鄭照明,李 軍,馬 靜,杜 佳,趙白航 (北京工業(yè)大學(xué)建筑工程學(xué)院,北京 100124)
SNAD生物膜厭氧氨氧化活性的氨氮抑制動(dòng)力學(xué)研究
鄭照明,李 軍*,馬 靜,杜 佳,趙白航 (北京工業(yè)大學(xué)建筑工程學(xué)院,北京 100124)
通過批試實(shí)驗(yàn)研究了氨氮濃度對(duì)SNAD生物膜厭氧氨氧化性能的影響. SNAD生物膜反應(yīng)器以生活污水為進(jìn)水.進(jìn)水NH4+-N和COD濃度平均值分別為70mg/L和180mg/L,出水NH4+-N, NO2--N, NO3--N和COD濃度平均值分別為2mg/L, 2mg/L, 7mg/L和50mg/L. SNAD生物膜具有良好的厭氧氨氧化活性.初始NH4+-N和NO2--N濃度都為70mg/L時(shí),厭氧氨氧化批試NH4+-N、NO2--N和TⅠN去除速率分別為0.121kg N/(kg VSS·d), 0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d). 采用Haldane模型可以很好的擬合氨氮濃度對(duì)厭氧氨氧化活性的影響.在高FA和低FA工況下氨氮濃度對(duì)厭氧氨氧化活性的抑制動(dòng)力學(xué)常數(shù)相差不大. M1(FA濃度為0.7~20.4mg/L)和M2(FA濃度為6.3~190.5mg/L)的最大NO2--N理論去除速率rmax分別為0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半飽和常數(shù)Ks分別為9.5mg/L和6.1mg/L,氨氮自身抑制常數(shù)KI分別為422mg/L和597mg/L.氨氮(而不是游離氨)對(duì)SNAD生物膜的厭氧氨氧化活性起主要抑制作用.
SNAD生物膜;厭氧氨氧化;氨氮;抑制作用;動(dòng)力學(xué)特性
含氮污水的大量排放會(huì)造成水體富營(yíng)養(yǎng)化.傳統(tǒng)生物脫氮采用硝化反硝化技術(shù),存在著曝氣能耗高,污泥產(chǎn)量大,需要額外投加碳源等缺點(diǎn)[1]. SNAD工藝是一種經(jīng)濟(jì)環(huán)保的脫氮工藝,在適宜的工況下,亞硝化菌、厭氧氨氧化菌和反硝化菌在一個(gè)反應(yīng)器中實(shí)現(xiàn)總氮和有機(jī)物的去除[2-3].
關(guān)于SNAD工藝的研究多集中于高氨氮污水的處理,鮮有關(guān)于處理城市生活污水的SNAD工藝的報(bào)道[4-5].厭氧氨氧化菌在SNAD反應(yīng)器的自養(yǎng)脫氮中起著核心作用.底物濃度和外界環(huán)境對(duì)厭氧氨氧化菌具有重要影響[6].對(duì)于厭氧氨氧化過程,許多研究提出了不同的NO2--N抑制濃度.Strous等[7]的研究表明NO2--N濃度達(dá)98mg/L時(shí)即可完全抑制厭氧氨氧化活性.其他研究人員提出了更高的NO2--N抑制濃度. Dapena-Mora[8]和Lotti等[9]的研究表明當(dāng)NO2--N濃度分別為350mg/L和400mg/L時(shí),厭氧氨氧化活性被抑制50%. Fernández等[10]的研究表明游離亞硝酸(FNA)會(huì)對(duì)厭氧氨氧化菌產(chǎn)生抑制作用.近年來, Puyol[11]和Lotti等[9]的研究表明NO2--N(而不是FNA)對(duì)厭氧氨氧化活性起主要抑制作用. Strous等[7]的研究表明NH4+-N濃度為980mg/L時(shí)不會(huì)抑制厭氧氨氧化活性. Dapena-Mora等[8]的批試研究表明NH4+-N濃度為770mg/L時(shí),厭氧氨氧化活性被抑制50%. Jung[12]和Fernández等[10]的研究表明FA對(duì)厭氧氨氧化活性起抑制作用.Fernández等[10]的批試研究表明FA濃度分別為38mg/L和100mg/L時(shí),厭氧氨氧化菌的活性分別被抑制50%和80%.但是Jung[12]和Fernández[10]的研究沒有區(qū)分開對(duì)厭氧氨氧化活性起主要作用的是氨氮還是游離氨.一些研究表明生物膜存在傳質(zhì)阻力,有助于緩解底物濃度對(duì)厭氧氨氧化菌的抑制[13-14].本研究通過批試實(shí)驗(yàn)分析了氨氮濃度對(duì)SNAD生物膜厭氧氨氧化活性的抑制動(dòng)力學(xué)特性,比較了氨氮和游離氨對(duì)厭氧氨氧化活性的抑制作用,以期為SNAD生物膜反應(yīng)器的穩(wěn)定運(yùn)行提供指導(dǎo)作用.
1.1 實(shí)驗(yàn)裝置-SNAD生物膜反應(yīng)器
圖1為SNAD生物膜反應(yīng)器.反應(yīng)器為圓柱形結(jié)構(gòu),有效容積為89.5L(高徑比為2.07).反應(yīng)器采用SBR運(yùn)行方式,周期運(yùn)行完畢之后馬上進(jìn)行下一個(gè)周期,反應(yīng)器內(nèi)填充鮑爾環(huán)作為生物膜載體(K3載體, AnoxKaldnes,北京),鮑爾環(huán)的直徑為25mm,分成多個(gè)小格,每個(gè)小格的直徑為4mm,鮑爾環(huán)堆積體積為34L,反應(yīng)器有效盛水容積為77.7L,排水比為81%.圖2為鮑爾環(huán)生物膜照片.在底部設(shè)置曝氣盤,采用溫度控制箱在線監(jiān)測(cè)并控制反應(yīng)器內(nèi)水溫,反應(yīng)器側(cè)壁(距底部以上20cm處)安裝水力攪拌器,排水口設(shè)置在底部以上20cm處,排水口直徑為20mm.在反應(yīng)器穩(wěn)定運(yùn)行階段,曝氣量控制為500L/h,溫度為30℃.
圖1 SBR反應(yīng)器示意Fig.1 The schematic diagram of SBR reactor
圖2 SNAD生物膜反應(yīng)器中鮑爾環(huán)照片F(xiàn)ig.2 The photo of Kaldnes ring in SNAD biofilm reactor
1.2 SNAD生物膜反應(yīng)器運(yùn)行工況
周期運(yùn)行工況為:進(jìn)水(5min),間歇曝氣循環(huán)(曝氣20min/混合20min),后曝氣(20min),沉淀(10min),排水(10min),靜置(1min).間歇曝氣循環(huán)次數(shù)為6次.曝氣和混合階段反應(yīng)器內(nèi)的平均溶解氧濃度分別為5.6mg/L和0mg/L.反應(yīng)器進(jìn)水為北京工業(yè)大學(xué)家屬區(qū)生活污水,試驗(yàn)階段主要水質(zhì)指標(biāo)如下: CODCr200~300mg/L; NH4+-N 60~80mg/L; NO2--N <1mg/L; NO3--N <1mg/L;TOC 50~60mg/L; TN 100~140mg/L; pH為7.5~8.0;堿度300~400mg/L.
1.3 批試實(shí)驗(yàn)裝置及其運(yùn)行條件
通過批試實(shí)驗(yàn)測(cè)定厭氧氨氧化活性.批試實(shí)驗(yàn)采用1000mL燒杯,燒杯內(nèi)放置50個(gè)鮑爾環(huán),進(jìn)行3次平行重復(fù)實(shí)驗(yàn).鮑爾環(huán)取自穩(wěn)定運(yùn)行的SNAD生物膜反應(yīng)器,實(shí)驗(yàn)前將鮑爾環(huán)置于30℃自來水中洗去表面的殘留基質(zhì).批試實(shí)驗(yàn)采用人工配水,配水氮素組分為NH4Cl, NaNO2.其他微量元素組分濃度參照Tang等[15]的文獻(xiàn).批試過程中采用HCl和NaOH實(shí)時(shí)調(diào)節(jié)pH.為了研究氨氮濃度對(duì)厭氧氨氧化活性的影響,批試過程中pH控制為7.0(M1),固定NO2--N濃度為70mg/L,NH4+-N濃度設(shè)定為70 mg/L, 100 mg/L, 300 mg/L, 500 mg/L, 700 mg/L, 900 mg/L, 1100 mg/L,1300 mg/L, 1500 mg/L, 1700 mg/L, 1900 mg/L和2100 mg/L.為了研究高FA條件下氨氮濃度對(duì)厭氧氨氧化活性的影響,批試過程中pH控制為8.0(M2).
厭氧氨氧化活性測(cè)定步驟參照文獻(xiàn)[16-17]:①配置泥水混合液; ②啟動(dòng)恒溫磁力攪拌器,轉(zhuǎn)速為500r/min,用保鮮膜密封燒杯口,通氮?dú)?0min(氮?dú)饧兌?9.999%); ③停止通氮?dú)猓瑢B同磁力攪拌器放入30℃的恒溫培養(yǎng)箱中.每隔一定時(shí)間取樣測(cè)定主要組分濃度.污泥的厭氧氨氧化活性計(jì)算根據(jù)公式1.
式中:濃度單位為mg/L;計(jì)時(shí)終點(diǎn)單位為min; 揮發(fā)性物質(zhì)質(zhì)量單位為g.計(jì)時(shí)終點(diǎn)的確定:若在取樣的時(shí)間內(nèi),批試裝置內(nèi)的NH4+-N或NO2--N濃度低于10mg/L,則以NH4+-N或NO2--N濃度剛低于10mg/L的取樣時(shí)刻為計(jì)時(shí)終點(diǎn);若在取樣的時(shí)間內(nèi),批試裝置內(nèi)的NH4+-N或NO2--N濃度始終高于10mg/L,則以取樣結(jié)束的時(shí)刻為計(jì)時(shí)終點(diǎn).污泥活性單位為: kg N/(kg VSS·d).
1.4 底物抑制模型
采用Haldane模型擬合底物濃度對(duì)厭氧氨氧化活性的影響根據(jù)公式2.
式中:r為底物去除速率, kg N/(kg VSS·d); S為底物濃度, mg/L; rmax為最大底物去除速率, kg N/(kg VSS·d); Ks為半速率常數(shù), mg/L; KI為抑制常數(shù), mg/L.
1.5 分析方法
NH4+-N:納氏試劑光度法; NO2--N:N-(1-萘基)-乙二胺分光光度法; NO3--N:麝香草酚分光光度法; 取NH4+-N, NO2--N和NO3--N濃度之和為TⅠN濃度; DO、pH、溫度: WTW/Multi 3420測(cè)定儀;CODCr:按中國(guó)國(guó)家環(huán)保局和美國(guó)環(huán)境總署發(fā)布的標(biāo)準(zhǔn)方法測(cè)定,考慮NO2--N對(duì)COD測(cè)定的影響,?。?8].
鮑爾環(huán)污泥濃度的確定:用牙簽刮落鮑爾環(huán)表面附著較為松散的生物膜,將殘留有生物膜的鮑爾環(huán)放于燒杯中,盛適量水,采用超聲設(shè)備(VCX105PB)進(jìn)行處理,待鮑爾環(huán)表面的生物膜完全脫落,將超聲后的泥水混合液和前面的松散污泥混合用濾紙過濾,將截留污泥的濾紙經(jīng)烘箱和馬弗爐處理,烘干時(shí)間及溫度同常規(guī)污泥濃度測(cè)量條件相同,得到鮑爾環(huán)污泥的干物質(zhì)量和揮發(fā)性物質(zhì)質(zhì)量.
FA的計(jì)算公式3參照文獻(xiàn)[19].
式中:T為溫度(℃); C為濃度(mg/L).
2.1 SNAD生物膜反應(yīng)器的脫氮性能
圖3表明了穩(wěn)定運(yùn)行階段SNAD生物膜反應(yīng)器的脫氮性能和COD去除特性.反應(yīng)器進(jìn)水NH4+-N和COD濃度平均值分別為70mg/L和180mg/L,出水NH4+-N, NO2--N, NO3--N和COD濃度平均值分別為2mg/L, 2mg/L, 7mg/L和50mg/L.反應(yīng)器的NH4+-N和COD平均進(jìn)水負(fù)荷分別為0.27kg N/(m3·d)和0.67kg COD/(m3·d), COD平均去除率為71%, TⅠN去除率為80%~90%, TⅠN平均去除負(fù)荷為0.22kg TⅠN/(m3·d).
圖3 SNAD生物膜反應(yīng)器的脫氮性能和COD去除性能Fig.3 The nitrogen and COD removal performance of the SNAD biofilm reactor
2.2 適宜氨氮濃度SNAD生物膜的厭氧氨氧化活性
圖4 適宜NH4+-N濃度SNAD生物膜的厭氧氨氧化活性Fig.4 Anammox activity of SNAD biofilm with appropriate NH4+-N concentration
圖4為厭氧氨氧化批試過程中的氮素濃度變化情況.在適宜的氨氮濃度條件下, SNAD生物膜表現(xiàn)出良好的厭氧氨氧化活性.初始NH4+-N和NO2--N濃度都為70mg/L,隨著反應(yīng)的進(jìn)行, NH4+-N和NO2--N濃度逐漸降低, NO3--N濃度逐漸上升. △NO2--N/△NH4+-N(摩爾比)=1.45, △NO3--N/△NH4+-N(摩爾比)=0.29,和Strous等[7]的研究結(jié)果相近.厭氧氨氧化批試NH4+-N、NO2--N和TⅠN去除速率分別為0.121kg N/(kg VSS·d), 0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).
Strous等[20]和Kieling等[21]采用人工配水運(yùn)行厭氧氨氧化反應(yīng)器,污泥的厭氧氨氧化活性分別為0.18kg N/(kg VSS·d)和0.19kg N/(kg VSS·d). Tang等[22]控制溫度為35℃,在高濃度基質(zhì)條件下利用UASB反應(yīng)器培養(yǎng)厭氧氨氧化顆粒污泥,污泥的厭氧氨氧化活性為1.7kg N/(kg VSS·d).本研究污泥的厭氧氨氧化活性與Strous[20]和Kieling等[21]的研究結(jié)果相似,但是低于Tang等[22]的研究結(jié)果. Tang等[22]的反應(yīng)器進(jìn)水底物濃度較高,厭氧氨氧化菌以顆粒污泥的形式存在,顆粒污泥生物量大,有助于緩解高底物濃度對(duì)厭氧氨氧化菌的抑制,表現(xiàn)出較高的活性.但是本研究采用生活污水運(yùn)行SNAD生物膜反應(yīng)器,進(jìn)水NH4+-N濃度平均值僅為70mg/L;而且SNAD生物膜由亞硝化菌,厭氧氨氧化菌和反硝化菌等微生物組成,厭氧氨氧化菌的生物量較小.所以SNAD生物膜的厭氧氨氧化活性低于Tang等[22]的研究結(jié)果.
Strous等[23]的研究表明當(dāng)氧分壓超過0.5%的空氣飽和度時(shí),厭氧氨氧化菌的厭氧氨氧化活性將會(huì)受到抑制.本研究曝氣和混合階段反應(yīng)器內(nèi)的平均溶解氧濃度分別為5.6mg/L和0mg/L. SNAD生物膜的厭氧氨氧化活性沒有受到抑制.可能的原因?yàn)楸狙芯繀捬醢毖趸挥赟NAD生物膜的內(nèi)部,生物膜對(duì)溶解氧的傳質(zhì)具有阻礙作用[24-25],有助于緩解溶解氧對(duì)厭氧氨氧化菌的抑制作用;同時(shí),異養(yǎng)菌和AOB傾向于生長(zhǎng)在生物膜的外表面,厭氧氨氧化菌傾向于生長(zhǎng)在生物膜的內(nèi)部[26-27];生物膜表面的AOB和異養(yǎng)菌對(duì)于溶解氧的消耗有助于維持生物膜內(nèi)部較低的溶解氧濃度;此外,本研究SNAD生物膜反應(yīng)器采用間歇曝氣運(yùn)行方式,厭氧氨氧化菌在缺氧混合階段可以利用曝氣階段產(chǎn)生的亞硝態(tài)氮和反應(yīng)器中的氨氮進(jìn)行厭氧氨氧化,有助于緩解曝氣階段溶解氧的抑制作用.
2.3 氨氮對(duì)厭氧氨氧化NO2--N去除速率的影響
圖5 不同NH4+-N 濃度下的厭氧氨氧化批試NO2--N濃度變化Fig.5 Evolution of NO2--N concentrations for Anammox process with different NH4+-N concentrations
圖5為氨氮濃度對(duì)厭氧氨氧化影響批試過程中NO2--N濃度的變化情況.圖6為不同氨氮濃度條件下厭氧氨氧化NO2--N的去除速率.隨著氨氮濃度的增加,M1和M2的NO2--N去除速率逐漸減小.M1和M2的NO2--N最大去除速率分別為0.157kg N/(kg VSS·d)和0.190kg N/(kg VSS·d).當(dāng)M1和M2的NH4+-N濃度分別為700mg/L和900mg/L時(shí), M1和M2的厭氧氨氧化反應(yīng)NO2--N去除速率分別為最大速率的50.3%和49.0%. Strous等[7]的研究表明NH4+-N濃度為980mg/L時(shí)不會(huì)抑制厭氧氨氧化活性.但是Dapena-Mora等[8]的批試研究表明NH4+-N濃度為770mg/L時(shí),厭氧氨氧化活性被抑制50%.本研究結(jié)果和Dapena-Mora等[8]的研究較為接近.
Haldane模型對(duì)NH4+-N濃度的自抑制作用擬合結(jié)果如圖6所示(R12=0.937,R22=0.949). M1
圖6 NH4+-N濃度對(duì)厭氧氨氧化批試NO2--N去除速率的影響Fig.6 Effect of NH4+-N concentrations on the NO2--N removal rate of Anammox process
和M2的最大NO2--N理論去除速率rmax分別為0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半飽和常數(shù)Ks分別為9.5mg/L和6.1mg/L,氨氮自身抑制常數(shù)KI分別為422mg/L和597mg/L.陳婷婷等[28]采用高濃度基質(zhì)培養(yǎng)厭氧氨氧化顆粒污泥,進(jìn)水NH4+-N和NO2--N濃度分別為707.9mg/L和768.1mg/L,動(dòng)力學(xué)研究表明厭氧氨氧化最大亞硝態(tài)理論去除速率rmax為0.305kg N/(kg VSS·d),氨氮半飽和常數(shù)Ks為36.75mg/L,氨氮自身的抑制常數(shù)KI為887.1mg/L.本研究采用生活污水培養(yǎng)厭氧氨氧化菌,進(jìn)水NH4+-N濃度平均值為70mg/L,厭氧氨氧化菌沒有適應(yīng)高NH4+-N濃度的抑制,所以氨氮半飽和常數(shù)和氨氮自身抑制常數(shù)都低于陳婷婷等[28]的研究結(jié)果. Strous等[29]研究表明對(duì)于粒徑小于50μm的厭氧氨氧化污泥,厭氧氨氧化菌對(duì)氨氮的半飽和常數(shù)小于0.1mg/L.本研究的厭氧氨氧化菌位于SNAD生物膜內(nèi)部,生物膜具有一定的傳質(zhì)阻力,所以氨氮的半飽和常數(shù)高于Strous[29]的研究結(jié)果.但是,本研究厭氧氨氧化菌的氨氮半飽和常數(shù)小于10mg/L,對(duì)于低氨氮濃度的廢水處理具有重要意義.
Martinelle等[30]的研究表明FA能夠穿透細(xì)胞膜進(jìn)入細(xì)胞,破壞細(xì)胞內(nèi)pH值,從而對(duì)細(xì)胞產(chǎn)生影響.前人的研究表明FA對(duì)厭氧氨氧化活性起抑制作用[10,12].Fernández等[10]的批試研究表明FA濃度為38mg/L時(shí),厭氧氨氧化菌的活性被抑制50%.到目前為止,鮮有研究將氨氮和游離氨對(duì)厭氧氨氧化活性的主要抑制作用加以區(qū)分.本研究中, M1的FA濃度為0.7~20.4mg/L, M2的FA濃度為6.3~190.5mg/L. Haldane模型結(jié)果表明M2的最大亞硝態(tài)理論去除速率和氨氮抑制常數(shù)比M1高,氨氮半飽和常數(shù)比M1更低.雖然M2的FA濃度較M1高,但是M2的厭氧氨氧化性能比M1更好, FA沒有對(duì)M2產(chǎn)生強(qiáng)烈的抑制作用,原因可能為厭氧氨氧化反應(yīng)的最適pH為8[29,31],同時(shí)生物膜存在傳質(zhì)阻礙[24-25],有助于緩解FA對(duì)厭氧氨氧化菌的抑制.
當(dāng)M1和M2的FA濃度分別為6.8mg/L(NH4+-N濃度為700mg/L)和81.6mg/L (NH4+-N濃度為900mg/L)時(shí), M1和M2的厭氧氨氧化反應(yīng)NO2--N去除速率分別為最大速率的50.3%和49.0%.當(dāng)NH4+-N濃度分別為2100mg/L和300mg/L時(shí),M1和M2對(duì)應(yīng)的FA濃度分別為20.4mg/L和27.2mg/L, M1和M2的厭氧氨氧化NO2--N去除速率分別為0.019kg N/(kg VSS·d)和0.121kg N/(kg VSS·d), M1的厭氧氨氧化NO2--N去除速率僅為M2的15.7%.這些結(jié)果表明氨氮對(duì)厭氧氨氧化的抑制起主要作用.
3.1 SNAD生物膜反應(yīng)器可以有效地去除生活污水中的氮素和有機(jī)物.穩(wěn)定運(yùn)行階段,SNAD生物膜反應(yīng)器的進(jìn)水NH4+-N和COD平均值分別為70mg/L和180mg/L,出水NH4+-N, NO2--N,NO3--N和COD濃度平均值分別為2mg/L,2mg/L, 7mg/L和50mg/L.COD平均去除率為71%. TⅠN去除率為80%~90%, TⅠN平均去除負(fù)荷為0.22kg TⅠN/(m3·d).
3.2 SNAD生物膜具有良好的厭氧氨氧化活性.初始NH4+-N和NO2--N濃度都為70mg/L時(shí),厭氧氨氧化批試NH4+-N、NO2--N和TⅠN去除速率分別為0.121kg N/(kg VSS·d), 0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).生物膜對(duì)溶解氧傳質(zhì)的阻礙作用,生物膜表面AOB和異養(yǎng)菌對(duì)于溶解氧的消耗和間歇曝氣運(yùn)行方式是緩解高溶解氧對(duì)厭氧氨氧化菌抑制作用的關(guān)鍵因素.
3.3 Haldane模型可以很好的擬合氨氮濃度對(duì)厭氧氨氧化活性的影響.在高FA和低FA工況下氨氮濃度對(duì)厭氧氨氧化活性的抑制動(dòng)力學(xué)常數(shù)相差不大. M1 (FA濃度為0.7~20.4mg/L)和M2(FA濃度為6.3~190.5mg/L)的最大NO2--N理論去除速率rmax分別為0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半飽和常數(shù)Ks分別為9.5mg/L和6.1mg/L,氨氮自身抑制常數(shù)KI分別為422mg/L和597mg/L.氨氮(而不是游離氨)對(duì)SNAD生物膜厭氧氨氧化活性起主要抑制作用.
[1] Bagchi S, Biswas R, Nandy T. Autotrophic ammonia removal processes: ecology to technology [J]. Critical Reviews in Environmental Science and Technology, 2012,42(13):1353-1418.
[2] Daverey A, Chen Y C, Dutta K, et al. Start-up of simultaneous partial nitrification, anammox and denitrification (SNAD) process in sequencing batch biofilm reactor using novel biomass carriers[J]. Bioresource Technology, 2015,190:480-486.
[3] 鄭照明,李澤兵,劉常敬,等.城市生活污水SNAD工藝的啟動(dòng)研究 [J]. 中國(guó)環(huán)境科學(xué), 2015,35(4):1072-1081.
[4] Wang C C, Lee P H, Kumar M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification(SNAD) in a full-scale landfill-leachate treatment plant [J]. Journal of Hazardous Materials, 2010,175(1-3):622-628.
[5] Zhang X J, Zhang H Z, Ye C M, et al. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors [J]. Bioresource Technology, 2015,189: 302-308.
[6] Carvajal-Arroyo J M, Puyol D, Li G, et al. Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox [J]. Water Research, 2014,48(0):52-60.
[7] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. AppliedMicrobiology and Biotechnology, 1998,50(5):589-596.
[8] Dapena-Mora A, Fernandez Ⅰ, Campos J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme and Microbial Technology, 2007,40(4):859-865.
[9] Lotti T, van der Star W R L, Kleerebezem R, et al. The effect of nitrite inhibition on the anammox process [J]. Water Research,2012,46(8):2559-2569.
[10] Fernández Ⅰ, Dosta J, Fajardo C, et al. Short- and long-term effects of ammonium and nitrite on the Anammox process [J]. Journal of Environmental Management, 2012,95,Supplement(0): S170-S174.
[11] Puyol D, Carvajal-Arroyo J M, Sierra-Alvarez R, et al. Nitrite(not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions [J]. Biotechnology letters,2014,36(3):547-551.
[12] Jung J Y, Kang S H, Chung Y C, et al. Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor [J]. Water Science and Technology, 2007,55(1/2): 459-468.
[13] Cho S, Takahashi Y, Fujii N, et al. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor [J]. Chemosphere, 2010,78(9): 1129-1135.
[14] Kimura Y, Ⅰsaka K, Kazama F, et al. Effects of nitrite inhibition on anaerobic ammonium oxidation [J]. Applied Microbiology and Biothehnology, 2010,86(1):359-365.
[15] Tang C J, Zheng P, Hu B L, et al. Ⅰnfluence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels [J]. Journal of Hazardous Materials,2010,181(1-3):19-26.
[16] 汪彩華,鄭 平,唐崇儉,等.間歇性饑餓對(duì)厭氧氨氧化菌混培物保藏特性的影響 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2013(1):36-43.
[17] Tang C J, Zheng P, Mahmood Q, et al. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge [J]. Journal of Ⅰndustrial Microbiology and Biotechnology,2009,36(8):1093-1100.
[18] Liang Z, Liu H. Control factors of partial nitritation for landfill leachate treatment [J]. Journal of Environmental Sciences-China,2007,19(5):523-529.
[19] Anthonisen A C, Loehr R C, Prakasam T, et al. Ⅰnhibition of nitrification by ammonia and nitrous-acid [J]. Journal Water Pollution Control Fedration, 1976,48(5):835-852.
[20] Strous M, Vangerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations[J]. Water Research, 1997,31(8):1955-1962.
[21] Kieling D D, Reginatto V, Schmidell W, et al. Sludge wash-out as strategy for Anammox process start-up [J]. Process Biochemistry, 2007,42(12):1579-1585.
[22] Tang C, Zheng P, Chen T, et al. Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process [J]. Water Research, 2011,45(1):201-210.
[23] Strous M, Vangerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing(Anammox) sludge [J]. Applied and Environmental Microbiology,1997,63(6):2446-2448.
[24] Vazquez-Padin J R, Fernandez Ⅰ, Morales N, et al. Autotrophic nitrogen removal at low temperature [J]. Water Science and Technology, 2011,63(6):1282-1288.
[25] Rathnayake R M L D, Song Y, Tumendelger A, et al. Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor [J]. Water Research, 2013,47(19): 7078-7086.
[26] Volcke E, Picioreanu C, De Baets B, et al. Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor [J]. Environmental Technology, 2010,31(11):1271-1280.
[27] Winkler M, Yang J J, Kleerebezem R, et al. Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor [J]. Bioresource Technology, 2012,114:217-223.
[28] Chen T, Zheng P, Shen L, et al. Kinetic characteristics and microbial community of Anammox-EGSB reactor [J]. Journal of Hazardous Materials, 2011,190(1—3):28-35.
[29] Strous M, Kuenen J G, Jetten M. Key physiology of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology, 1999,65(7):3248-3250.
[30] Martinelle K, Westlund A, Haggstrom L. Ammonium ion transport - A cause of cell death [J]. Cytotechnology, 1996,22(1-3):251-254.
[31] Egli K, Fanger U, Alvarez P, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate [J]. Archives of Microbiology, 2001,175(3):198-207.
The kinetic coefficients of ammonium inhibition on the Anammox activity of SNAD biofilm.
ZHENG Zhao-ming, LI Jun*, MA Jing, DU Jia, ZHAO Bai-hang (The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China). China Environmental Science, 2016,36(10):2957~2963
The effect of ammonium concentrations on the anaerobic ammonium oxidation (Anammox) activity of simultaneous partial nitrification, anaerobic ammonium oxidization and denitrification (SNAD) biofilm was investigated in batch tests. The SNAD biofilm reactor performed stable nitrogen removal performance with the influent of domestic wastewater. The average influent NH4+-N and COD concentrations were 70mg/L and 180mg/L, respectively. As a result,the average effluent NH4+-N, NO2--N and NO3--N concentrations were 2mg/L, 2mg/L, 7mg/L and 50mg/L, respectively. The SNAD biofilm performed good Anammox activity. The NH4+-N, NO2--N and total inorganic nitrogen (TIN) removal rates were 0.121kg N/(kg VSS·d), 0.180kg N/(kg VSS·d) and 0.267kg N/(kg VSS·d) with the initial NH4+-N and NO2--N concentrations of both 70mg/L. Moreover, Haldane model was applied to investigate the ammonium inhibition on the Anammox process. There is no obvious difference in kinetic coefficients of ammonium inhibition under high or low FA conditions. As for M1 (FA ranges of 0.7mg/L and 20.4mg/L), the rmax, Ks and KIof ammonium were 0.209kg NO2--N/(kg VSS·d), 9.5mg/L and 422mg/L. As for M2 (FA ranges of 6.3mg/L and 190.5mg/L), the rmax, Ks and KIof ammonium were 0.221kg NO2--N/(kg VSS·d), 6.1mg/L and 597mg/L. Ammonium rather than FA is the main inhibitor for Anammox process.
SNAD biofilm;Anammox;ammonium;inhibition;kinetic characteristics
X703.5
A
1000-6923(2016)10-2957-07
鄭照明(1989-),男,浙江嵊州市人,北京工業(yè)大學(xué)博士研究生,主要從事厭氧氨氧化,亞硝化和SNAD工藝研究.發(fā)表論文4篇.
2016-01-30
國(guó)家水體污染控制與治理科技重大專項(xiàng)(2014ZX 07201-011); 16人才培養(yǎng)質(zhì)量建設(shè)-雙培養(yǎng)計(jì)劃新興專業(yè)建設(shè)(004000542216031);教育部博士點(diǎn)新教師(20131103120017);北京市博士后工作經(jīng)費(fèi)資助項(xiàng)目(2015ZZ-10)
* 責(zé)任作者, 教授, jglijun@bjut.edu.cn