吳安琪,曙 光,王 晶,殷 剛 (中南大學(xué)湘雅基礎(chǔ)醫(yī)學(xué)院病理學(xué)系,湖南長(zhǎng)沙410013)
·專(zhuān)家述評(píng)·
癌癥干細(xì)胞特性及靶向治療進(jìn)展
吳安琪,曙 光,王 晶,殷 剛 (中南大學(xué)湘雅基礎(chǔ)醫(yī)學(xué)院病理學(xué)系,湖南長(zhǎng)沙410013)
癌癥干細(xì)胞因其自我更新和治療抵抗等特性被認(rèn)為是癌癥發(fā)生、發(fā)展、耐藥和復(fù)發(fā)的根本原因.癌癥干細(xì)胞的干性調(diào)控和耐藥性機(jī)制研究受到越來(lái)越廣泛的關(guān)注,同時(shí)一系列新研究證明了癌癥干細(xì)胞群體并非過(guò)去所認(rèn)為的單一不變的群體,而是具有多樣性和可塑性.這一概念豐富了對(duì)癌癥干細(xì)胞的認(rèn)識(shí),為治療方案的研究提供了新的方法.本文將總結(jié)癌癥干細(xì)胞的重要特性,以及近年來(lái)基于干性調(diào)控通路開(kāi)發(fā)的靶向治療臨床試驗(yàn)中的成果和問(wèn)題,展望其應(yīng)用前景.
癌癥干細(xì)胞;自我更新與分化;耐藥性;靶向治療;多樣性與可塑性
癌癥干細(xì)胞(cancer stem cells,CSCs)是指具有干細(xì)胞特征的癌細(xì)胞,能夠自我更新,并且產(chǎn)生異質(zhì)性的腫瘤.有關(guān)CSCs的說(shuō)法最早形成于白血病研究中,直接的證據(jù)來(lái)源于20世紀(jì)90年代,John Dick團(tuán)隊(duì)在把白血病患者的外周血移植到非肥胖型糖尿病重癥聯(lián)合免疫缺陷(sever combined immune deficiency,SCID)小鼠身上后可誘發(fā)同類(lèi)型白血病,同時(shí)發(fā)現(xiàn)外周血細(xì)胞的致瘤能力參差不齊,只有CD34+CD38?亞群的細(xì)胞具有高致瘤能力,被認(rèn)為富集了白血病始發(fā)細(xì)胞[1].2003 年 Al?Hajj等[2]最早在實(shí)體腫瘤乳腺癌中分選出了一部分表達(dá) CD24?/lowCD44+Lineage?表面標(biāo)志物的癌細(xì)胞亞群,即乳腺癌始發(fā)細(xì)胞,該群細(xì)胞具有高致瘤性,可以驅(qū)動(dòng)腫瘤發(fā)生,并且由其長(zhǎng)出的腫瘤依然具有異質(zhì)性.隨后,通過(guò)相似的方法也相繼在其他多種實(shí)體腫瘤和癌癥細(xì)胞系中發(fā)現(xiàn)存在CSCs[3].CSCs的發(fā)現(xiàn)與分離鑒定為腫瘤治療提供了新方向.
通常認(rèn)為CSCs具有與成體干細(xì)胞相似的自我更新與分化能力.自我更新是指親代細(xì)胞通過(guò)對(duì)稱(chēng)或不對(duì)稱(chēng)分裂產(chǎn)生的子細(xì)胞中至少有一個(gè)保留親代所有特征.其中不對(duì)稱(chēng)分裂產(chǎn)生的子細(xì)胞部分或完全丟失親代干性,即為分化.基于CSCs與成體干細(xì)胞的相似性,有學(xué)者認(rèn)為CSCs可能起源于成體干細(xì)胞.Tomasetti等[4]發(fā)現(xiàn)癌癥發(fā)生的風(fēng)險(xiǎn)與組織成體干細(xì)胞的分裂次數(shù)密切相關(guān).DNA復(fù)制過(guò)程中伴隨著隨機(jī)突變的發(fā)生,導(dǎo)致干細(xì)胞以恒定的速率累積突變[5],最終使干細(xì)胞發(fā)生癌變[6-7].癌癥的發(fā)生發(fā)展被認(rèn)為是一個(gè)漸變的過(guò)程,隨著癌細(xì)胞中驅(qū)動(dòng)突變數(shù)目的累加,癌癥的惡性程度增強(qiáng)[8-9].自我更新的特性有利于驅(qū)動(dòng)突變?cè)贑SCs中累積,從而驅(qū)動(dòng)腫瘤發(fā)展轉(zhuǎn)移.來(lái)自于腎癌、乳腺癌、肺癌等臨床樣本的分析也表明,CSCs的存在確實(shí)預(yù)示著預(yù)后不良[10-12].
CSCs的分離與鑒定極大地促進(jìn)了CSCs的機(jī)制研究.已有大量研究表明CSCs中存在一種或多種異常信號(hào)通路,調(diào)控著自我更新,研究較為透徹的有Wnt/β?catenin、Notch 和 Hedgehog[13-14]等,這些信號(hào)通路在胚胎發(fā)育和分化中起著重要作用,可能對(duì)CSCs的致瘤性至關(guān)重要,是阻礙CSCs自我更新、增殖和腫瘤發(fā)展的重要治療靶點(diǎn).
1.1 Wnt信號(hào) Wnt信號(hào)中的int1最早被當(dāng)做原癌基因在小鼠中被鑒別出來(lái),隨后的研究發(fā)現(xiàn)了更多的int1相關(guān)基因,組成Wnt家族.目前已表征的Wnt信號(hào)包括經(jīng)典Wnt信號(hào)通路和非經(jīng)典Wnt信號(hào)通路,其中經(jīng)典Wnt信號(hào)通路又稱(chēng)為Wnt/β?catenin通路,由Wnt配體結(jié)合到Frizzled家族受體后,導(dǎo)致β?catenin在胞質(zhì)的累積,最終轉(zhuǎn)位到核內(nèi),作為T(mén)CF/LEF家族轉(zhuǎn)錄因子的轉(zhuǎn)錄性共激活子發(fā)揮作用,靶向激活包括干細(xì)胞表面標(biāo)志物和增殖等基因,在胚胎發(fā)育、成體干細(xì)胞和CSCs的維持和調(diào)控中均起著重要作用[15].在包括肺癌、胃癌、結(jié)腸癌和乳腺癌在內(nèi)的多種CSCs均高表達(dá)Wnt信號(hào)[16].而且多種用來(lái)鑒定和分離CSCs的表面標(biāo)記物,例如 Lgr5、CD44、CD24 和EpCAM等都是Wnt的靶基因,而TCF受體、β?catenin、RSPO和BCL9都與Wnt活性有關(guān)[17].增強(qiáng)或減弱Wnt信號(hào)水平不僅可以影響CSCs的比例,同時(shí)也可以影響CSCs的自我更新能力.研究表明LGR5通過(guò)激活Wnt/β?catenin調(diào)控乳腺癌CSCs自我更新和致瘤能力[18].Wnt信號(hào)通路同時(shí)受自身以及壁龕中鄰近細(xì)胞旁分泌的Wnt配體和細(xì)胞因子等調(diào)控[17].最近一項(xiàng)研究表明小鼠和人類(lèi)肺腺癌中存在兩個(gè)不同的亞群細(xì)胞,具有高Wnt信號(hào)活性的Wnt反應(yīng)細(xì)胞具有致瘤能力等干細(xì)胞特性,而另一群細(xì)胞提供Wnt配體形成壁龕.通過(guò)基因手段干擾Wnt產(chǎn)物或者信號(hào),或者通過(guò)小分子抑制劑靶向Wnt的轉(zhuǎn)錄后修飾都可抑制腫瘤的增殖和發(fā)展[19].Vermeulen 等[20]通過(guò)利用具有Wnt活性的報(bào)告子發(fā)現(xiàn)具有高水平Wnt活性的腸癌細(xì)胞也表達(dá)CSCs標(biāo)志物,而且用來(lái)自于肌纖維細(xì)胞或/和干細(xì)胞生長(zhǎng)因子的條件培養(yǎng)基可在體外和體內(nèi)恢復(fù)低Wnt活性結(jié)腸癌細(xì)胞的克隆形成潛能.靶向Wnt信號(hào)通路有助于癌癥的治療,可是Wnt信號(hào)在對(duì)正常干/祖細(xì)胞和CSC的調(diào)控中是否存在不同仍需要進(jìn)一步的研究.
1.2 Notch信號(hào) Notch是一種單穿膜受體蛋白,Notch信號(hào)與Wnt信號(hào)相似,均為原始保守的細(xì)胞命運(yùn)調(diào)控通路.當(dāng)Notch受體胞外段與相鄰細(xì)胞表面配體結(jié)合后,可導(dǎo)致蛋白水解作用,釋放Notch受體胞內(nèi)段,進(jìn)入胞核與CBF1和Mastermind形成復(fù)合物,激活靶基因的轉(zhuǎn)錄[21].異常激活的Notch信號(hào)與宮頸癌、肺癌、結(jié)腸癌、頭頸癌、腎癌、胰腺癌和T細(xì)胞白血病等多種惡性腫瘤的發(fā)生發(fā)展密切相關(guān).但是在肝癌、皮膚癌和小細(xì)胞肺癌等某些腫瘤類(lèi)型中,Notch信號(hào)又可導(dǎo)致細(xì)胞死亡抑制癌癥[22].這種功能的差異受多種機(jī)制的調(diào)控,包括受體?配體 land?scapes、組織拓?fù)?、胞核環(huán)境和調(diào)控網(wǎng)絡(luò)的聯(lián)接度[23].不同于Notch在腫瘤中的復(fù)雜功能,現(xiàn)有的研究大多表明Notch激活可促進(jìn)CSCs的自我更新和生存.上游可致癌的刺激激活Notch通路以及微環(huán)境中存在的信號(hào)都可刺激CSCs擴(kuò)增并促進(jìn)腫瘤發(fā)展,相反Notch信號(hào)減少導(dǎo)致祖細(xì)胞群減少和分化增加[24].Notch信號(hào)受體在結(jié)腸癌CSCs中表達(dá)量是常用結(jié)腸癌細(xì)胞系的10~30倍,以shRNA和小分子抑制劑敲除Notch后,p27和ATOH1表達(dá)量增加,誘導(dǎo)細(xì)胞凋亡,同時(shí)Notch也抑制了細(xì)胞系譜分化基因MUC2的分泌,維持CSCs的自我更新[25].在乳腺癌CSCs群中Notch4信號(hào)是分化細(xì)胞的8倍,而CSCs群中Notch1信號(hào)較分化細(xì)胞低了4倍,通過(guò)藥物或者遺傳手段抑制Notch1或Notch4可導(dǎo)致干性和腫瘤形成能力下降,抑制Notch4后可導(dǎo)致腫瘤發(fā)生能力的徹底喪失[26].在肝癌CSCs中發(fā)現(xiàn)了Notch2的激活,活化的Notch信號(hào)起著維持CSCs干性的作用[27].卵巢癌研究中發(fā)現(xiàn) microRNA?136不僅可通過(guò) Notch3抑制CSCs活性,而且可以增強(qiáng)紫杉醇的抗腫瘤效應(yīng)[28].
1.3 Hedgehog 信號(hào) Hedgehog(Hh)為高度保守的通路,在自我更新和細(xì)胞命運(yùn)決定中起重要作用.異常的Hh信號(hào)與發(fā)育、多種癌癥的發(fā)生發(fā)展以及CSCs的維持均有關(guān)[29-30].經(jīng)典的 Hh 配體有三種:Sonic(Shh)、Desert(Dhh)和 Indian(Ihh),可結(jié)合受體復(fù)合物Patched(PTCH1和 PTCH2),解除 PTCH 介導(dǎo)的Smoothened(SMO)抑制.SMO可驅(qū)動(dòng)信號(hào)級(jí)聯(lián)導(dǎo)致胞核glioma相關(guān)原癌基因轉(zhuǎn)錄因子(GLI1,GLI2,GLI3)轉(zhuǎn)位和激活.GLI可根據(jù)環(huán)境激活特定的調(diào)控自我更新、細(xì)胞命運(yùn)、存活、血管生成、上皮間質(zhì)轉(zhuǎn)化和細(xì)胞侵襲的基因.作為 Hh轉(zhuǎn)錄靶標(biāo),GLI1和PTCH形成反饋循環(huán)調(diào)控Hh信號(hào)[30].Hh信號(hào)可通過(guò)破壞干性決定基因驅(qū)動(dòng)CSCs表型,Nanog作為決定胚胎干細(xì)胞自我更新和分化的體細(xì)胞多能重編程的重要的轉(zhuǎn)錄因子,是Hh信號(hào)通路的直接轉(zhuǎn)錄靶標(biāo).而且Hh信號(hào)通過(guò)驅(qū)動(dòng)干性調(diào)控基因(例如Oct4、Sox2和 Bmi1)的表達(dá)維持了多種癌癥的干性標(biāo)志[29].Hh信號(hào)驅(qū)動(dòng)了肺癌、乳腺癌、胰腺癌、結(jié)腸癌、膠質(zhì)瘤、多發(fā)性骨髓瘤和慢性髓系白血病中的CSCs維持.這些腫瘤中Hh信號(hào)選擇性地在CSCs中活化,通過(guò)調(diào)控CSCs標(biāo)志物乙醛脫氫酶、BMI1、WNT2和CD44直接驅(qū)動(dòng)了CSCs表型.臨床前期研究表明多種腫瘤CSCs都對(duì)Hh通路抑制劑敏感,靶向Hh治療可阻斷CSCs引起的耐藥性、復(fù)發(fā)和轉(zhuǎn)移[30].Clement等[31]發(fā)現(xiàn) Hh?Gli信號(hào)調(diào)控了 CD133+膠質(zhì)瘤 CSCs的自我更新和干性基因的表達(dá).通過(guò)環(huán)巴胺或者慢病毒介導(dǎo)的沉默干擾Hh?Gli信號(hào)結(jié)果強(qiáng)調(diào)了Hh?Gli信號(hào)是腫瘤發(fā)生所必須的.Shh通路在胰腺癌CSCs中高度活化,并且在調(diào)控干性基因表達(dá)和維持干性中起重要作用,其效應(yīng)可通過(guò)萊菔硫素(sulforaphane,SFN)所阻斷[32-33].甲狀腺未分化癌細(xì)胞系中,抑制Shh通路導(dǎo)致CSCs自我更新降低,放療敏感性增強(qiáng);反之,過(guò)表達(dá)Gli1導(dǎo)致微球形成增加,CSC擴(kuò)增和放療抵抗增加[34].
在過(guò)去的半個(gè)世紀(jì)中,化療和放療是臨床腫瘤科的標(biāo)準(zhǔn)護(hù)理手段,可顯著減少腫瘤負(fù)荷,提高生存率.不足之處是復(fù)發(fā)率較高,且有部分患者對(duì)治療不敏感.越來(lái)越多的證據(jù)表明白血病和實(shí)體腫瘤CSCs固有的或者獲得的臨床治療抵抗導(dǎo)致了復(fù)發(fā).CSCs與分化的癌細(xì)胞相比,對(duì)化療和放療都更加耐受,因此放療和化療導(dǎo)致了腫瘤的縮小和 CSCs的富集[35].CSCs產(chǎn)生治療抵抗機(jī)制在近十年內(nèi)得到了越來(lái)越多的關(guān)注和研究.
2.1 主動(dòng)泵出藥物 CSCs表面存在轉(zhuǎn)運(yùn)蛋白可主動(dòng)排出化學(xué)藥物,被認(rèn)為是CSCs耐藥機(jī)制之一.ABC轉(zhuǎn)運(yùn)蛋白是一組跨膜蛋白,可利用ATP水解能量,逆濃度方向?qū)⒁幌盗谢衔镛D(zhuǎn)運(yùn)通過(guò)膜結(jié)構(gòu)[36].干細(xì)胞和CSC與分化細(xì)胞相比,高表達(dá)特定ABC轉(zhuǎn)運(yùn)蛋白來(lái)排出細(xì)胞毒性藥物,增強(qiáng)生存能力.早期干細(xì)胞分離方法就利用了這一特性,將能夠排出Hoechest33342染料的細(xì)胞通過(guò)流式細(xì)胞儀分選出來(lái),命名為側(cè)群細(xì)胞(side population,SP).對(duì)23個(gè)成神經(jīng)細(xì)胞瘤臨床樣本的分析顯示,65%腫瘤中可檢測(cè)到SP,這些細(xì)胞可持續(xù)增長(zhǎng),也可進(jìn)行不對(duì)稱(chēng)分裂,產(chǎn)生SP和非SP,高表達(dá)ABCG2和ABCA3轉(zhuǎn)運(yùn)蛋白基因,并且可有效排出米托蒽醌等細(xì)胞毒性藥物.在乳腺癌、肺癌、膠質(zhì)瘤細(xì)胞系也可檢測(cè)到SP[37].因此,靶向ABC轉(zhuǎn)運(yùn)蛋白可能降低化療耐藥性,但是不幸的是,之前三代抑制劑的開(kāi)發(fā)都以失敗告終,其原因可能是藥代動(dòng)力學(xué)的相互作用或者存在其他的轉(zhuǎn)運(yùn)蛋白[38].Snider 等[36]利用酵母雙雜交技術(shù)描繪了19個(gè)非線粒體ABC轉(zhuǎn)運(yùn)蛋白的相互作用路線圖和機(jī)理,揭示ABC轉(zhuǎn)運(yùn)蛋白與涉及多種細(xì)胞過(guò)程的蛋白相關(guān),該研究結(jié)果將有助于研發(fā)更具有針對(duì)性的治療癌癥的藥物.其他轉(zhuǎn)運(yùn)蛋白,例如MDR?1的表達(dá)可見(jiàn)于晚期白血病CSCs[39],也具有將藥物排出細(xì)胞的能力,而OCT?1則作用于藥物的攝入[40].
2.2 高效修復(fù) 離子放射中產(chǎn)生的自由基可導(dǎo)致DNA損傷,CSCs中有著高效修復(fù)機(jī)制,可能是導(dǎo)致放療抵抗的原因之一.乳腺癌CSCs高表達(dá)自由基清掃系統(tǒng)基因,從而使CSCs中活性氧(reactive oxygen species,ROS)保持在低水平并避免DNA損傷,通過(guò)藥物抑制CSCs中ROS清除系統(tǒng)以后,其克隆形成能力和放療抵抗降低[39].在膠質(zhì)瘤中,CSCs可優(yōu)先激活DNA損傷檢查點(diǎn),更快地修復(fù)DNA損傷,避免離子放射誘導(dǎo)的凋亡.通過(guò)藥物抑制檢查點(diǎn)激酶CHK1和CHK2也可使 CSCs增加對(duì)放療的敏感性[41].因此,與DNA修復(fù)相關(guān)的機(jī)制可能介導(dǎo)了放療抵抗.
除上述重要機(jī)制外,干細(xì)胞沉默、壁龕中細(xì)胞因子作用、細(xì)胞?細(xì)胞相互作用和上調(diào)生存相關(guān)信號(hào)分子等機(jī)制也與治療抵抗相關(guān),其中部分機(jī)制將在下文涉及.值得注意的是,盡管CSCs表現(xiàn)出高水平ABC轉(zhuǎn)運(yùn)蛋白等,構(gòu)成CSCs的特性之一,但ABC轉(zhuǎn)運(yùn)蛋白并不直接調(diào)控干性,通過(guò)靶向轉(zhuǎn)運(yùn)蛋白可幫助消除CSCs,但是目前尚不明確靶向轉(zhuǎn)運(yùn)蛋白能否消除所有CSCs,否則有效地縮小腫瘤負(fù)荷后仍有可能復(fù)發(fā).前文述及的靶向CSCs干性調(diào)控機(jī)制的藥物,理論上可減少甚至徹底消滅CSCs,從而增強(qiáng)腫瘤組織對(duì)治療的敏感性.但是,最新研究發(fā)現(xiàn),當(dāng)選擇性地去掉lgr5+結(jié)腸癌癥干細(xì)胞后,并沒(méi)有觀察到預(yù)期中的腫瘤退化,而且在停止處理后lgr5?細(xì)胞能快速補(bǔ)充丟失的 lgr5+細(xì)胞[42-43].鑒于之前另一項(xiàng)系譜跟蹤實(shí)驗(yàn)已對(duì)lgr5+細(xì)胞的干細(xì)胞特性進(jìn)行了驗(yàn)證[44],研究者推測(cè)可能存在儲(chǔ)備CSCs或者說(shuō)其他癌細(xì)胞可逆轉(zhuǎn)為CSCs來(lái)代償干細(xì)胞的丟失.這一結(jié)果提示CSCs多樣性、可塑性等問(wèn)題在腫瘤治療中不可忽視.
傳統(tǒng)的CSCs理論認(rèn)為組織中只存在一小部分CSCs,這一小撮細(xì)胞通過(guò)自我更新和分化驅(qū)動(dòng)腫瘤發(fā)生發(fā)展并維持腫瘤的生長(zhǎng),層級(jí)內(nèi)進(jìn)行單向分化.隨著研究的深入,現(xiàn)在的理論認(rèn)為同一腫瘤內(nèi)可能存在著多種CSCs,CSCs之間以及CSCs和非CSCs之間的轉(zhuǎn)化,即CSCs多樣性和可塑性.兩者并不矛盾,可能為截取某一時(shí)間和空間層面對(duì)同一個(gè)體的研究結(jié)果.
3.1 CSCs的多樣性 系譜追蹤實(shí)驗(yàn)在小腸上皮中鑒定出了兩種干細(xì)胞,一種為主要存在于基底隱窩的柱狀細(xì)胞,表達(dá)lgr5且細(xì)胞周期循環(huán)快[45];另一種主要存在于基底隱窩以上且表達(dá)Bmi1[46].選擇性地殺死lgr5+細(xì)胞后并未擾亂腸上皮的平衡,同時(shí)Bmi1+細(xì)胞產(chǎn)生子代增多來(lái)代償lgr5+細(xì)胞的缺失.系譜追蹤也顯示Bmi1+細(xì)胞可產(chǎn)生lgr5+細(xì)胞,說(shuō)明Bmi1可能代表了儲(chǔ)備干細(xì)胞,可作為補(bǔ)充lgr5+細(xì)胞的來(lái)源[47].如前文所述Lgr5+CSCs已經(jīng)證明是腫瘤轉(zhuǎn)移所必須的,但是腫瘤的維持卻是非必須的[42],結(jié)腸癌中很可能與小腸上皮類(lèi)似,也存在兩種 CSCs.研究表明Bmi1過(guò)表達(dá)被發(fā)現(xiàn)廣泛存在于胃腸道癌,與臨床預(yù)后相關(guān)[48],但是Bmi1是否標(biāo)記了一群不同于lgr5的結(jié)腸癌CSCs,并且能夠補(bǔ)充lgr5+CSCs仍有待進(jìn)一步驗(yàn)證.
乳腺癌研究提供了CSCs多樣性的直接證據(jù).CD24?CD44+和ALDH+是富集乳腺癌癥干細(xì)胞最常用的兩種標(biāo)志物[2,49].Liu 等[50]對(duì)乳腺癌組織的研究表明用CD24?CD44+和 ALDH+標(biāo)識(shí)的癌癥干細(xì)胞在空間上并不完全重合,屬于不同的細(xì)胞亞群.CD24?CD44+標(biāo)識(shí)的是上皮向間質(zhì)轉(zhuǎn)化態(tài)癌癥干細(xì)胞,這些細(xì)胞一般處于靜止期,通常位于癌組織的侵襲前沿,而ALDH+標(biāo)識(shí)的是間質(zhì)向上皮轉(zhuǎn)化態(tài)的癌癥干細(xì)胞,這些細(xì)胞一般處于擴(kuò)增期,通常位于癌組織的中間部位,兩者可相互轉(zhuǎn)化.另一些研究也支持了腫瘤中存在多種CSCs的猜想,Hermann等[51]發(fā)現(xiàn)胰腺癌中CD133+CXCR4+細(xì)胞是腫瘤轉(zhuǎn)移所必須的,去除這一群細(xì)胞即可特異性地抑制腫瘤細(xì)胞轉(zhuǎn)移,卻不影響腫瘤細(xì)胞的致瘤能力,說(shuō)明胰腺癌中存在不同的CSCs細(xì)胞群分別具有轉(zhuǎn)移性和致瘤性.Wang等[52]也發(fā)現(xiàn)分別通過(guò)CD133和HCBP?1在H460腫瘤微球中鑒別的CSCs之間只存在極少的一部分重疊.其他多種類(lèi)型腫瘤研究中也報(bào)道過(guò)不同CSCs標(biāo)記物的使用,這些標(biāo)志物是否標(biāo)記了同一群細(xì)胞,不同標(biāo)記的CSCs功能有無(wú)異同以及彼此之間的關(guān)系仍需要進(jìn)一步的研究.
3.2 CSCs可塑性 另一種類(lèi)型的轉(zhuǎn)化也有報(bào)道.Weinberg團(tuán)隊(duì)發(fā)現(xiàn)乳腺癌細(xì)胞在體外和體內(nèi)條件下均可自發(fā)地轉(zhuǎn)化產(chǎn)生富有侵襲性的CSCs[53].Gupta等[54]也觀察到乳腺癌中非CSCs和CSCs細(xì)胞群之間可相互轉(zhuǎn)化,快速地達(dá)到一定的平衡比例.Roesch等[55]發(fā)現(xiàn) H3K4去甲基酶(JARID1B)可調(diào)控黑色素瘤細(xì)胞系的致瘤性,JARID1B?細(xì)胞可轉(zhuǎn)變?yōu)?JAR?ID1B+并且獲得自我更新能力.Auffinger等[56]發(fā)現(xiàn)化療也可誘導(dǎo)黑色素瘤模型中已分化癌細(xì)胞轉(zhuǎn)化為CSCs樣細(xì)胞.這一系列的研究結(jié)果說(shuō)明腫瘤層級(jí)中不僅存在多種CSCs,還存在著雙向分化.一般情況下雙向分化中的去分化發(fā)生率很低,特定因素可顯著促進(jìn)去分化的發(fā)生,代償CSCs的不足.
CSCs多樣性和可塑性特征對(duì)不同腫瘤的治療影響深遠(yuǎn).在同一個(gè)腫瘤中可能存在著多種CSCs,特異性地針對(duì)一群CSCs治療可能產(chǎn)生篩選效應(yīng),或者喚醒沉默的CSCs開(kāi)始增殖,導(dǎo)致停藥后發(fā)生高效轉(zhuǎn)化,同時(shí)代償前期治療中丟失的CSCs,最終產(chǎn)生復(fù)發(fā)和轉(zhuǎn)移.同時(shí)靶向腫瘤中存在的多種CSCs或者阻斷CSCs可能的所有來(lái)源,可能治愈癌癥并防止復(fù)發(fā).值得注意的是,不同的腫瘤類(lèi)型中,甚至來(lái)源于不同患者的同種腫瘤中存在的CSCs類(lèi)型比例以及可塑性可能存在差異,今后可能需要結(jié)合大規(guī)模篩選和精準(zhǔn)醫(yī)療進(jìn)一步優(yōu)化腫瘤的治療方案.
CSCs存在于特定壁龕環(huán)境中,有助于維持CSCs的基本特性,保持表型可塑性,促進(jìn)轉(zhuǎn)移潛能[57].腫瘤微環(huán)境中包括了多種細(xì)胞和非細(xì)胞成分,多種因素都被證明與CSCs命運(yùn)調(diào)控相關(guān).已知可促進(jìn)去分化的因素包括了重構(gòu)的細(xì)胞外基質(zhì)、來(lái)自多種微環(huán)境細(xì)胞的分泌信號(hào)以及細(xì)胞?細(xì)胞相互作用等.
基質(zhì)細(xì)胞中的腫瘤相關(guān)纖維細(xì)胞被證明與多種腫瘤的發(fā)展密切相關(guān),其促癌作用可能是通過(guò)對(duì)CSCs的調(diào)控.胰腺癌模型中星形細(xì)胞(肌纖維細(xì)胞)分泌因子可誘導(dǎo)干細(xì)胞樣或間充質(zhì)樣命運(yùn)相關(guān)基因表達(dá),促進(jìn)CSCs表型[58-59].結(jié)腸癌體內(nèi)體外模型中,肌纖維細(xì)胞分泌的肝細(xì)胞生長(zhǎng)因子可使癌細(xì)胞上調(diào)Wnt通路,恢復(fù) CSCs樣表型[60].
癌癥組織中通常存在著不同程度的炎癥細(xì)胞浸潤(rùn),巨噬細(xì)胞和T細(xì)胞等可分泌多種炎癥因子,調(diào)控CSCs命運(yùn).IL?6可由腫瘤微環(huán)境中多種免疫細(xì)胞分泌,IL?6可使多種乳腺癌和前列腺癌細(xì)胞系中的非CSCs轉(zhuǎn)化為CSCs[61],也可通過(guò)激活腫瘤相關(guān)纖維細(xì)胞,誘導(dǎo)前列腺癌發(fā)生 EMT增加干性[62].CD4+T細(xì)胞可分泌IL?22,作用于癌細(xì)胞,激活STAT3和甲基轉(zhuǎn)移酶DOT1L,誘導(dǎo)核心干細(xì)胞基因NANOG、SOX2和Pou5F1,導(dǎo)致結(jié)腸癌細(xì)胞干性和致瘤能力增加[63].卵巢癌 CSCs壁龕細(xì)胞產(chǎn)生 IL?17,可促進(jìn) CD133+CSCs的微球形成能力和致瘤能力,基因表達(dá)譜分析表明IL?17通過(guò) NF?κB和 p38分裂刺激蛋白激酶(mitogen activited protein kinase,MAPK)信號(hào)通路促進(jìn)自我更新[64].
某些實(shí)體腫瘤中CSCs傾向于存在血管旁,鄰近內(nèi)皮細(xì)胞[65].在膠質(zhì)瘤體外培養(yǎng)模型中,來(lái)自?xún)?nèi)皮細(xì)胞的條件培養(yǎng)基可誘導(dǎo)分化的膠質(zhì)瘤細(xì)胞去分化為CSCs,其中基礎(chǔ)型纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor,bFGF)即可誘導(dǎo)分化的膠質(zhì)瘤細(xì)胞重新表達(dá)CSCs標(biāo)志物,并使其微球形成能力增加[66].最近的研究表明通過(guò)下調(diào)腫瘤相關(guān)內(nèi)皮細(xì)胞中腫瘤抑制因子/檢查點(diǎn)胰島素樣生長(zhǎng)因子結(jié)合蛋白?7(insulin?like growth factor?binding protein 7, IGFBP7)和上調(diào)胰島素樣生長(zhǎng)因子1(insulin?like growth factor 1,IGF1),可使內(nèi)皮細(xì)胞異常激活FGFR1?EST2通路,從而使多種腫瘤中的惰性腫瘤細(xì)胞獲得癌癥干細(xì)胞樣活性[67].與之相反的是,Heddleston 等[68]發(fā)現(xiàn)低氧也可使非CSCs細(xì)胞的微球形成能力增加并且上調(diào)重要的干細(xì)胞因子,在非CSCs細(xì)胞中強(qiáng)制表達(dá)不可降解的HIF2a后可誘導(dǎo)CSCs標(biāo)志物,并且增強(qiáng)致瘤能力.這種矛盾可能代表了腫瘤發(fā)展不同時(shí)期對(duì)微環(huán)境需求不同.
上述研究對(duì)CSCs理論進(jìn)行了擴(kuò)充,為靶向CSCs的治療研發(fā)提供了新的方向.Verastem公司研發(fā)的Defactinib是一個(gè)FAK抑制劑,F(xiàn)AK是由PTK?2基因編碼的非受體酪氨酸激酶,在多種腫瘤中高表達(dá),對(duì)CSCs的存活和致瘤能力至關(guān)重要.Defactinib可通過(guò)調(diào)節(jié)腫瘤微環(huán)境,增強(qiáng)抗腫瘤免疫能力以及減少CSCs來(lái)達(dá)到治療癌癥的目的.該藥在單藥給予KRAS突變非小細(xì)胞肺癌患者和聯(lián)合紫杉醇給予復(fù)發(fā)性卵巢癌患者的耐受性臨床試驗(yàn)中已經(jīng)初步顯示有效,目前已開(kāi)始胰腺癌、非小細(xì)胞肺癌、卵巢癌和間皮瘤的聯(lián)合治療臨床試驗(yàn)[69].由Dompé公司研發(fā)的一種用于治療移植排斥反應(yīng)的藥物reparixin被證明可通過(guò)作用于CSCs上的IL?8受體CXCR1,抑制IL?8造成的炎癥反應(yīng)來(lái)影響CSCs的復(fù)制.前期實(shí)驗(yàn)證明reparixin在體外體內(nèi)實(shí)驗(yàn)中都可減少 CSCs細(xì)胞群[70].目前該藥正在治療三陰乳腺癌的二期臨床(fRida)評(píng)估中.
20世紀(jì)末,美國(guó)國(guó)家癌癥研究所和部分制藥公司已經(jīng)開(kāi)始將靶向重要干細(xì)胞活化信號(hào)通路的藥物投入臨床先驅(qū)試驗(yàn).
OncoMed 公司研發(fā)的 vantictumab(ANTI?FZD,OMP?18R5)和 ipafricept(FZD8?FC,OMP?54F28),為選擇性的 Wnt抑制劑,靶向 Wnt信號(hào)通路.Vantic?tumab可結(jié)合Fzd受體保守抗原的胞外段,從而抑制多個(gè)Wnt家族成員誘導(dǎo)的Wnt信號(hào).臨床前試驗(yàn)中Vantictumab可減少CSCs頻率,誘導(dǎo)細(xì)胞從高致瘤性向低致瘤性分化,并且使患者對(duì)傳統(tǒng)化療更加敏感[71].Vantictumab作為第一個(gè)進(jìn)入臨床試驗(yàn)的抑制Wnt信號(hào)通路的單克隆抗體,聯(lián)合化療藥物治療Her2陰性乳腺癌和晚期胰腺癌后均顯示出良好的耐受性和抗腫瘤活性[72-73].Ipafricept是一種融合蛋白,包含了來(lái)自Wnt通路的Frizzled 8受體的一部分以及人IgG1的Fc域,可選擇性結(jié)合激活Wnt信號(hào)的配體[74].在聯(lián)合化療藥物治療胰腺癌和卵巢癌的臨床Ib 期也展現(xiàn)了可觀的抗腫瘤活性[75-76].
該公司進(jìn)行臨床試驗(yàn)的候選藥物中還有靶向Notch信號(hào)通路的.Navicixizumab可同時(shí)特異性拮抗Delta 樣配體4(delta?like ligand 4, DLL4)和血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor, VEGF)[77],該藥在臨床Ia期試驗(yàn)中顯示出單藥抗腫瘤活性,目前已進(jìn)入臨床 Ib期研究[78];brontictuzumab可拮抗Notch1,在某些晚期腫瘤中顯示出抗腫瘤活性,尤其是針對(duì)過(guò)表達(dá)活化Notch1的腫瘤[79],已開(kāi)始了臨床Ib期的招募.
Notch信號(hào)通路中進(jìn)入臨床試驗(yàn)的另一個(gè)候選藥為γ分泌酶抑制劑(gamma secretase inhibitor,GSI).默克公司研發(fā)的MK?0752原被用于治療阿爾茨海默病和多種惡性腫瘤,被發(fā)現(xiàn)可通過(guò)抑制γ分泌酶來(lái)抑制Notch胞內(nèi)段的激活,從而抑制Notch下游基因的表達(dá)[80].臨床前期和臨床I期試驗(yàn)結(jié)果顯示MK?0752聯(lián)合多西他賽治療晚期乳腺癌后,腫瘤中的CD44+CD24?細(xì)胞亞群和 ALDH+細(xì)胞亞群減少,腫瘤細(xì)胞的微球形成率也降低,提示可有效地針對(duì)CSCs起作用.作為第一個(gè)測(cè)試GSI與化療藥物聯(lián)合治療的臨床實(shí)驗(yàn),該結(jié)果支持繼續(xù)對(duì)其進(jìn)行臨床研究[80].
Hedgehog信號(hào)通路的小分子抑制劑GDC?0449,又稱(chēng)vismodegib,于2012已經(jīng)獲得FDA批準(zhǔn)用于治療基底細(xì)胞癌.基底細(xì)胞癌中所有細(xì)胞Hedgehog信號(hào)通路均存在異常,而胰腺癌中CSCs也有較高的Hedgehog信號(hào),為明確vismodegib能否對(duì)為數(shù)不多的CSCs起作用,研究者設(shè)計(jì)了一項(xiàng)結(jié)合吉西他濱聯(lián)合治療轉(zhuǎn)移性胰腺癌的臨床試點(diǎn)試驗(yàn),試驗(yàn)結(jié)果雖然顯示大部分患者的Gli1和PTCH1均有顯著下降,但是CSCs群未觀察到明顯改變[81].
通過(guò)調(diào)控Wnt、Notch和Hedgehog信號(hào)通路來(lái)靶向CSCs有希望預(yù)防癌癥復(fù)發(fā),但是研發(fā)這些試劑的過(guò)程充滿(mǎn)挑戰(zhàn).部分候選藥因?yàn)闆](méi)有達(dá)到預(yù)期結(jié)果而終止了研發(fā).因?yàn)樯鲜鲂盘?hào)通路同樣存在于正常組織的干細(xì)胞中,受試藥通常會(huì)引起嚴(yán)重不良反應(yīng),在不良反應(yīng)可控的情況下,大規(guī)模研究表明這些藥物對(duì)大多數(shù)的癌癥沒(méi)有明顯療效[82].另外信號(hào)通路也不是孤立的起作用的,而是作為一個(gè)協(xié)調(diào)的網(wǎng)絡(luò)運(yùn)作.鑒定并且靶向信號(hào)通路中的關(guān)鍵節(jié)點(diǎn)或者多通路抑制可能得到更好的效果.
癌癥干細(xì)胞作為腫瘤發(fā)展、維持、轉(zhuǎn)移、耐藥和復(fù)發(fā)的根源,成功地靶向癌癥干細(xì)胞治療有望徹底治愈癌癥,成為癌癥治療上的里程碑.靶向癌癥干細(xì)胞藥物聯(lián)合化療藥物,理論上可為癌癥問(wèn)題帶來(lái)解決方法,可是直到目前,尚無(wú)大規(guī)?;颊呤芤娴呐R床試驗(yàn)數(shù)據(jù),多項(xiàng)臨床實(shí)驗(yàn)止步三期,但這并不意味著靶向癌癥干細(xì)胞的策略錯(cuò)誤.結(jié)合癌癥干細(xì)胞多樣性與可塑性研究結(jié)果,對(duì)癌癥組織中存在的多種癌癥干細(xì)胞的全面鑒定以及阻斷癌癥干細(xì)胞的其他來(lái)源,可能是通過(guò)靶向癌癥干細(xì)胞治愈癌癥的前提.另外值得注意的是,不同的癌癥組織中,癌癥干細(xì)胞種類(lèi)組成可能不同,這意味著癌癥也可能需要個(gè)體化治療.
[1]Bonnet D,Dick JE.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J].Nat Med,1997,3(7):730-737.
[2]Al?Hajj M, Wicha MS, Benito?Hernandez A, et al.Prospective identification of tumorigenic breast cancercells[J].Proc Natl Acad Sci USA,2003,100(7):3983-3988.
[3]Abbaszadegan MR, Bagheri V, Razavi MS, et al.Isolation, identifi?cation, and characterization of cancer stemcells:A review[J].J Cell Physiol,2017,232(8):2008-2018.
[4]Tomasetti C, Vogelstein B.Cancer etiology.Variation in cancer risk among tissues can be explained by thenumber of stem cell divisions[J].Science,2015,347(6217):78-81.
[5]Blokzijl F, de Ligt J, Jager M, et al.Tissue?specific mutation accumulation in human adult stem cells during life[J].Nature,2016, 538(7624):260-264.
[6]Tomasetti C, Li L, Vogelstein B.Stem cell divisions, somatic mutations, cancer etiology, and cancerprevention [ J].Science,2017,355(6331):1330-1334.
[7]Adams PD, Jasper H, Rudolph KL.Aging?induced stem cell mutations as drivers for disease and cancer[J].Cell Stem Cell,2015,16(6):601-612.
[8]Paterson C, Nowak MA, Waclaw B.An exactly solvable, spatial model of mutation accumulation in cancer[J].Sci Rep,2016,6:39511.
[9]Drost J, van Jaarsveld RH, Ponsioen B, et al.Sequential cancer mutations in cultured human intestinal stemcells[J].Nature,2015,521(7550):43-47.
[10]Cheng B, Yang G, Jiang R,et al.Cancer stem cell markers predict a poor prognosis in renal cell carcinoma:ameta?analysis[J].Oncotarget,2016,7(40):65862-65875.
[11]Oon ML, Thike AA, Tan SY, et al.Cancer stem cell and epithelial?mesenchymal transition markers predictworse outcome in metaplastic carcinoma of the breast[ J].Breast Cancer Res Treat, 2015,150(1):31-41.
[12]Chang YW, Su YJ, Hsiao M, et al.Diverse targets of β?catenin dur?ing the epithelial?mesenchymal transition define cancer stem cells and predict disease relapse[J].Cancer Res,2015,75(16):3398-3410.
[13]Takebe N, Miele L, Harris PJ, et al.Targeting Notch, Hedgehog,and Wnt pathways in cancer stem cells:clinical update[J].Nat Rev Clin Oncol,2015,12(8):445-464.
[14]Borah A, Raveendran S, Rochani A, et al.Targeting self?renewal path?ways in cancer stem cells:clinicalimplications for cancer therapy[J].Oncogenesis,2015,4:e177.
[15]Mohammed MK, Shao C, Wang J, et al.Wnt/β?catenin signaling plays an ever?expanding role in stem cell self?renewal, tumorigenesis and cancer chemoresistance[J].Genes Dis,2016,3(1):11-40.
[16]Su YJ,Chang YW,Lin WH,et al.An aberrant nuclear localization of E?cadherin is a potent inhibitor of Wnt/β?catenin?elicited promotion of the cancer stem cell phenotype[J].Oncogenesis,2015,4:e157.
[17]de Sousa E Melo F, Vermeulen L.Wnt signaling in cancer stem cell biology[J].Cancers(Basel),2016,8(7):E60.
[18]Yang L, Tang H, Kong Y, et al.LGR5 promotes breast cancer progression and maintains stem?like cells through activation of wnt/β?catenin signaling[J].Stem Cells,2015,33(10):2913-2924.
[19]Tammela T, Sanchez?Rivera FJ, Cetinbas NM, et al.A Wnt?produ?cing niche drives proliferative potential andprogression in lung adeno?carcinoma[J].Nature,2017, 545(7654):355-359.
[20]Vermeulen L, De Sousa E Melo F, van der Heijden M, et al.Wnt activity defines colon cancer stem cells and isregulated by the micro?environment[J].Nat Cell Biol,2010(5):468-476.
[21]Yuan X, Wu H, Xu H, et al.Notch signaling:an emerging thera?peutic target for cancer treatment[J].CancerLett,2015,369(1):20-27.
[22]Previs RA, Coleman RL, Harris AL, et al.Molecular pathways:translational and therapeutic implications of the Notch signaling path?way in cancer[J].Clin Cancer Res,2015,21(5):955-961.
[23]Bray SJ.Notch signalling in context[J].Nat Rev Mol Cell Biol,2016,17(11):722-735.
[24]Wang J, Sullenger BA, Rich JN.Notch signaling in cancer stem cells[J].Adv Exp Med Biol,2012,727:174-185.
[25]Sikandar SS, Pate KT, Anderson S, et al.NOTCH signaling is required for formation and self?renewal of tumor?initiating cells and for repression of secretory cell differentiation in colon cancer[ J].Cancer Res,2010,70(4):1469-1478.
[26]Harrison H, Farnie G, Howell SJ, et al.Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor[ J].Cancer Res,2010,70(2):709-718.
[27]Zhu P, Wang Y, Du Y, et al.C8orf4 negatively regulates self?renewal of liver cancer stem cells via suppression of NOTCH2 signalling[J].Nat Commun,2015,6:7122.
[28]Jeong JY, Kang H, Kim TH, et al.MicroRNA?136 inhibits cancer stem cell activity and enhances the anti?tumor effect of paclitaxel against chemoresistant ovarian cancer cells by targeting Notch3[J].Cancer Lett,2017,386:168-178.
[29]Cochrane CR, Szczepny A, Watkins DN, et al.Hedgehog signaling in the maintenance of cancer stem cells[J].Cancers(Basel),2015,7(3):1554-1585.
[30]Justilien V, Fields AP.Molecular pathways:novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells[J].Clin Cancer Res,2015,21(3):505-513.
[31]Clement V, Sanchez P, de Tribolet N, et al.HEDGEHOG?GLI1 signaling regulates human glioma growth,cancer stem cell self?renew?al, and tumorigenicity[J].Curr Biol,2007,17(2):165-172.
[32]Rodova M, Fu J, Watkins DN, et al.Sonic hedgehog signaling inhi?bition provides opportunities for targetedtherapy by sulforaphane in regulating pancreatic cancer stem cell self?renewal[J].PLoS ONE,2012,7(9):e46083.
[33]Li SH, Fu J, Watkins DN, et al.Sulforaphane regulates self?renewal of pancreatic cancer stem cells through themodulation of sonic hedge?hog?GLI pathway[J].Mol Cell Biochem,2013,373(1-2):217-227.
[34]Heiden KB, Williamson AJ, Doscas ME, et al.The sonic hedgehog signaling pathway maintains the cancer stemcell self?renewal of ana?plastic thyroid cancer by inducing snail expression[J].J Clin Endo?crinol Metab,2014,99(11):E2178-E2187.
[35]Gangemi R, Paleari L, Orengo AM, et al.Cancer stem cells:a new paradigm for understanding tumor growth and progression and drug resistance[J].Curr Med Chem,2009,16(14):1688-1703.
[36]Snider J, Hanif A, Lee ME, et al.Mapping the functional yeast ABC transporter interactome[J].Nat Chem Biol,2013,9(9):565-572.
[37]Hirschmann?Jax C, Foster AE, Wulf GG, et al.A distinct “side population”of cells with high drug effluxcapacity in human tumor cells[J].Proc Natl Acad Sci U S A,2004,101(39):14228-14233.
[38]Tamaki A, Ierano C, Szakacs G, et al.The controversial role of abc transporters in clinical oncology[J].Essays Biochem,2011,50(1):209-232.
[39]Nakai E, Park K, Yawata T, et al.Enhanced MDR1 expression and chemoresistance of cancer stem cellsderived from glioblastoma[J].Cancer Invest,2009,27(9):901-908.
[40]Engler JR,F(xiàn)rede A,Saunders V,et al.The poor response to imatinib observed in CML patients with lowOCT?1 activity is not attributable to lower uptake of imatinib into their CD34+ cells[J].Blood,2010,116(15):2776-2778.
[41]Bao S, Wu Q, McLendon RE, et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J].Nature,2006,444(7120):756-760.
[42]de Sousa e Melo F, Kurtova AV1, Harnoss JM, et al.A distinct role for Lgr5+stem cells in primary and metastatic colon cancer[J].Nature,2017,543(7674):676-680.
[43]Shimokawa M, Ohta Y, Nishikori S, et al.Visualization and targe?ting of LGR5(+) human colon cancer stem cells[J].Nature,2017,545(7653):187-192.
[44]Schepers AG, Snippert HJ, Stange DE, et al.Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas[J].Science,2012,337(6095):730-735.
[45]Barker N,van Es JH,Kuipers J, et al.Identification of stem cells in small intestine and colon by marker gene Lgr5[J].Nature,2007,449(7165):1003-1007.
[46]Sangiorgi E, Capecchi MR.Bmi1 is expressed in vivo in intestinal stem cells[J].Nat Genet,2008,40(7):915-920.
[47]Tian H, Biehs B, Warming S, et al.A reserve stem cell population in small intestine renders Lgr5?positive cellsdispensable[J].Nature,2011,478(7368):255-259.
[48]Tateishi K,Ohta M,Kanai F,et al.Dysregulated expression of stem cell factor Bmi1 in precancerous lesions of the gastrointestinal tract[J].Clin Cancer Res,2006,12(23):6960-6966.
[49]Ginestier C, Hur MH, Charafe?Jauffret E, et al.Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J].Cell Stem Cell,2007,1(5):555-567.
[50]Liu S, Cong Y, Wang D, et al.Breast cancer stem cells transition between epithelial and mesenchymal statesreflective of their normal counterparts[J].Stem Cell Reports,2014,2(1):78-91.
[51]Hermann PC, Huber SL, Herrler T, et al.Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J].Cell Stem Cell,2007,1(3):313-323.
[52]Wang A, Chen L, Pu K, et al.Identification of stem?like cells in non?small cell lung cancer cells with specific peptides[J].Cancer Lett,2014,351(1):100-107.
[53]Chaffer CL, Brueckmann I, Scheel C, et al.Normal and neoplastic nonstem cells can spontaneously convert to a stem?like state[J].Proc Natl Acad Sci USA,2011,108(19):7950-7955.
[54]Gupta PB, Fillmore CM, Jiang G, et al.Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells[J].Cell,2011,146(4):633-644.
[55]Roesch A, Fukunaga?Kalabis M, Schmidt EC, et al.A temporarily distinct subpopulation of slow?cycling melanoma cells is required for continuous tumor growth[J].Cell,2010,141(4):583-594.
[56]Auffinger B, Tobias AL, Han Y, et al.Conversion of differentiated cancer cells into cancer stem?like cells in a glioblastoma model after primary chemotherapy[J].Cell Death Differ,2014,21(7):1119-1131.
[57]Plaks V,Kong N,Werb Z.The cancer stem cell niche:how essential is the niche in regulating stemness of tumor cells[J].Cell Stem Cell,2015,16(3):225-238.
[58]Hamada S, Masamune A, Takikawa T, et al.Pancreatic stellate cells enhance stem cell?like phenotypes in pancreatic cancer cells[ J].Biochem Biophys Res Commun,2012,421(2):349-354.
[59]Lonardo E, Frias?Aldeguer J, Hermann PC, et al.Pancreatic stellate cells form a niche for cancer stem cells and promote their self?renewal and invasiveness[J].Cell Cycle,2012,11(7):1282-1290.
[60]Vermeulen L, De Sousa E Melo F, van der Heijden M, et al.Wnt activity defines colon cancer stem cells and is regulated by the microenvironment[J].Nat Cell Biol,2010,12(5):468-476.
[61]Iliopoulos D, Hirsch HA, Wang G, et al.Inducible formation of breast cancer stem cells and their dynamic equilibrium with non?stem cancer cells via IL6 secretion[J].Proc Natl Acad Sci USA,2011,108(4):1397-1402.
[62]Giannoni E, Bianchini F, Masieri L, et al.Reciprocal activation of prostate cancer cells and cancer?associated fibroblasts stimulates epithelial?mesenchymal transition and cancer stemness[ J].Cancer Res,2010,70(17):6945-6956.
[63]Kryczek I, Lin Y, Nagarsheth N, et al.IL?22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3transcription factoractivation and induction of the methyltransferase DOT1L[J].Immunity,2014,40(5):772-784.
[64]Xiang T, Long H, He L, et al.Interleukin?17 produced by tumor microenvironment promotes self?renewal of CD133+ cancer stem?like cells in ovarian cancer[J].Oncogene,2015,34(2):165-176.
[65]Beck B,Driessens G,Goossens S,et al.A vascular niche and a VEGF?Nrp1 loop regulate the initiation and stemness of skin tumours[J].Nature,2011,478(7369):399-403.
[66]Fessler E, Borovski T, Medema JP.Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF[J].Mol Cancer,2015,14:157.
[67]Cao Z, Scandura JM, Inghirami GG, et al.Molecular checkpoint decisions made by subverted vascular niche transform indolent tumor cells into chemoresistant cancer stem cells[J].Cancer Cell,2017,31(1):110-126.
[68]Heddleston JM, Li Z, McLendon RE, et al.The hypoxic microenvi?ronment maintains glioblastoma stem cellsand promotes reprogram?ming towards a cancer stem cell phenotype[J].Cell Cycle,2009,8(20):3274-3284.
[69]Kolev VN, Wang Y, Sprott K, et al.Abstract C29:FAK inhibition targets cancer stem cells[J].Cancer Stem Cells,2015,14(12 Suppl 2):C29.
[70]Ginestier C, Liu S, Diebel ME, et al.CXCR1 blockade selectively targets human breast cancer stem cells invitro and in xenografts[J].J Clin Invest,2010,120(2):485-497.
[71]Lewicki J, Axelrod F, Beviglia L, et al.Abstract 3356:Development of a novel Wnt pathway antagonist antibody, OMP?18R5, that reduces tumor initiating cell frequency in breast cancer[J].Cancer Res,2012,72(8):3356-3356.
[72]Messersmith W, Cohen S, Shahda S, et al.Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with nab?paclitaxel(Nab?P) and gemcitabine (G) in patients(pts) with previously untreated stage IV pancreatic cancer(PC)[J].Annals Oncol,2016.
[73]Mita MM, Becerra C, Richards DA, et al.Phase 1b study of Wnt inhibitor vantictumab (van, human monoclonal antibody) with pacli?taxel(P) in patients (Pts) with 1st?to 3rd?line metastatic Her2?negative breast cancer(Bc)[J].2016.
[74]Fischer MM, Yen WC, Zheng C, et al.Abstract 4233:Wnt pathway antagonist ipafricept(FZD8?Fc, OMP?54F28) inhibits tumor growth and reduces tumor?initiating cell frequency in ovarian patient?derived xenograft models[J].Cancer Res,2015,75(15):4233-4233.
[75]O'Cearbhaill RE,Mcmeekin DS,Mantiasmaldone G,et al.Phase 1b of Wnt inhibitor ipafricept(ipa, decoy receptor for Wnt ligands)with Carboplatin (C) and Paclitaxel(P) in recurrent platinum?sen?sitive ovarian cancer(Oc)[J].2016.
[76]Weekes C, Berlin J, Lenz HJ, et al.Phase 1b study of WNT inhibitor ipafricept(IPA, decoy receptor for WNT ligands) with nab?paclitaxel(Nab?P) and gemcitabine (G) in patients (pts) with previously untreated stage IV pancreatic cancer(PC)[J].Annals Oncol,2016.
[77]Srivastava M, Murriel C, Yun R, et al.Co?targeting of delta?like ligand4 (DLL4) and vascular endothelial growth factor a (VEGF)with programmed death 1(PD1) blockade inhibits tumor growth and facilitates anti?tumor immune responses[ J].J Immunothe Cancer,2015,3(S2):P373.
[78]Jimeno A, Moore K, Gordon M, et al.A first?in?man phase 1a study of the bispecific anti?DLL4/anti?VEGFantibody OMP?305B83 in patients with previously treated solid tumors[J].Eur J Cancer,2016,69:S35.
[79]Munster P, Eckhardt SG, Patnaik A, et al.Abstract C42:Safety and preliminary efficacy results of a first?in?human phase I study of the novel cancer stem cell(CSC) targeting antibody brontictuzumab(OMP?52M51, anti?Notch1) administered intravenously to patients with certain advanced solid tumors[J].Mol Cancer Ther,2015,14(12):C42.
[80]Schott AF, Landis MD, Dontu G, et al.Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors[J].Clin Cancer Res,2013,19(6):1512-1524.
[81]Kim EJ, Sahai V, Abel EV, et al.Pilot clinical trial of hedgehog pathway inhibitor GDC?0449 (vismodegib) in combination with gem?citabine in patients with metastatic pancreatic adenocarcinoma[J].Clin Cancer Res,2014,20(23):5937-5945.
[82]Kaiser J.The cancer stem cell gamble[J].Science,2015,347(6219):226-229.
Progress on cancer stem cell features and targeted treatment
WU An?Qi, SHU Guang, WANG Jing, YIN Gang
Department of Pathology, School of Basic Medicine, Central South University, Changsha 410013, China
Cancer stem cells were thought to be responsible for the tumor initiation, progression, drug resistance and relapse because of their abilities of self?renewal and treatment resistance.There are more and more studies focus on their regulation mecha?nism of self?renewal and drug?resistance, and a series of studies showed that the cancer stem cell population may not be a single stasis population but they are diverse and malleable.This notion enriches the knowledge of cancer stem cells,can provide new approaches for the development of treatment.The current review summarized the key features of cancer stem cells,the results and problems of clinical trial through targeted treatment based on the interfering of stemness regulation pathways,and discussed the prospects of cancer stem cells.
cancer stem cell; self?renewal and differentiation;drug resistance; target treatment; diversity and plasticity
R73
A
2095?6894(2017)09?01?08
2017-05-05;接受日期:2017-05-18
國(guó)家自然基金面上項(xiàng)目(81572900)
吳安琪.博士.研究方向:乳腺癌和卵巢癌干細(xì)胞.E?mail:wu_anqi@ qq.com
殷 剛.研究員,博導(dǎo).研究方向:卵巢癌干細(xì)胞和microRNA.E?mail:gang.yin@ csu.edu.cn