
[5] Sun Z X, Li X F,Guo S, et al.One-step synthesis of Cl--doped Pt(IV)/Bi2WO6with advanced visible-light photocatalytic activity for toluene degradation in air [J]. Journal of Colloid and Interface Science, 2013, 412: 31-38.
[6] Sun Z H,Guo J J, Zhu S M, et al. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2and O2generation [J]. Nanoscale, 2014, 6(4): 2186-2193.
[7] Guo Y D, Zhang G K, Gan H H. Synthesis, characterization and visible light photo- catalytic properties of Bi2WO6/rectorite composites[J]. Journal of Colloid and Interface Science, 2011, 369(1): 323-329.
[8] Guo Y D, Zhang G K, Liu J, et al. Hierarchically structured α-Fe2O3/Bi2WO6composite for photocatalytic degradation of organic contaminants under visible light irradiation [J]. RSC Advances, 2013, 3(9): 2963-2970.
[9] Guo Y D, Zhang G K, Gan H H, et al. Micro/nano-structured CaWO4/Bi2WO6composite: synthesis, characterization and photocatalytic properties for degradation of organic contaminants [J]. Dalton Transactions, 2012, (41): 12697-12703.
[10] Li X N, Huang R K, Hu Y H, et al. A templated method to Bi2WO6hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6hollow microspheres with improved photocatalytic performance [J]. Inorganic Chemistry, 2012, 51(11): 6245-6250.
[11] Low J X, Yu J G, Li Q,et al. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6nanosheets [J]. Physical Chemistry Chemical Physics, 2014, 16(3):1111-1120.
[12] Zhang Z J, Wang W Z, Gao E P,et al. Enhanced photocatalytic activity of Bi2WO6with oxygen vacancies by zirconium doping [J]. Journal of Hazardous Materials, 2011, 196: 255-262.
[13] Huang H W, Liu K, Chen K,et al. Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6photocatalyst under visible light irradiation[J]. J Phys Chem C, 2014, 118 (26): 14379-14387.
[14] Tan G Q, Huang J, Zhang L L, et al. An enhanced visible-light-driven photocatalyst: conduction band control of Bi2WO6crystallites by Cu ion modification [J]. Ceramics International, 2014, 40 (8): 11671-11679.
[15] Lai K R, Wei W, Zhu Y T,et al. Effects of oxygen vacancy and N-doping on the electronic and photocatalytic properties of Bi2MO6(M=Mo, W) [J]. Journal of Solid State Chemistry, 2012, 187:103-108.
[16] Zhou M J, Han D L, Liu X L,et al. Enhanced visible light photocatalytic activity of alkaline earth metal ions-doped CdSe/rGO photocatalysts synthesized by hydrothermal method [J]. Applied Catalysis B: Environmental, 2015, 172-173:174-184.
[17] Li W T, Huang W Z, Zhou H,et al. Synthesis and photoactivity enhancement of Ba doped Bi2WO6photocatalyst [J]. Materials Research Bulletin, 2015, 64:432-437.
[18] Liu Y, Wang W M, Fu Z Y, et al. Nest-like structures of Sr doped Bi2WO6: synthesis and enhanced photocatalytic properties [J]. Materials Science and Engineering B, 2011, 176(16): 1264-1270.
[19] Hsieh C Y, Fung K Z. Effect of divalent dopants on defect structure and electrical properties of Bi2WO6[J]. Journal of Physics and Chemistry of Solids, 2008, 69:302-306.
[20] Tang Y C, Huang X H, Yu H Q, et al. Nonmetal element doping mechanisms of titanium oxide photocatalyst [J]. Progress in Chemistry, 2007, 19(2/3): 225-233. 唐玉朝,黃顯懷,俞漢青,等. 非金屬摻雜改性TiO2光催化劑的機理[J]. 化學進展,2007,19(2/3): 225-233.
[21] Wu Y F, Gao X M, Fu F, et al. Cu-Bi2WO6catalyst which was synthesized by hydrothermal method is used to photocatalytic oxidation desulfurization [J]. Chemical Engineering of Oil and Gas, 2012, 41(4): 366-369. 武玉飛,高曉明,付 峰,等.水熱合成Cu-Bi2W06催化劑及用于光催化氧化脫硫的研究[J]. 石油與天然氣化工,2012,41(4):366-369.
[22] Gao X M, Fu F, Lv L, et al. Characterization of self-made Cu-Bi2WO6and its application to photocatalytical degradation of phenol [J]. Environmental Protection of Chemical Industry, 2012, 32(2):181-184. 高曉明,付 峰,呂 磊,等. 自制Cu-Bi2WO6的表征及其對苯酚的光催化降解[J]. 化工環(huán)保,2012,32(2):181-184.
[23] Dumrongrojthanath P, Thongtem T, Phuruangrat A, et al. Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6and their photocatalytic activities [J]. Superlattices and Microstructures, 2013, 64:196-203.
[24] Chen R, Hu C H, Wei S, et al. Synthesis and activity of Ag doped Bi2WO6Photocatalysts [J]. Materials Science Forum, 2013, 743/744:560-566.
[25] Ren F Z, Zhang J H, Wang Y X.Enhanced photocatalytic activities of Bi2WO6by introducing Zn to replace Bi lattice sites: a first-principles study [J]. RSC Advances, 2015, 5: 29058-29065.
[26] Song X C, Li W T, Huang W Z,et al. Enhanced photocatalytic activity of cadmium-doped Bi2WO6nanoparticles under simulated solar light[J]. J Nanopart Res, 2015,17: 134.
[27] Song X C, Zheng Y F, Ma R,et al. Photocatalytic activities of Mo-doped Bi2WO6three-dimensional hierarchical microspheres [J]. Journal of Hazardous Materials, 2011, 192(1): 186-191.
[28] Rangel R,Bartolo-Pérez P, Martínez E, et al. atalytic activity and X-ray photoelectron spectroscopy performance of Bi2MoxW(1-x)O6solid-solutions [J]. Catal Sci Technol, 2012, 2(4): 847-852.
[29] Gao Y H, Chen Y. Effects of doping Ni2+on the structure and photocatalytic denitrification activity of Bi2WO6f Bi [J]. Journal of Chemical and Pharmaceutical Research, 2015, 7(3):716-721.
[30] Kharitonova E P, Voronkova V I, Gagor A B, et al. Phase transitions and electrical properties of Bi2W1-xNbxO6-yand Bi2W1-xTaxO6-y[J]. Journal of Alloys and Compounds, 2013, 573:90-95.
[31] Blasse G, Dirdsen J G. On the luminescence of rare-earth activated bismuth tungstates [J]. Journal of Solid State Chemistry, 1982, 42:163-169.
[32] Huang J, Tan G Q, Ren H J,et al. Multi-factors on photocatalytic properties of Y-doped Bi2WO6crystallites prepared by microwave-hydrothermal method [J]. Cryst Res Technol, 2014, 49 (7): 467-473.
[33] Cao R R, Huang H W, Tian N, et al. Novel Y doped Bi2WO6photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation [J]. Materials Characterization, 2015, 101: 166-172.
[34] Tian N, Zhang Y H, Huang H W, et al. Influences of Gd substitution on the crystal structure and visible light-driven photocatalytic performance of Bi2WO6[J]. J Phys Chem C, 2014, 118:15640-15648.
[35] Tian Y, Zhang L D, Zhang J X. A superior visible light-driven photocatalyst: europium-doped bismuth tungstate hierarchical microspheres [J]. Journal of Alloys and Compounds, 2012, 537:24-28.
[36] Kumar B V, Prasad M D, Vithal M. Enhanced visible light photocatalytic activity of Sn doped Bi2WO6nanocrystals [J]. Materials Letters, 2015, 152: 200-202.
[37] Song X C, Zhou H, Huang W Z,et al. Enhanced photocatalytic activity of nano-Bi2WO6by tin doping [J]. Current Nanoscience, 2015, 11:627-632.
[38] Kharitonova E P, Belov D A, Gagor A B, et al. Polymorphism and properties of Bi2WO6doped with pentavalent antimony [J]. Journal of Alloys and Compounds, 2014, 591: 308-314.
[39] Singh A, Dutta D P, Roy M, et al. Sonochemical synthesis, characterization, and photocatalytic properties of Bi2-xSbxWO6nanorods [J]. J Mater Sci, 2013, 49(5): 2085-2097.
[40] Zhu G Q, Liang J, Hojamberdiev M, et al.Ethylenediamine (EDA) - assisted hydrothermal synthesis of nitrogen-doped Bi2WO6powders [J]. Materials Letters, 2014, 122:216- 219.
[41] Shang M, Wang W Z, Zhang L,et al. Bi2WO6with significantly enhanced photocatalytic activities by nitrogen doping [J]. Materials Chemistry and Physics, 2010, 120(1): 155-159.
[42] Zhang J, Huang Z H, Xu Y,et al. Sol-gel-hydrothermal synthesis of the heterostructured TiO2/N-Bi2WO6composite with high-visible-light- and ultraviolet-light-induced photo- catalytic performances [J]. International Journal of Photoenergy, 2011, 2012: 1-12.
[43] Fu Y, Chang C, Chen P,et al. Enhanced photocatalytic performance of boron doped Bi2WO6nanosheets under simulated solar light irradiation [J]. Journal of Hazardous Materials, 2013, 254-255: 185-192.
[44] Cui Y M, Li H Q, Hong W S,et al. The effect of carbon content on the structure and photocatalytic activity of nano-Bi2WO6powder [J]. Powder Technology, 2013, 247:151-160.
[45] Zhang J, Huang Z H, Xu Y,et al. Hydrothermal synthesis of iodine-doped Bi2WO6nanoplates with enhanced visible and ultraviolet-induced photocatalytic activities[J]. International Journal of Photoenergy, 2012, 2012: 1-12.
[46] Lai K R, Zhu Y T, Lu J B, et al. N- and Mo-doping Bi2WO6in photocatalytic water splitting [J]. Computational Materials Science, 2013, 67: 88-92.
[47] Zhu N W, Huang S Q, Lou Z Y, et al. Yb3 +-Tm3 +-Li+doped Bi2WO6/CNTS transformation materials on photocatalytic applications [P]. Chinese Patent: 103301833 A, 2013-09-18. 朱南文,黃壽強,樓紫陽,等. Yb3+-Tm3+-Li+三摻雜Bi2WO6/CNTs上轉(zhuǎn)換光催化材料[P].中國專利:103301833 A, 2013-09-18.
[48] Obregón S, Colón G. Erbium doped TiO2-Bi2WO6heterostructure with improved photocatalytic activity under sun-like irradiation [J]. Applied Catalysis B: Environmental, 2013, 140-141: 299-305.
[49] Huang J, Tan G Q, Ren H J,et al. Photoelectric activity of a Bi2O3/Bi2WO6-xF2xheterojunction prepared by a simple one-step microwave hydrothermal method [J]. ACS Appl Mater Interfaces, 2014, 6(23): 21041-21050.
[50] Wang T Y, Xiao G S, Li C Y,et al. One-step synthesis of a sulfur doped Bi2WO6/Bi2O3composite with enhanced visible-light photocatalytic activity [J]. Materials Letters, 2015, 138: 81-84.
[51] Yu Z X, Xiang L, Zhong F L, et al. Effects of solution pH on photocatalytic degradation of rhodamine B using bismuth tungstate prepared by low-temperature combustion method[J]. Journal of Inorganic Materials, 2015, 30(5): 535-541. 余忠雄,向 壘,鐘方龍,等. pH對低溫燃燒法合成鎢酸鉍光催化降解羅丹明B的影響[J]. 無機材料學報,2015,30(5):535-541.
Latest studies of doped Bi2WO6visible light photocatalyst materials
ZHENG Huajie, MENG Fanmei, GUAN Yi, ZHU Jiao
(School of Chemical Engineering, Tianjin University, Tianjin 300072, China)
The band gap of Bi2WO6is only 2.7 eV, which allows it absorb ultraviolet and visible light at the same time. With the characteristics of controllable morphology, strong oxidizing property, light corrosion resistance, non-toxic and non-polluting, Bi2WO6becomes an ideal material for visible light photocatalysis. However, the quantum efficiency of pure Bi2WO6is relatively low, photo generated electron-hole recombine easily. So, further modification of Bi2WO6has become a hot research topic in recent years. At present, the research method of Bi2WO6is mainly focused on the doping modification. The doping modification has important effects on the electronic structure, appearance, particle size and surface properties of the catalyst, so as to improve the quantum efficiency, reduce the width of the band gap and electron hole recombination rate, thus improve the photocatalytic capability. In this paper, we introduced the latest progress in the study of the doped Bi2WO6photocatalyst from mental doping, nonmetals doping, co-doping and so on. We also clarified the mechanism of photocatalytic reaction and prospected for its development.
Bi2WO6; visible light; photocatalyst; doping; modified
1001-9731(2016)12-12076-07
國家自然科學基金資助項目(21376170, 21576192)
2016-01-23
2016-04-18 通訊作者:關(guān) 毅,E-mail: guanyi@tju.edu.cn
鄭化杰 (1989-),男,山東濰坊人,在讀碩士,師承關(guān)毅副教授,從事光催化材料研究。
O643.3
A
10.3969/j.issn.1001-9731.2016.12.012