秦偉良, 徐丹丹
(南京信息工程大學 數(shù)學系 江蘇 南京 210044)
?
幾類具有奇性的p-Laplacian類算子周期解問題
秦偉良, 徐丹丹
(南京信息工程大學 數(shù)學系 江蘇 南京 210044)
應用Mawhin重合度延拓定理,研究了具有吸引、排斥型奇性的Liénard和Rayeigh方程周期正解的存在性問題.主要結果表明,這兩類具有奇性的方程至少存在一個周期正解.
Liénard方程; Rayeigh方程; 奇性; 周期解
近年來,具有奇性的Liénard和Rayeigh方程周期解問題被廣泛研究[1-13].文獻[1]對具有奇性的Liénard方程x″+f(x)x′+g(t,x)=0,0 本文研究在R范圍下的具有奇性的p-Laplacian類算子T-周期正解的存在性問題.考慮一維的p-Laplacian算子(φp(u′))′,其中:p>1;φp:R→R為φp(s)=sp-2s(s≠0,φp(0)=0). 令φ為R→R上的連續(xù)函數(shù),且滿足下面條件: 1) 對于任意的x1,x2∈R,x1≠x2,(φ(x1)-φ(x2))(x1-x2)>0, 2) 存在一個函數(shù)α:[0,+∞)→[0,+∞),α(s)→+∞ 且s→+∞,對于所有的x∈R,φ(x)x≥α(x)x. 1) 對于每一個λ∈(0,1),方程 (φ(u′))′=λf(t,u,u′),u(0)=u(T),u′(0)=u′(T) (1) 在?Ω上無解; 考慮問題 (u′p-2u′)′+f(u)u′+g1(u)+g2(t,u)=h(t),u(0)=u(T),u′(0)=u′(T), (2) 其中:p>1;f:R→R連續(xù),g1:R→R連續(xù),g2:(I×R)→R是Carathéodory映射;g1,g2在u=0點具有奇性;g1(u)為吸引型,即u→0+時g1(u)→+∞;g2(t,u)為排斥型,即u→0+時g2(t,u)→-∞;h∈L1.下面的結果為引理2的簡單推廣. 引理3[4]假設存在正常數(shù)M0、M1和M2,滿足下面條件: 1)對于所有λ∈(0,1],方程(u′p-2u′)′+λf(u)u′+λg1(u)+λg2(t,u)=λh(t)的每一個可能的正T-周期解u,滿足不等式M0 2)方程g1(c)+g2(t,c)-h(t)=0的每一個可能的解c,滿足M0 3)若(g1(M0)+g2(t,M0)-h(t))(g1(M1)+g2(t,M1)-h(t))<0,則方程(2)至少存在一個T-周期解u,使得對于所有t∈[0,T]滿足r 證明 假設條件(H2)意味著存在D1>0,對于所有的u∈(0,D1],有g1(u)+g2(t,u)-h(t)>0.因此,若對所有t∈[0,T],有00,?t∈[0,T],因此 (3) 但是,如果u是方程(2)的T-周期解,將方程(2)在[0,T]上積分并考慮周期條件,得到 (4) 方程(3)和(4)意味著在t0∈[0,T]上,u(t0)>D1.另一方面,假設條件(H2)表明存在D2>D1,使得對于所有的u≥D2,有g1(u)+g2(t,u)-h(t)<0.因此,若在t∈[0,T]上有u(t)≥D2,則 (5) 比較方程(4)和(5)得到,如果u是方程(4)的T-周期解,那么存在t1∈[0,T],使得u(t1) 證明 首先,將方程(4)嵌入帶參數(shù)λ∈(0,1)的方程族,等價于 (u′p-2u′)′+λf(u)u′+λg1(u)+λg2(t,u)=λh(t), (6) 則若u是方程(4)的一個T-周期正解,將式(4)兩邊乘以u,得到 (u′p-2u′)′u+λf(u)u′u+λg1(u)u+λg2(t,u)u=λh(t)u, (7) 定義I+={t∈[0,T]:g2(t,u)≥0},I-={t∈[0,T]:g2(t,u)≤0}. (8) 對任意的ò>0,存在φ∈C(R,R),φ(t+T)=φ(t),使得g2(t,u)≤(φ(t)+ò)u+gò(t).結合式(4)和(8),有 (9) 證明 如果u是式(4)的一個T-周期解,令 v(t)=u′(t)(p-2)u′(t), (10) 則u連續(xù)且 u′(t)=v(t)(q-2)v(t), (11) v′(t)+λf(u)u′=-λg1(u)-λg2(t,u)+λh(t), (12) (13) 定理1 假設條件(H1)~(H6)都滿足,那么方程(4)至少有一個T-周期正解. 證明 由引理4和引理6得M00,其中0 假設φ:R→R連續(xù)且滿足條件(H1)和(H2).運用重合度延拓定理研究如下形式的方程: (φ(u′))′=f(u)u′+g(t,u)+e(t),u(0)=u(T),u′(0)=u′(T), (14) 其中:f,g連續(xù);函數(shù)g在0具有奇性;e∈L1. 定理2 假設滿足以下條件: 1) 對于所有x,y∈R,t∈I,存在n∈C1(R,R)和h∈L1(I,R+)滿足 φ(y)n′(x)y≥0, (15) 和 f(x)y+g(x)+e(t)≤(f(x)y+g(x)+e(t))n(x)+h(t). 證明 首先,將式(14)嵌入帶參數(shù)的λ∈(0,1)的方程族,等價于 (φ(u′))′=λf(u)u′+λg(u)+λe(t). (17) (18) [1] ZHANG M.Periodic solutions of lienard equations with singular forces of repulsive type [J].Journal of mathematical analysis and applications,1996,203:254-269. [2] GAINES R E,MAWHIN J L.Coincidence degree and nonlinear differential equations [M].Berlin:Springer,1977. [3] WANG Z H.Periodic solutions of Lienard equations with a singularity and a deviating argument [J].Nonlinear analysis real word applications,2014,16(16):227-234. [4] JEBELEAN P,MAWHIN J.Periodic solutions of singular nonlinear perturbations of the ordinaryp-Laplacian [J].Advanced nonlinear studies,2002,2(3):299-312. [5] LAZER A C,SOLIMINI S.On periodic solutions of nonlinear differential equations with singularities[J].Proceedings of the American mathematical society,1987,99(1):109-114. [6] WANG Z.On the existence of periodic solutions of rayleigh equation [J].Z Angew Math Phys,2005,56(4):592-608. [7] LU S P,GE W G,ZHENG Z X.Periodic solutions for a kind of rayleigh equation with a deviating argument [J].Computers and mathematics with applications,2007,53(5):825-830. [8] 高娟娟,賈小堯,馬繼佳.一類p(x)-Laplacian問題解的存在性[J].河南科技大學學報(自然科學版) ,2014,35(3):86-94. [9] LEI J,ZHANG M.Twist property of periodic motion of an atom near a charged wire[J].Letters in mathematical physics,2002,60(1):9-17. [10] TORRES P J.Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity[J].Proceeding of the royal society of edinburgh,2007,137(1):195-201. [11] HAKL R,TORRESP J.On periodic solutions of second-order differential equations with attractive-repulsive singularities[J].Journal of differential equations,2010,248(1):111-126. [12] FABRY C,FAYYAD D.Periodic solutions of second order differential equations with ap-Laplacian and asymmetric nonlinearities[J].Rend Istit Mat Univ Trieste,1992,24(1):207-227. (責任編輯:方惠敏) Periodic Solutions of p-Laplacian-like Operators with Singularities QIN Weiliang, XU Dandan (DepartmentofMathematicsandStatistics,NanjingUniversityofInformation The degree theorem was used to explore an existence result of periodic solution for the Liénard equations and Rayeigh equations with singular forces of attractive and repulsive type.The main result showed that the scalar of these two kinds equations with singular forces had at least one positive periodic solution. Liénard equation; Rayeigh equation; singularity; periodic solution 2016-05-12 國家自然科學基金資助項目(41505118). 秦偉良(1965—),男,江蘇常州人,副教授,主要從事應用統(tǒng)計和非線性微分方程研究,E-mail:hetangtang88@163.com;通訊作者:徐丹丹(1991—),女,江蘇淮安人,碩士研究生,主要從事非線性常微分方程研究,E-mail:1159489113@qq.com. 秦偉良,徐丹丹.幾類具有奇性的p-Laplacian類算子周期解問題[J].鄭州大學學報(理學版),2016,48(4):10-14. O175.14 A 1671-6841(2016)04-0010-05 10.13705/j.issn.1671-6841.20166081 預備引理
2 具有吸引-排斥型奇性的Liénard方程
3 吸引或排斥型的Liénard方程
Science&Technology,Nanjing210044,China)