国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

顱內(nèi)動脈粥樣硬化斑塊高分辨率磁共振成像研究進(jìn)展

2017-01-11 00:07
中國卒中雜志 2017年3期
關(guān)鍵詞:管壁高分辨率硬化

顱內(nèi)動脈粥樣硬化是缺血性卒中的主要原因[1]。亞洲人群,特別是中國人動脈粥樣硬化更易累及顱內(nèi)動脈,尤其以大腦中動脈受累最常見[2]。腦缺血事件的發(fā)生主要取決于顱內(nèi)動脈粥樣硬化斑塊的穩(wěn)定性。目前對于顱內(nèi)動脈粥樣硬化斑塊的評價正逐漸成為研究熱點。本文重點論述基于高分辨率磁共振成像(magnetic resonance imaging,MRI)的顱內(nèi)動脈粥樣硬化斑塊成像的研究進(jìn)展。

1 高分辨率磁共振成像歷史展望

最初利用MRI對血管成像是取自于手術(shù)切除下來的髂動脈粥樣硬化段,這些研究提供了動脈粥樣硬化斑塊組成和MRI信號特點間的關(guān)系[3-4]。隨后,Naghavi等通過血管壁成像研究了胸主動脈夾層動脈瘤的管壁厚度[5]。1990年,Edelman等分析了頸動脈粥樣硬化性疾病的黑血和亮血成像技術(shù),發(fā)現(xiàn)黑血成像在評估血管狹窄上精確性更高,更有優(yōu)勢。自此以后,研究多重點關(guān)注斑塊組成特點及MRI信號表現(xiàn),對動脈粥樣硬化的評價不再僅局限于動脈狹窄[6]。

1995年,Aoki團(tuán)隊進(jìn)行了通過MRI評價顱內(nèi)血管管壁的第一項研究,該團(tuán)隊研究了顱內(nèi)動脈頸內(nèi)段和椎動脈的管壁強(qiáng)化和年齡的關(guān)系,結(jié)果顯示,隨著年齡增加,血管壁強(qiáng)化的程度有增加的趨勢[7],這種關(guān)聯(lián)被認(rèn)為與動脈粥樣硬化進(jìn)展有關(guān)[8]。2003年,Naghavi等介紹了主要針對頸動脈不穩(wěn)定斑塊的模型,證明特定的斑塊成分可以導(dǎo)致患者的臨床癥狀進(jìn)展,結(jié)局表現(xiàn)為血栓形成和栓塞[9]。

目前研究認(rèn)為,除血管管腔狹窄外,動脈粥樣硬化斑塊組成,包括纖維帽的存在與狀態(tài)、斑塊內(nèi)出血、脂質(zhì)核心的存在與體積、新生血管、斑塊潰瘍、斑塊破裂等均可能是目前或未來血管事件的標(biāo)志[10-12]。但目前這些因素在顱內(nèi)動脈粥樣硬化斑塊的研究中尚顯不足,缺乏足夠的病理標(biāo)本對照[13]。血管并不會狹窄,傳統(tǒng)血管成像也很難發(fā)現(xiàn)這種病變[18]。因此,近年來關(guān)于血管管腔的研究正逐漸成為熱點,高分辨率MRI黑血成像目前發(fā)展迅速,已經(jīng)廣泛用于頸動脈不穩(wěn)定斑塊的鑒定[19-23]。顱內(nèi)血管高分辨率MRI已經(jīng)在探測病變區(qū)域斑塊特點上顯示出了初步可行性。該技術(shù)通過抑制血管內(nèi)血液和血管外腦脊液信號,形成足夠的信號噪聲比(signal-to-noise ratio,SNR),提高空間分辨率,可以使血管壁結(jié)構(gòu)得到清晰顯示[24]。相較于傳統(tǒng)的2維MRI,3維血管壁成像的應(yīng)用正逐漸增多。3維成像可增加掃描的覆蓋面積,可以在各個方向重復(fù)掃描,進(jìn)而能更加清楚地顯示血管壁病變[25]。楊萬群、張雪鋒等的研究均證明了在判斷大腦中動脈病變區(qū)域管壁面積、斑塊體積及斑塊成分上,高分辨率MRI已經(jīng)顯示出了良好的可行性[26-27]。

2 顱內(nèi)動脈粥樣硬化斑塊成像技術(shù)的可行性

目前評估血管病變最常用的檢查方式包括計算機(jī)斷層掃描血管造影(computed tomography angiography,CTA)、磁共振血管成像(magnetic resonance angiography,MRA)和數(shù)字減影血管造影(digital subtraction angiography,DSA),但這些檢查方式在血管管腔的評價上均存在局限性,如在鑒別顱內(nèi)動脈粥樣硬化與血管炎、動脈夾層、煙霧病等病變方面困難較大[14-17]。此外,由于血管陽性重構(gòu)的存在,部分患者動脈粥樣硬化的

3 斑塊成像研究進(jìn)展

3.1 磁共振成像常用序列對斑塊成分的識別目前高分辨率MRI圖像有多個序列,不同序列對管壁顯像重點不同。多個圖像序列對比可以更全面地評估血管壁信號特點,增加診斷的準(zhǔn)確性[28]。常用序列包括利用白血技術(shù)的3維時間飛躍序列(3D time of flight,3D-TOF)及黑血的T1序列(T1-weighted imaging,T1WI)、T2序列(T2-weighted imaging,T2WI)、質(zhì)子序列(proton density weighted imaging,PDWI)、磁化準(zhǔn)備快速梯度回波序列(magnetization prepared rapid gradient echo,MP-RAGE)、T1強(qiáng)化序列(T1contrast enhanced weighted imaging,T1+C)[29]。

TOF序列通過增強(qiáng)血流的信號強(qiáng)度,提高了血流與周圍血管壁的信號對比強(qiáng)度,可較好地分辨頸動脈斑塊表面鈣化與纖維帽[30]。顱內(nèi)動脈由于管腔更細(xì),纖維帽難以顯示,此序列多用于觀察顱內(nèi)動脈有無狹窄。

有研究認(rèn)為T1WI適合判斷斑塊內(nèi)出血,斑塊高信號提示斑塊內(nèi)出血的特異性為84%,敏感性為84%[13]。PDWI序列上管壁和管腔形成很高的對比,更適合對粥樣硬化斑塊進(jìn)行量化分析[31]。目前認(rèn)為,T2WI序列中斑塊邊緣高信號代表纖維帽,在斑塊外高信號區(qū)域代表富含泡沫狀巨噬細(xì)胞和黏多糖的組織。脂質(zhì)核心在T1WI多表現(xiàn)為不同的中到高信號區(qū)域,低信號多位于斑塊周圍非脂質(zhì)核心區(qū)域;脂質(zhì)在T2WI序列多為低到中等信號強(qiáng)度,高信號多出現(xiàn)在斑塊近心端及血管分叉處,但仍缺乏病理研究對其進(jìn)行驗證[32]。T2WI可以看作是T1WI的補(bǔ)充序列,兩個序列聯(lián)合分析可以增加病變診斷的敏感性和特異性[21]。T1WI、T2WI和PDWI這3個序列是目前高分辨率MRI最常用的序列。

MP-RAGE序列對斑塊內(nèi)出血較為敏感,目前認(rèn)為出血在此序列上表現(xiàn)為高信號,此序列可以清楚地區(qū)分斑塊內(nèi)出血與脂質(zhì)核心[33]。T1+C序列主要用于分析斑塊內(nèi)炎癥、新生血管和厚纖維帽成分,目前認(rèn)為上述病變在該序列表現(xiàn)為高信號,斑塊在該序列的高信號表明斑塊不穩(wěn)定,有較大的破裂風(fēng)險,尚需病理研究進(jìn)一步檢驗[34-36],目前認(rèn)為鈣化在各序列均呈信號[37]。

3.2 斑塊分布 最近研究表明,穿支動脈閉塞所致腦梗死在血管造影未見狹窄時,高分辨率MRI更容易發(fā)現(xiàn)動脈粥樣硬化斑塊,多見于大腦中動脈及基底動脈[38]。大腦中動脈的斑塊分布在預(yù)測癥狀嚴(yán)重性及卒中類型上非常重要,Yoon認(rèn)為大腦中動脈上壁斑塊與深部梗死灶有關(guān),可能是與上壁斑塊容易阻塞豆紋動脈開口有關(guān)[39]。多數(shù)大腦中動脈斑塊位于穿支開口對側(cè)?;讋用}斑塊多位于腹側(cè)壁。通過高分辨率MRI可以明確斑塊的分布,可以更好地指導(dǎo)介入手術(shù),降低術(shù)后并發(fā)癥[40]。顱內(nèi)其他動脈斑塊分布規(guī)律仍有待更多研究證實。斑塊分布可能是預(yù)測卒中癥狀出現(xiàn)的重要因素,但尚需更多研究證實[41]。

3.3 斑塊強(qiáng)化 動脈粥樣硬化斑塊強(qiáng)化被認(rèn)為與斑塊內(nèi)新生血管生成有關(guān),許多研究認(rèn)為斑塊強(qiáng)化與急性缺血性卒中密切相關(guān),是斑塊穩(wěn)定性的標(biāo)志[7,14,42]。然而實際上斑塊強(qiáng)化與急性缺血性卒中的關(guān)系受多種因素的影響。Ryu等的研究認(rèn)為狹窄程度而非斑塊強(qiáng)化是缺血事件的獨立預(yù)測因素[43]。此外,Kim等的研究認(rèn)為斑塊強(qiáng)化與癥狀性顱內(nèi)動脈硬化患者卒中復(fù)發(fā)相關(guān)[44]。

3.4 斑塊鈣化 鈣化對顱內(nèi)動脈粥樣硬化斑塊的影響仍存在爭議。冠狀動脈斑塊和頸動脈斑塊的研究顯示斑塊鈣化可以促進(jìn)斑塊穩(wěn)定[45-46]。關(guān)于顱內(nèi)動脈粥樣硬化性斑塊,Chen等人的尸檢研究并未發(fā)現(xiàn)顱內(nèi)動脈斑塊鈣化與缺血性卒中之間存在關(guān)系[47]。由于缺乏充足的客觀證據(jù),目前仍不能確定斑塊鈣化與斑塊穩(wěn)定性之間的關(guān)系。

3.5 顱內(nèi)動脈粥樣硬化斑塊定量評價

3.5.1 斑塊負(fù)荷 斑塊負(fù)荷被認(rèn)為是與斑塊易損性有關(guān)的重要因素之一,因為它可直接反映動脈粥樣硬化病變的演變,斑塊負(fù)荷越大,斑塊越不穩(wěn)定。管壁厚度、管壁面積(體積)是斑塊負(fù)荷常用的評價指標(biāo)[48]。

3.5.2 斑塊形態(tài) 目前,對于斑塊形態(tài)進(jìn)行量化的指標(biāo)主要包括:斑塊面積、斑塊體積、管腔面積、管壁面積、最大管壁厚度及重構(gòu)指數(shù)等[49-51]。徐蔚海認(rèn)為癥狀性大腦中動脈狹窄病變區(qū)域有更大的管壁面積,更高的血管重構(gòu)指數(shù);有研究[52-53]認(rèn)為癥狀性大腦中動脈狹窄病變區(qū)域血管重構(gòu)指數(shù)更高,斑塊表面更不規(guī)則。此外,楊文杰[54]認(rèn)為斑塊向心性和偏心性或許與斑塊破裂無關(guān),仍需要更多影像數(shù)據(jù)去驗證。

3.5.3 血管重構(gòu) 高分辨率MRI加深了對顱內(nèi)動脈粥樣硬化的認(rèn)識,通過高分辨率MRI可以看到有的嚴(yán)重的顱內(nèi)動脈粥樣硬化可能不會導(dǎo)致管腔狹窄。一項法國的尸檢研究顯示,62%死于缺血性卒中的患者患有顱內(nèi)動脈粥樣硬化,但其中只有約半數(shù)患者可以發(fā)現(xiàn)明顯的影像學(xué)狹窄[55]。粥樣硬化病變初期,通過血管重構(gòu)可以保持管腔在正常范圍,但是管壁卻急劇增厚,這增加了顱內(nèi)動脈粥樣硬化斑塊的破裂風(fēng)險;陽性重構(gòu)血管較之陰性重構(gòu)血管更可能發(fā)生血管事件[4]。癥狀性狹窄處血管陽性重構(gòu)明顯多于陰性重構(gòu)[52-53]。

4 局限性及未來發(fā)展趨勢

高分辨率MRI可以作為顱內(nèi)動脈病變診斷和鑒別方面的良好補(bǔ)充,該技術(shù)憑借對血管壁的顯示可以提高疾病診斷的特異性,也可以診斷普通血管成像難以發(fā)現(xiàn)的非血管狹窄疾病和腦小血管病,還可以用來評價治療的遠(yuǎn)期療效。

目前顱內(nèi)血管高分辨率MRI多集中在頸內(nèi)動脈末端,大腦中動脈M1段和基底動脈,由于掃描線圈的限制,一次掃描難以確定顱內(nèi)所有大血管病變的情況。此外,由于顱內(nèi)血管迂曲,重建高分辨率圖像顯示斑塊時可能會導(dǎo)致測量誤差。此外,高分辨率MRI掃描時間較長,花費較高,也限制了其廣泛應(yīng)用。斑塊的成像依賴于血管壁的成像,目前發(fā)展迅速。一些研究機(jī)構(gòu)目前已經(jīng)將血管壁成像評估納入臨床檢查常規(guī)成像方案里,但是目前血管壁成像研究雖有廣泛應(yīng)用的趨勢,但未得以規(guī)范。未來圖像質(zhì)量還需要進(jìn)一步優(yōu)化。目前的研究表明,特定人群中,血管壁成像可以提供比普通檢查更高的價值,但是量化這些檢查信息仍然需要更多深入的研究。未來研究重點在評價斑塊的易損性,從而使斑塊成像更好地指導(dǎo)治療及隨訪。這將大大地有利于患者的個體化治療,同時也更有助于闡述顱內(nèi)動脈粥樣硬化疾病的病理、生理學(xué)機(jī)制。

1 Wong LK. Global burden of intracranial atherosclerosis[J]. Int J Stroke,2006,1:158-159.

2 黃俊,劉崎. 3.0 T 高分辨力MR大腦中動脈管壁成像研究[J]. 放射學(xué)實踐,2012,27:556-559.

3 Kaufman L,Crooks LE,Sheldon PE,et al.

Evaluation of NMR imaging for detection with highresolution MR imaging at 3T[J]. Atherosclerosis,2009,204:447-452.

4 Huang B,Yang WQ,Liu XT,et al. Basilar artery atherosclerotic plaques distribution in symptomatic patients:A 3.0 T high-resolution MRI study[J]. Eur J Radiol,2013,82:e199-203.

5 Naghavi M,Libby P,F(xiàn)alk E,et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:part II[J]. Circulation,2003,108:1772-1778.

6 Edelman RR,Mattle HP,Wallner B,et al. Extracranial carotid arteries:evaluation with "black blood" MR angiography [J]. Radiology,1990,177:45-50.

7 Aoki S,Shirouzu I,Sasaki Y,et al. Enhancement of the intracranial arterial wall at MR imaging:relationship to cerebral atherosclerosis[J]. Radiology,1995,194:477-481.

8 Küker W,Gaertner S,Nagele T,et al. Vessel wall contrast enhancement:a diagnostic sign of cerebral vasculitis[J]. Cerebrovasc Dis,2008,26:23-29.

9 Naghavi M,Libby P,F(xiàn)alk E,et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:part I[J]. Circulation,2003,108:1664-1672.

10 Saam T,Cai J,Ma L,et al. Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging[J]. Radiology,2006,240:464-472.

11 Saba L,Anzidei M,Sanfilippo R,et al. Imaging of the carotid artery[J]. Atherosclerosis,2012,220:294-309.

12 Turan TN,LeMatty T,Martin R et al. Characterization of intracranial atherosclerotic stenosis using highresolution MRI study-rationale and design[J]. Brain Behav,2015,12:e00397.

13 Turan TN,Bonilha L,Morgan PS,et al. Intraplaque hemorrhage in symptomatic intracranial atherosclerotic disease[J]. J Neuroimaging,2011,21:e159-e161.

14 Swartz RH,Bhuta SS,F(xiàn)arb RI,et al. Intracranial arterial wall imaging using high-resolution 3-Tesla contrast-enhanced MRI[J]. Neurology,2009,72:627-634.

15 Kim YJ,Lee DH,Kwon JY,et al. High resolution MRI difference between moyamoya disease and intracranial atherosclerosis[J]. Eur J Neurol,2013,20:1311-1318.

16 Natori T,Sasaki M,Miyoshi M,et al. Evaluating middle cerebral artery atherosclerotic lesions in acute ischemic stroke using magnetic resonance T1-weighted 3-dimensional vessel wall imaging[J]. J Stroke Cerebrovasc Dis,2014,23:706-711.

17 Pfefferkorn T,Linn J,Habs M,et al. Black blood MRI in suspected large artery primary angiitis of the central nervous system[J]. J Neuroimaging,2013,23:379-383.

18 Qiao Y,Steinman DA,Qin Q,et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla[J]. J Magn Reson Imaging,2011,34:22-30.

19 Cai J,Hatsukami TS,F(xiàn)erguson MS,et al. In vivo quantitative measurement of intact fibrous cap and lipid rich necrotic core size in atherosclerotic carotid plaque:comparison of high resolution,contrast enhanced magnetic resonance imaging and histology[J]. Circulation,2005,112:3437-3444.

20 Yuan C,Mitsumori LM,F(xiàn)erguson MS,et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques[J]. Circulation,2001,104:2051-2056.

21 Trivedi RA,U-King-Im J,Graves MJ,et al. Multi sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques[J]. Eur J Vasc Endovasc Surg,2004,28:207-213.

22 Kampschulte A,F(xiàn)erguson MS,Kerwin WS,et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/ thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging[J]. Circulation,2004,110:3239-3244.

23 Moody AR,Murphy RE,Morgan PS,et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia[J]. Circulation,2003,107:3047-3052.

24 Dieleman N,van der Kolk AG,Zwanenburg JJ,et al. Imaging intracranial vessel wall pathology with magnetic resonance imaging[J]. Circulation,2014,130:192-201.

25 Mossa-Basha M,Alexander M,Gaddikeri S,et al. Vessel wall imaging for intracranial vascular disease evaluation[J]. J Neurointerv Surg,2016,8:1154-1159.

26 Zhang X,Zhu C,Peng W,et al. Scan-rescan reproducibility of high resolution magnetic resonance imaging of atherosclerotic plaque in the middle cerebral artery[J]. PLoS One,2015,10:e0134913.

27 Yang WQ,Huang B,Liu XT,et al. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3T[J]. Eur J Radiol,2014,83:e49-55.

28 Mossa-Basha M,Hwang WD,De Havenon A,et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes[J]. Stroke,2015,46:1567-1573.

29 付希英,楊薇. 頸動脈粥樣硬化斑塊易損性的影像評價研究進(jìn)展[J],中風(fēng)與神經(jīng)疾病雜志,2013,30:380-382.

30 王慶軍,蔡劍鳴,蔡幼銓,等. 高分辨頸動脈粥樣硬化斑塊磁共振成像[J]. 中國醫(yī)學(xué)影像學(xué)雜志,2011,19:168-173.

31 許玉園,徐蔚海. 高分辨磁共振血管壁成像在大腦中動脈粥樣硬化疾病診斷中的應(yīng)用[J],中國實用內(nèi)科雜志,2016,36:322-324.

32 Degnan AJ,Gallagher G,Teng Z,et al. MR angiography and imaging for the evaluation of middle cerebral artery atherosclerotic disease[J]. Am J Neuroradiol,2012,33:1427-1435.

33 宋燕. 頸動脈粥樣硬化不穩(wěn)定斑塊的高分辨磁共振特點及應(yīng)用[J]. 中國實用神經(jīng)疾病雜志,2012,15:59-60.

34 Von Ingersleben G,Schmiedl UP,Hatsukami TS,et al. Characterization of atherosclerotic plaques at the carotid bifurcation:correlation of high-resolution MR imaging with histologic analysis--preliminary study[J]. Radiographics,1997,17:1417-1423.

35 Qiao Y,Etesami M,Astor BC,et al. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events[J]. Am J Neuroradiol,2012,33:755-760.

36 Turan TN,LeMatty T,Martin R,et al. Characterization of intracranial atherosclerotic stenosis using high-resolution MRI study-rationale and design[J]. Brain Behav,2015,5:e00397.

37 Skarpathiotakis M,Mandell DM,Swartz RH,et al. Intracranial atherosclerotic plaque[J]. Am J Neuroradiol,2013,34:299-304.

38 Klein IF,Lavallee PC,Mazighi M,et al. Basilar artery atherosclerotic plaques in paramedian and lacunar pontine infarctions:a high-resolution MRI study[J]. Stroke,2010,41:1405-1409.

39 Yoon Y,Lee DH,Kang DW,et al. Single subcortical infarction and atherosclerotic plaques in the middle cerebral artery:high-resolution magnetic resonance imaging findings[J]. Stroke,2013,44:2462-2467.

40 Chung GH,Kwak HS,Hwang SB,et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis[J]. Eur J Radiol,2012,81:4069-4074.

41 Xu WH,Li ML,Gao S,et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance[J]. Stroke,2011,42:2957-2959.

42 Vergouwen MD,Silver FL,Mandell DM,et al. Fibrous cap enhancement in symptomatic atherosclerotic basilar artery stenosis[J]. Arch Neurol,2011,68:676.

43 Ryu CW,Jahng GH,Shin HS,et al. Gadolinium enhancement of atherosclerotic plaque in the middle cerebral artery:Relation to symptoms and degree of stenosis[J]. Am J Neuroradiol,2014,35:2306-2310.

44 Kim JM,Jung KH,Sohn CH,et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence[J]. Int J Stroke,2016,11:171-179.

45 Kitagawa T,Yamamoto H,Horiguchi J,et al. Characterization of noncalcifed coronary plaques and identifcation of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography[J]. JACC Cardiovasc Imaging,2009,2:153-160.

46 Shaalan WE,Cheng H,Gewertz B,et al. Degree of carotid plaque calcifcation in relation to symptomatic outcome and plaque in?ammation[J]. J Vasc Surg,2004,40:262-269.

47 Chen XY,Wong KS,Lam WW,et al. Middle cerebral artery atherosclerosis:histological comparison between plaques associated with and not associated with infarct in a postmortem study[J]. Cerebrovasc Dis,2008,25:74-80.

48 Li F,Chen QX,Chen ZB,et al. Magnetic resonance imaging of plaque burden in vascular walls of the middle cerebral artery correlates with cerebral infarction[J]. Curr Neurovasc Res,2016,13:263-270.

49 Teng Z,Peng W,Zhan Q,et al. An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery[J]. Eur Radiol,2016,26:2206-2214.

50 Shi MC,Wang SC,Zhou HW,et al. Compensatory remodeling in symptomatic middle cerebral artery atherosclerotic stenosis:a high-resolution MRI and microemboli monitoring study[J]. Neurol Res,2012,34:153-158.

51 Dieleman N,Yang W,Abrigo JM,et al. Magnetic resonance imaging of plaque morphology,burden,and distribution in patients with symptomatic middle cerebral artery stenosis[J]. Stroke,2016,47:1797-1802.

52 Xu WH,Li ML,Gao S,et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis[J]. Atherosclerosis,2010,212:507-511.

53 Chung GH,Kwak HS,Hwang SB,et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis[J]. Eur J Radiol,2012,81:4069-4074.

54 Yang WJ,Chen XY,Zhao HL,et al. In vitro assessment of histology verifed intracranial atherosclerotic disease by 1.5T magnetic resonance imaging concentric or eccentric?[J]. Stroke,2016,47:527-530.

55 Mazighi M,Labreuche J,Gongora-Rivera F,et al. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke[J]. Stroke,2008,39:1142-1147.

【點睛】本文對高分辨率磁共振成像在顱內(nèi)動脈粥樣硬化斑塊成分、管壁重構(gòu)等對缺血性卒中有重要影響的特點方面的研究進(jìn)行了概述。

猜你喜歡
管壁高分辨率硬化
山東:2025年底硬化路鋪到每個自然村
雙源CT對心臟周圍脂肪組織與冠狀動脈粥樣硬化的相關(guān)性
基于深度學(xué)習(xí)的頸動脈粥樣硬化斑塊成分識別
低溫工況下不銹鋼管壁厚的脈沖渦流檢測
高分辨率合成孔徑雷達(dá)圖像解譯系統(tǒng)
LN17模具鋼預(yù)硬化熱處理正交試驗
大唐魯北廠2號爐壁溫超限及措施的探討
關(guān)于為“一帶一路”提供高分辨率遙感星座的設(shè)想
高分辨率對地觀測系統(tǒng)
電廠鍋爐水冷管路泄漏的主要原因與相關(guān)措施
交城县| 三亚市| 富川| 黄骅市| 西林县| 芦溪县| 通榆县| 上高县| 从江县| 北川| 桐乡市| 昭平县| 武隆县| 全州县| 定安县| 息烽县| 秦安县| 友谊县| 南和县| 剑川县| 大渡口区| 宽甸| 伊宁县| 金川县| 平潭县| SHOW| 普定县| 通化县| 酉阳| 凤台县| 贵州省| 襄汾县| 罗城| 布尔津县| 长寿区| 峨山| 乌拉特后旗| 寿光市| 庆云县| 金坛市| 英吉沙县|