黎 源,王 蓓,汪志文,蔡小輝,湯菊芬,魯義善,簡紀(jì)常
(廣東海洋大學(xué)水產(chǎn)學(xué)院/廣東省水產(chǎn)經(jīng)濟(jì)動物病原生物學(xué)及流行病學(xué)重點(diǎn)實(shí)驗(yàn)室/廣東省教育廳水產(chǎn)經(jīng)濟(jì)動物病害控制重點(diǎn)實(shí)驗(yàn)室,廣東 湛江 524088)
羅非魚無乳鏈球菌傳播途徑與逃避宿主免疫防御策略
黎 源,王 蓓,汪志文,蔡小輝,湯菊芬,魯義善,簡紀(jì)常
(廣東海洋大學(xué)水產(chǎn)學(xué)院/廣東省水產(chǎn)經(jīng)濟(jì)動物病原生物學(xué)及流行病學(xué)重點(diǎn)實(shí)驗(yàn)室/廣東省教育廳水產(chǎn)經(jīng)濟(jì)動物病害控制重點(diǎn)實(shí)驗(yàn)室,廣東 湛江 524088)
羅非魚是我國重要的養(yǎng)殖魚類之一,近年來頻繁暴發(fā)的鏈球菌病嚴(yán)重影響了我國羅非魚養(yǎng)殖業(yè)的健康發(fā)展。無乳鏈球菌是羅非魚鏈球菌病的主要病原之一,闡明其感染機(jī)制和免疫逃避機(jī)制,對預(yù)防與治療該病至關(guān)重要。對魚源無乳鏈球菌的侵染途徑、腸道的定植策略以及逃避宿主免疫監(jiān)視機(jī)制等方面的研究成果進(jìn)行綜述,為深入研究無乳鏈球菌與宿主之間的相互作用提供參考,為羅非魚鏈球菌病的綜合防控奠定理論基礎(chǔ)。
羅非魚;無乳鏈球菌;傳播途徑;腸道定植;免疫逃避
我國是世界上最大的羅非魚養(yǎng)殖生產(chǎn)國和出口貿(mào)易國,在目前高密度集約化養(yǎng)殖過程中,羅非魚鏈球菌病時(shí)有發(fā)生,羅非魚鏈球菌病的死亡率可達(dá)70%[1],嚴(yán)重阻礙了羅非魚養(yǎng)殖業(yè)的發(fā)展。羅非魚鏈球菌病的病原菌主要是無乳鏈球菌(Streptococcus agalactiae)和海豚鏈球菌(Streptococcus iniae)[2],其中無乳鏈球菌是一種人畜共患的革蘭氏陽性菌,也是羅非魚鏈球菌病中最常見的致病菌。感染無乳鏈球菌的羅非魚,體表癥狀表現(xiàn)為眼球突出、眼眶充血,腹部膨大,肛門紅腫,采食減少或絕食,翻轉(zhuǎn)和轉(zhuǎn)圈游動[3]。組織病理學(xué)表現(xiàn)為鰓充血,腎臟受損、腫大、白細(xì)胞浸潤,肝臟顆粒變性,腸道粘膜上皮變性、壞死、脫落、固有膜上炎性白細(xì)胞浸潤,眼睛脈絡(luò)膜和眶骨膜組織炎性壞死等[4-5]。
哺乳動物的腸道免疫系統(tǒng)包括腸上皮細(xì)胞(IEC)、腸上皮內(nèi)淋巴細(xì)胞(IIEL)、固有層淋巴細(xì)胞(LPL)、派伊氏結(jié)(PP)、腸系膜相關(guān)淋巴結(jié)等腸道淋巴組織。在魚類腸道中,沒有發(fā)現(xiàn)派伊氏結(jié)、腸系膜相關(guān)淋巴結(jié),因而魚類腸相關(guān)淋巴組織(GALT)較低級,相比于高等的哺乳動物,魚類腸道中的免疫細(xì)胞更為分散,其中大量的白細(xì)胞分布在固有層和腸上皮細(xì)胞[6-7],包括許多淋巴細(xì)胞,如巨噬細(xì)胞、嗜酸性粒細(xì)胞和嗜中性粒細(xì)胞,目前來看,魚類的腸道免疫以非特異性免疫和體液免疫為主。
病原、宿主與環(huán)境之間的平衡關(guān)系決定疾病的發(fā)生,了解鏈球菌感染與傳播途徑,可以更深入認(rèn)識羅非魚、鏈球菌和環(huán)境之間的關(guān)系?;诂F(xiàn)有對無乳鏈球菌傳播途徑、腸道定植策略以及免疫逃避機(jī)制的研究,無乳鏈球菌對羅非魚的致病機(jī)理可能與人源無乳鏈球菌的機(jī)制有相似之處,即致病機(jī)理分為3個(gè)階段:定植于盲腸或小腸內(nèi)→穿越小腸上皮細(xì)胞→逃避宿主免疫防御。通過了解魚源無乳鏈球菌傳播途徑,對于羅非魚鏈球菌病的預(yù)防具有重要的指導(dǎo)意義,探討魚源無乳鏈球菌的宿主免疫逃避機(jī)制,將為今后鏈球菌病疫苗以及藥物開發(fā)研究奠定基礎(chǔ)。
Hernandez等[8]與 Jim é nez等[9]研究表明,無乳鏈球菌僅能在20 g以上的紅羅非魚中檢測到,即使親本感染鏈球菌,在其后代幼魚也檢測不到無乳鏈球菌,因此無乳鏈球菌主要在個(gè)體與個(gè)體之間呈水平傳播。
大多數(shù)對于魚源無乳鏈球菌致病機(jī)理的研究都是基于腹腔注射的感染模式,對于鏈球菌自然感染途徑的報(bào)道還很少。Syuhaidah等[10]通過腹腔注射、浸泡、劃傷浸泡3種方式,羅非魚均有感染癥狀出現(xiàn)。Soto等[11]發(fā)現(xiàn)用鏈球菌腹腔注射、肌肉注射、口服感染和浸泡4種方式感染羅非魚,僅腹腔注射和肌肉注射會引起死亡。Bromage等[12]研究表明,海豚鏈球菌可通過口服途徑進(jìn)入尖吻鱸魚體內(nèi)引起次急性感染,并且外表皮的損傷并沒有促進(jìn)海豚鏈球菌的侵染能力。Iregui等[13]發(fā)現(xiàn)通過口服感染僅在低溶解氧和高溫條件下,羅非魚才會出現(xiàn)感染癥狀,值得注意的是,經(jīng)過浸泡途徑感染的魚體皮膚上不能檢測到無乳鏈球菌,但浸泡1 h后在感染魚的胃和腸上皮中卻能檢測到無乳鏈球菌;對羅非魚灌胃感染鏈球菌后,30 min無乳鏈球菌就已經(jīng)到達(dá)胃部,1 h后觀察到羅非魚腸道和腸腔內(nèi)分泌黏液增加,并且有大量的細(xì)菌存在于胃腸道分泌的黏液物質(zhì)中,2 h后大量聚集在腸上皮,這表明無乳鏈球菌可在胃腸道管腔內(nèi)繁殖,并在黏膜上皮定植。
在實(shí)際的養(yǎng)殖環(huán)境下,高濃度的菌液環(huán)境難以實(shí)現(xiàn),鏈球菌通過口腔進(jìn)入羅非魚胃和腸道,可能是自然條件下感染羅非魚的主要傳播途徑。Nguyen等[14]從患病魚養(yǎng)殖水體中可以檢測到鏈球菌,認(rèn)為鏈球菌可以通過糞-口途徑傳染。食用被感染病魚可作為鏈球菌傳播途徑之一,Kim等[15]發(fā)現(xiàn)投食受感染的雜魚可引起牙鲆(Paralichthys olivaceus)鏈球菌病暴發(fā),Shoemaker等[16]提出同類相食感染魚也是鏈球菌在尼羅羅非魚中傳播的主要原因。從無乳鏈球菌生物學(xué)特性來看,無乳鏈球菌無鞭毛,無運(yùn)動能力,在自然水體中會沉底,在碎屑中富集,羅非魚是分布于水體底層的雜食性魚類,食性廣并且貪吃,因此在自然環(huán)境下無乳鏈球菌更易通過口腔進(jìn)入羅非魚的胃腸道。
早期對羅非魚魚胃腸道的研究發(fā)現(xiàn),羅非魚胃酸pH值隨攝食活動變化幅度很大[17],在攝食情況下比其他魚類低,甚至低至1.4[18],這樣的胃部強(qiáng)酸環(huán)境有利于對藻類的消化,這既是羅非魚為了適應(yīng)雜食食性所進(jìn)化而來的特殊胃部環(huán)境,也是羅非魚高生長率的重要原因[19]。在空腹情況下,羅非魚胃酸pH值可以上升到6[17],有利于無乳鏈球菌的生長。值得注意的是,羅非魚的攝食受到光照和溫度的影響,羅非魚在夜間停止攝食,并在天亮后逐漸恢復(fù)攝食。郭恩彥等[20]研究表明,吉富羅非魚在水溫超過32℃的情況下,其攝食能力會受到較大影響而下降。因此在夜間或者高溫條件下,羅非魚的食欲下降,攝食少而導(dǎo)致胃部pH值升高,使得無乳鏈球菌更易侵染其胃腸道。
無乳鏈球菌躲避胃部酸性環(huán)境的機(jī)制目前還不清楚,對人源無乳鏈球菌的研究表明,無乳鏈球菌在pH值低于4.3的體外培養(yǎng)環(huán)境下不能生長,并且細(xì)菌數(shù)量會在數(shù)小時(shí)內(nèi)衰減,衰減速度隨環(huán)境pH值降低而加快[21-23],說明在體外實(shí)驗(yàn)條件下,無乳鏈球菌并不能直接在強(qiáng)酸環(huán)境下生存。因此無乳鏈球菌是如何通過酸化的胃部環(huán)境,這還需要更多的實(shí)驗(yàn)去驗(yàn)證。
無乳鏈球菌可能通過某種機(jī)制逃逸胃酸環(huán)境,如其他鏈球菌上觀察到的“耐酸受反應(yīng)”(Acid tolerance response ,ATR)[24]。現(xiàn)有的研究表明,低pH條件能促進(jìn)無乳鏈球菌的黏附作用以及生物膜的形成[21]。Glaser等[25]通過比較不同鏈球菌的基因組發(fā)現(xiàn),無乳鏈球菌轉(zhuǎn)錄調(diào)節(jié)子多達(dá)107個(gè),肺炎鏈球菌(Streptococcus pneumoniae)為14個(gè),化膿鏈球菌(Streptococcus pyogenes)為13個(gè),說明無乳鏈球菌具有更為強(qiáng)大的環(huán)境適應(yīng)能力。
研究表明,CsrS/CsrR雙組分系統(tǒng)是無乳鏈球菌重要的pH感受器,酸性環(huán)境能夠激活無乳鏈球菌的CsrS/CsrR雙組分調(diào)控系統(tǒng),減少毒力基因的表達(dá)[26],同時(shí)上調(diào)多個(gè)黏附因子,從而提高無乳鏈球菌的黏附能力[27]。當(dāng)pH上升的時(shí)候,CsrS/CsrR雙組分調(diào)控系統(tǒng)通過轉(zhuǎn)移磷酸基團(tuán),激活CovR的D53殘基,CovS減少磷酸化,引導(dǎo)β-溶血素(β-H/C)等毒力基因的表達(dá)。反之,當(dāng)無乳鏈球菌進(jìn)入酸性環(huán)境時(shí)或者抑制CovS/R雙組分系統(tǒng)時(shí),相關(guān)毒力基因的表達(dá)會減少[28],從而有效避免魚體的免疫監(jiān)視;與此同時(shí),CovR/S還會調(diào)控其他雙組份系統(tǒng),如RgfA/RgfC雙組分系統(tǒng)。RgfA/RgfC雙組分系統(tǒng)在轉(zhuǎn)錄水平上調(diào)控FbsB與FbsA基因,進(jìn)而調(diào)控相關(guān)蛋白表達(dá),其中FbsA參與細(xì)胞黏附,而FbsB與侵染有關(guān),它們都可以結(jié)合粘膜固有纖維或可溶性纖維[29],提高無乳鏈球菌的黏附能力[28]。
莢膜是無乳鏈球菌最重要的毒力因子,其表達(dá)受到環(huán)境因子的調(diào)控[30],但不受CovS/R雙組分系統(tǒng)的調(diào)控。莢膜主要參與鏈球菌逃避宿主免疫,其調(diào)控區(qū)域分為3個(gè)部分[31],位于前端的是CpsA-D,不參與夾膜多糖的直接合成,卻是主要的夾膜調(diào)控區(qū);CpsE-L位于該區(qū)域中部,決定血清型并編碼糖基轉(zhuǎn)移酶和聚合酶;NeuA-D位于操縱子區(qū)域的末端,編碼合成唾液酸的酶。較低pH環(huán)境會抑制莢膜合成,缺失莢膜基因后會顯著地增加無乳鏈球菌的黏附能力[30,32]。CpsA[33]或CpsD[32]基因的缺失,都會讓無乳鏈球菌的莢膜明顯減少,并且隨著莢膜的減少,無乳鏈球菌鏈長延長,該現(xiàn)象在Cai等[34]的實(shí)驗(yàn)里也被觀察到。莢膜的表達(dá)與生物膜形成可能呈負(fù)相關(guān)的關(guān)系。酸性環(huán)境下,無乳鏈球菌通過調(diào)控抑制莢膜的表達(dá),延長無乳鏈球菌的鏈長,促進(jìn)生物膜的形成[35]。然而生物膜與鏈球菌在魚體的持續(xù)存活密不可分,細(xì)菌能夠在組織的表面形成大的菌落,與多糖聚合體、蛋白、核酸及脂類交織成網(wǎng),以此抵御不良環(huán)境和宿主免疫,同時(shí)提高侵染和黏附能力[36]。
在低pH值的環(huán)境下,無乳鏈球菌將更多的資源用于提高其黏附能力和環(huán)境適應(yīng)能力,抑制其毒力基因的表達(dá),這樣的機(jī)制在無乳鏈球菌感染羅非魚腸道過程中起著重要作用,一方面可以有利于無乳鏈球菌適應(yīng)胃腸道環(huán)境,更為迅速地定植,另一方面,在感染初期抑制自身毒力基因的表達(dá),可以有效降低宿主的免疫監(jiān)視。
已有研究表明,Ig+細(xì)胞在多種魚類的腸粘膜中均有發(fā)現(xiàn),其中免疫球蛋白是調(diào)理吞噬作用的先決條件,在羅非魚中發(fā)現(xiàn)的免疫球蛋白有 IgM、IgD[37]和 IgZ/T[38],其中參與腸道粘膜免疫的有IgM和IgZ/T[37]。魚類IgM分子以五聚體的形式存在,不能穿過血管壁,在巨噬細(xì)胞以及補(bǔ)體的協(xié)同作用下,IgM發(fā)揮著殺菌、溶菌、激活補(bǔ)體促進(jìn)吞噬等作用,其殺菌和中和病毒的能力顯著高于IgG。Zhang等[39]證實(shí)了虹鱒的IgT與抗寄生蟲的粘膜免疫相關(guān),發(fā)現(xiàn)虹鱒IgT的作用機(jī)制與人類IgA相似,IgA在效應(yīng)的部位分泌,通過與多聚免疫球蛋白受體(pIgR)結(jié)合,然后轉(zhuǎn)移到腸腔或肝膽汁中。通過免疫印跡、免疫共沉淀等技術(shù)發(fā)現(xiàn),多數(shù)魚類腸道上的細(xì)菌都可以與IgZ/IgT相結(jié)合,在腸道中結(jié)合細(xì)菌從而阻止細(xì)菌對機(jī)體的侵染。
A族鏈球菌在哺乳動物中通過產(chǎn)生G蛋白,與Ig分子的Fc區(qū)域結(jié)合,F(xiàn)c區(qū)域的封閉會抑制補(bǔ)體和調(diào)理素的激活,從而避免宿主主要的防御機(jī)制[40]。Barnes等[41]通過 Westernblot發(fā)現(xiàn)在鱒魚血清中生長的海豚鏈球菌,也產(chǎn)生一種C蛋白結(jié)合鱒魚血清的Ig分子,因此,無乳鏈球菌可能也存在類似機(jī)制,產(chǎn)生某種蛋白封閉魚類的Ig分子,避開體液免疫,但還需要進(jìn)一步驗(yàn)證。
3.2.1 抗吞噬作用 吞噬細(xì)胞作為魚類腸道主要的非特異性免疫細(xì)胞,不僅可以快速清除入侵的病原,也作為重要的抗原呈遞細(xì)胞(APC),這種生物體最古老的非特異性免疫機(jī)制,在以先天性免疫為主的魚類免疫中起著重要作用。魚類吞噬細(xì)胞主要包括巨噬細(xì)胞和粒細(xì)胞,粒細(xì)胞主要為中性粒細(xì)胞和嗜酸性粒細(xì)胞[42],通過炎癥部位趨化因子的介導(dǎo)可以迅速富集。吞噬作用可以分成3個(gè)階段:吞噬細(xì)胞通過識別抗體的Fc段找到病原體、病原被內(nèi)吞形成吞噬體,吞噬體內(nèi)病原微生物降解。激活的吞噬細(xì)胞釋放介導(dǎo)炎癥反應(yīng)的細(xì)胞因子如IL-1β、干擾素、TNF-α、TGF-β、趨化因子等,引起機(jī)體的免疫應(yīng)答反應(yīng)。將羅非魚不同組織分離的巨噬細(xì)胞與D-半乳糖、D-葡萄糖和N-乙酰-D-氨基葡萄糖孵育,其結(jié)合細(xì)菌的能力被顯著抑制[43],表明羅非魚巨噬細(xì)胞具有凝集素樣受體,可以參與病原辨別,而且補(bǔ)體作為魚類吞噬細(xì)胞吞噬作用重要的調(diào)理因子,也起著至關(guān)重要的作用[44]。
無乳鏈球菌抗吞噬作用離不開表面的莢膜多糖。無乳鏈球菌外的莢膜多糖(Capsule)由半乳糖、葡萄糖、鼠李糖、乙酰葡萄糖胺和唾液酸等構(gòu)成,其中莢膜中的唾液酸與哺乳動物細(xì)胞表面廣泛分布的糖表位相似,分子擬態(tài)的唾液酸可以與白細(xì)胞免疫球蛋白凝集素結(jié)合,競爭性抑制宿主細(xì)胞表面的補(bǔ)體C3激活[45-46]。此外,無乳鏈球菌還會介導(dǎo)補(bǔ)體失活,如C5α肽酶介導(dǎo)蛋白水解[47],免疫球蛋白細(xì)菌黏附素抑制因子BibA降低補(bǔ)體結(jié)合[48],H因子加劇補(bǔ)體失活[49],CpsA會快速降解中性粒細(xì)胞激活所需的CXC家族趨化因子,如生長相關(guān)的癌基因-γ(GRO-γ)、中性粒細(xì)胞趨化蛋白-2(NAP-2)、粒細(xì)胞趨化蛋白 -2(GCP-2)[50]等。通過凝集素結(jié)合實(shí)驗(yàn)表明,具有完整莢膜多糖的無乳鏈球菌會導(dǎo)致N-乙酰氨基葡萄糖(PNG)唾液酸化[30],羅非魚肽聚糖識別蛋白(PGRP-SC2)在腸道中高表達(dá),并通過氨酰酶活性剪切PNG實(shí)現(xiàn)免疫調(diào)節(jié)[51],在短吻舌鰨中PGRP-SC2可以結(jié)合并凝集細(xì)菌,增強(qiáng)宿主巨噬細(xì)胞對細(xì)菌的吞噬作用[52],無乳鏈球菌有可能通過該唾液酸化PNG的方式躲避吞噬作用。
3.2.2 抵御吞噬體環(huán)境 無乳鏈球菌可以在巨噬細(xì)胞內(nèi)存活已經(jīng)被證實(shí)[53-55]。通常病原被吞噬后,細(xì)菌進(jìn)入吞噬體內(nèi),細(xì)胞內(nèi)胞質(zhì)顆粒和囊泡環(huán)繞吞噬體并與之融合,把內(nèi)含物釋放到病原顆粒四周腔隙內(nèi),形成一個(gè)成熟的吞噬溶酶體,殺傷機(jī)理包括氧依賴和非氧依賴兩種類型。
氧依賴型吞噬機(jī)制通過吞噬細(xì)胞的呼吸爆發(fā)作用產(chǎn)生氧自由基和氮自由基。無乳鏈球菌利用 BiaA[48]、β-H/C[56]、超氧化物歧化酶(SodA)[57]、CiaR[58]和其他未知因子抵御宿主產(chǎn)生的活性氧,并通過CodY介導(dǎo)的arcABC操縱子,調(diào)節(jié)精氨酸代謝[59],抵抗誘導(dǎo)型一氧化氮合酶(iNOS)介導(dǎo)產(chǎn)生的一氧化氮。
非氧依賴吞噬機(jī)制,吞噬體內(nèi)具有低pH值、營養(yǎng)物質(zhì)匱乏環(huán)境[60],與此同時(shí),吞噬體內(nèi)胞質(zhì)顆粒和囊泡含有各種水解酶,如蛋白酶、核酸酶、磷酸酶、酯酶和脂肪酶以及抗菌肽,可以分解殺滅病原。無乳鏈球菌對低pH環(huán)境的適應(yīng),前面已經(jīng)闡述。在營養(yǎng)匱乏的環(huán)境下,細(xì)菌DNA的合成,抵抗活性氧類代謝都需要一定濃度的金屬離子。Guo等[53]將魚源無乳鏈球菌與小鼠巨噬細(xì)胞相互作用后,轉(zhuǎn)錄組結(jié)果顯示有大量調(diào)節(jié)氧氣壓力,適應(yīng)缺乏營養(yǎng)物質(zhì)環(huán)境的基因上調(diào)。近期,Shabayek等[61]也在無乳鏈球菌上發(fā)現(xiàn)NRAMP同源基因,該基因可以在低pH環(huán)境下介導(dǎo)鐵離子和錳離子的富集。Cai等[34]研究表明,phoB介導(dǎo)雙組分系統(tǒng)在限磷條件下調(diào)控毒力基因,因此在營養(yǎng)匱乏的環(huán)境下無乳鏈球菌可通過調(diào)控轉(zhuǎn)運(yùn)蛋白以獲取足夠編碼基因的元素[62]。無乳鏈球菌通過固有機(jī)制,如dlt操縱子催化磷壁酸D-丙氨?;种瓶咕牡慕Y(jié)合,下調(diào)D-丙氨酰化會減少細(xì)菌表面的負(fù)電荷,減少與陽離子結(jié)合抗菌肽結(jié)合,如硫酸粘桿菌素[57],無乳鏈球菌還會與宿主的蛋白激酶C互作,抑制蛋白激酶C的活化[63],以此抑制宿主細(xì)胞相關(guān)功能酶的激活。無乳鏈球菌通過調(diào)控轉(zhuǎn)錄適應(yīng)吞噬體的環(huán)境形成胞內(nèi)寄生,巨噬細(xì)胞可能作為無乳鏈球菌的臨時(shí)避難所,幫助避開宿主的免疫監(jiān)視,此外無乳鏈球菌還與海豚鏈球菌具有相似的機(jī)制,利用巨噬細(xì)胞的游走能力,偽裝成“特洛伊”木馬,擴(kuò)散到其他組織中[55]。
3.2.3 促進(jìn)吞噬細(xì)胞凋亡 無乳鏈球菌逃避宿主免疫反應(yīng)和傳播的重要策略是引起巨噬細(xì)胞凋亡,無乳鏈球菌可以通過介導(dǎo)吞噬細(xì)胞的自噬,而不引起細(xì)胞組分的釋放,以減少炎癥應(yīng)答[55]。無乳鏈球菌誘導(dǎo)吞噬細(xì)胞的凋亡分兩個(gè)階段,胞外階段和胞內(nèi)階段。
當(dāng)無乳鏈球菌處于胞外階段時(shí),通過上調(diào)β-H/C的表達(dá),引起巨噬細(xì)胞質(zhì)膜透性缺陷,激活鈣蛋白酶可使機(jī)體有大量的Ca2+涌入,干擾巨噬細(xì)胞肌動蛋白和微管,最終引起細(xì)胞骨架退化,導(dǎo)致巨噬細(xì)胞凋亡[64]。此外,中等濃度的β-H/C還可促進(jìn)巨噬細(xì)胞抗炎細(xì)胞因子IL-10表達(dá)和抑制炎癥細(xì)胞因子IL-12和NOS2表達(dá)[65]。無乳鏈球菌被巨噬細(xì)胞吞噬后,吞噬細(xì)胞的呼吸爆發(fā)產(chǎn)生CO不能殺死無乳鏈球菌[66],隨著細(xì)胞內(nèi)NO濃度的上升,NO調(diào)控吞噬細(xì)胞含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)合成[67],激活的 Caspase在靶蛋白的特異天冬氨酸殘基部位進(jìn)行切割,引起細(xì)胞程序性死亡。值得注意的是,該過程并不直接依賴β-H/C的作用[68],可能是由于吞噬體內(nèi)環(huán)境脅迫,抑制毒力基因表達(dá)的結(jié)果。此外鼠巨噬細(xì)胞的調(diào)亡與無乳鏈球菌表面和菌體裂解液中的 GAPDH 也有關(guān)[69]。
巨噬細(xì)胞的凋亡對于病原與宿主是一把雙刃劍。Wang等[54]用無乳鏈球菌感染羅非魚,F(xiàn)asL(Fas配體)在所有的感染組織中表達(dá)都上調(diào),體外用無乳鏈球菌刺激羅非魚淋巴細(xì)胞,出現(xiàn)FasL上調(diào)的現(xiàn)象,但是卻沒有引起淋巴細(xì)胞的凋亡或壞死。從宿主角度,宿主介導(dǎo)巨噬細(xì)胞凋亡,對病原具有免疫清除作用,同時(shí)作為共刺激信號激活T細(xì)胞。這可能也是病原逃避宿主免疫清除作用的一個(gè)機(jī)制,病原將FasL上調(diào)到很高的水平,加速巨噬細(xì)胞凋亡,減少宿主的免疫應(yīng)答。由于宿主與病原之間的相互關(guān)系復(fù)雜,因此對于無乳鏈球菌介導(dǎo)宿主巨噬細(xì)胞的機(jī)制還需要進(jìn)一步研究。
3.2.4 侵染穿透腸道、胃上皮組織 無乳鏈球菌在生物膜形成后,增加毒力基因的表達(dá),促進(jìn)細(xì)菌侵染腸上皮細(xì)胞進(jìn)入血液中,通過血液循環(huán)傳播侵染其他組織,無乳鏈球菌以吞噬細(xì)胞作為載體,避開宿主免疫,以類似于腸道生物膜形成機(jī)制[36]穿透血腦屏障,引起腦膜炎破壞中樞神經(jīng)系統(tǒng),最終導(dǎo)致魚體免疫系統(tǒng)的癱瘓。
無乳鏈球菌通過口腔進(jìn)入羅非魚胃腸道,可能是無乳鏈球菌感染羅非魚的主要途徑?,F(xiàn)階段,羅非魚作為研究魚源無乳鏈球菌的主要宿主,主要通過腹腔注射進(jìn)行感染研究,對于口服感染、灌胃等仿自然感染的模型還沒有建立,建立自然感染模型有利于了解宿主與病原之間的相互關(guān)系,一方面對防治無乳鏈球菌引起的魚鏈球菌病具有重要的應(yīng)用價(jià)值,另一方面無乳鏈球菌的感染宿主,從水生到陸生都有分布,因此通過對無乳鏈球菌與宿主之間關(guān)系的研究,對于理解病原宿主的協(xié)同進(jìn)化關(guān)系具有重要的理論指導(dǎo)意義。
由于無乳鏈球菌是一種人畜共患的致病菌,因此對其毒力基因、致病機(jī)理的研究已經(jīng)取得了較多的成果,但是現(xiàn)今對于羅非魚宿主免疫的研究還處于一個(gè)發(fā)展起步階段,雖然在體液免疫機(jī)理已經(jīng)得到了較深入的研究,但是許多魚類特殊的免疫機(jī)制還需要進(jìn)一步研究,如羅非魚T細(xì)胞免疫,通過了解羅非魚T細(xì)胞免疫,找出激活信號通路相關(guān)分子,可能是魚源鏈球菌病疫苗的下一個(gè)突破口,也有利于進(jìn)一步揭示魚源無乳鏈球菌的致病機(jī)理。其大體研究思路為:在核酸水平上,利用生物信息學(xué)分析的方法篩選并克隆羅非魚免疫的相關(guān)基因,利用CRISPR/Cas9敲除驗(yàn)證基因功能,或者用miRNA干擾沉默基因,驗(yàn)證下游通路基因的表達(dá)情況;在蛋白水平上,通過體外重組蛋白制備單克隆抗體,以GST pull-down等方法驗(yàn)證相關(guān)通路蛋白的相互作用,研究免疫信號調(diào)控通路;通過建立羅非魚淋巴細(xì)胞系在細(xì)胞水平上進(jìn)行驗(yàn)證。
[1]張新艷,樊海平,鐘全福等. 羅非魚無乳鏈球菌的分離、鑒定及致病性研究[J]. 水產(chǎn)學(xué)報(bào),2008,32(5):772-779.
[2]盧邁新. 羅非魚鏈球菌病研究進(jìn)展[J]. 南方水產(chǎn)科學(xué),2010,6(1):75-79.
[3]Jiraporn Kasornchandra D o F,Bangkok.Streptococcus iniae associated with mortality of farmed cobia (rachycentron canadum,linnaeus)[J]. Warasan Kan Pramong,2008(6):25-42.
[4]Suanyuk N,Kong F,Ko D,et al. Occurrence of rare genotypes of streptococcus agalactiae in cultured red tilapiaOreochromissp. And nile tilapia o. Niloticus in thailand—relationship to human isolates[J]. Aquaculture,2008,284(1–4):35-40.
[5]卓玉琛. 羅非魚暴發(fā)性流行病組織病理的研究[J]. 福建水產(chǎn),2008(3):27-30.
[6]Rombout J H,Tavernethiele A J,Villena M I.The gut-associated lymphoid tissue(galt)of carp(Cyprinus carpioL.):An immunocytochemical analysis[J]. Developmental & Comparative Immunology,1993,17(1):55-66.
[7]Rombout J H W M,Berg A A. Immunological importance of the second gut segment of carp. I.Uptake and processing of antigens by epithelial cells and macrophages[J]. Journal of Fish Biology,1989,35(1):13-22.
[8]Hernandez E,F(xiàn)igueroa J,Iregui C. Streptococcosis on a red tilapia,Oreochromissp.,farm:A case study[J]. Journal of Fish Diseases,2009,32(3):247-252.
[9]Jiménez A,Tibatá V,Junca H,et al. Evaluating a nested-pcr assay for detecting streptococcus agalactiae in red tilapia(Oreochromissp.)tissue[J]. Aquaculture,2011,321(3-4):203-206.
[10]Syuhaidah A,Noraini O,Mohd Y S,et al.Clinicopathological features and immunohistochemical detection of antigens in acute exper imentalstreptococcus agalactiaeinfection in red tilapia(Oreochromisspp.)[J]. Springer Plus,2013,2(1):286.
[11]Soto E,Zayas M,Tobar J,et al. Laboratorycontrolled challenges of nile tilapia(Oreochromis niloticus)with streptococcus agalactiae:Comparisons between immersion,oral,intracoelomic and intramuscular routes of infection[J]. Journal of Comparative Pathology,2016,155(4):339-345.
[12]Bromage E S,Owens L. Infection of barramundi lates calcarifer with streptococcus iniae:Effects of different routes of exposure[J]. Diseases of Aquatic Organisms,2002,52(3):199-205.
[13]Iregui C A,Comas J,Vasquez G M,et al.Experimental early pathogenesis of streptococcus agalactiae infection in red tilapiaOreochromisspp.[J]. Journal of Fish Diseases,2016,39(2):205-215.
[14]Nguyen H T,Kanai K,Yoshikoshi K. Ecological investigation of streptococcus iniae in cultured japanese flounder(paralichthys olivaceus) using selective isolation procedures[J]. Aquaculture,2002,205(1–2):7-17.
[15]Kim J H,Gomez D K,Chjr C,et al. Detection of major bacterial and viral pathogens in trash fish used to feed cultured flounder in korea[J].Aquaculture,2007,272(1-4):105-110.
[16]Shoemaker C A,Lim C. Growth response and acquired resistance of streptococcus iniae recovered nile tilapia,oreochromis niloticus//proceedings of the Eastern Fish Health Workshop Charleston,Sc March,F(xiàn)[C]. 2006:55.
[17]吉濱河,周路,曾紀(jì)財(cái). 尼羅羅非魚(Oreochromis niloticuslinn)胃酸的pH值,周日變化及其在消化蘭藻中的作用[J]. 廣東海洋大學(xué)學(xué)報(bào),1989(7):30-40.
[18]Moriarty D J W. The physiology of digestion of blue-green algae in the cichlid fish,tilapia nilotica[J]. Journal of Zoology,2010,171(1):25-39.
[19]Marufu L,Chifamba P. A comparison of diel feeding pattern,ingestion and digestive efficiency of oreochromis niloticus and oreochromis macrochir in lake chivero,zimbabwe[J]. African Journal of Aquatic Science,2013,38(2):221-228.
[20]郭恩彥,郭忠寶,羅永巨. 吉富羅非魚最適生長水溫研究[J]. 廣東海洋大學(xué)學(xué)報(bào),2011,31(1):88-93.
[21]Borges S,Silva J,Teixeira P. Survival and biofilm formation by group b streptococci in simulated vaginal fluid at different phs[J]. Antonie van Leeuwenhoek,2012,101(3):677.
[22]Ho Y R,Li C M,Yu C H,et al. The enhancement of biofilm formation in group b streptococcal isolates at vaginal ph[J]. Medical Microbiology and Immunology,2013,202(2):105-115.
[23]Yang Q,Porter A J,Zhang M,et al. The impact of ph and nutrient stress on the growth and survival of streptococcus agalactiae[J]. Antonie Van Leeuwenhoek,2012,102(2):277-287.
[24]Martinez A R,Abranches J,Kajfasz J K,et al. Characterization of the streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics[J]. Molecular Oral Microbiology,2010,25(5):331–342.
[25]Glaser P,Rusniok C,Buchrieser C,et al. Genome sequence of streptococcus agalactiae,a pathogen causing invasive neonatal disease[J]. Molecular Microbiology,2002,45(6):1499-1513.
[26]Santi I,Grifantini R,Jiang S M,et al. Csrrs regulates group b streptococcus virulence gene expression in response to environmental ph:A new perspective on vaccine development[J]. J Bacteriol,2009,191(17):5387-5397.
[27]Park S E,Jiang S,Wessels M R. Csrrs and environmental ph regulate group b streptococcus adherence to human epithelial cells and extracellular matrix[J]. Infection & Immunity,2012,80(11):3975-3984.
[28]Lamy M C,Zouine M,F(xiàn)ert J,et al. Covs/covr of group b streptococcus:A two-component global regulatory system involved in virulence[J].Molecular Microbiology,2004,54(5):1250.
[29]Schubert A,Zakikhany K,Schreiner M,et al.A fibrinogen receptor from group b streptococcus interacts with fibrinogen by repetitive units with novel ligand binding sites[J]. Molecular Microbiology,2002,46(2):557-569.
[30]Barato P,Martins E R,Vasquez G M,et al. Capsule impairs efficient adherence of streptococcus agalactiae to intestinal epithelium in tilapiasOreochromissp.[J]. Microb Pathog,2016,100:30-36.
[31]Toniolo C,Balducci E,Romano M R,et al.Streptococcus agalactiae capsule polymer length and attachment is determined by the proteins cpsabcd[J]. J Biol Chem,2015,290(15):9521-9532.
[32]Locke J B,Colvin K M,Datta A K,et al.Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish[J]. Journal of Bacteriology,2007,189(4):1279-1287.
[33]Rowe H M,Hanson B R,Runft D L,et al.Modification of the cpsa protein reveals a role in alteration of the streptococcus agalactiae cell envelope[J]. Infection and Immunity,2015,83(4):1497-1506.
[34]Cai X,Wang B,Peng Y,et al. Construction of a streptococcus agalactiae phob mutant and evaluation of its potential as an attenuated modified live vaccine in golden pompano,trachinotus ovatus[J]. Fish & Shellfish Immunology,2016,63:405-416.
[35]D'Urzo N,Martinelli M,Pezzicoli A,et al. Acidic ph strongly enhances in vitro biofilm formation by a subset of hypervirulent st-17 streptococcus agalactiae strains[J]. Applied & Environmental Microbiology,2014,80(7):2176.
[36]Isiaku A I,Sabri M Y,Ina-Salwany M Y,et al.Biofilm is associated with chronic streptococcal meningoencephalitis in fish[J]. Microbial Pathogenesis,2017,102:59-68.
[37]王培. 無乳鏈球菌誘導(dǎo)吉富羅非魚sigm、migd重鏈基因的克隆及表達(dá)分析[D]. 湛江:廣東海洋大學(xué),2014.
[38]煥,張武鳳,張小萍. 尼羅羅非魚IGt重鏈基因的克隆與表達(dá)分析[J]. 免疫學(xué)雜志,2016(12):1067-1072.
[39]Zhang Y A,Salinas I,Li J,et al. Igt,a primitive immunoglobulin class specialized in mucosal immunity[J]. Nature Immunology,2010,11(9):827-835.
[40]Cleary P,Retnoningrum D. Group a streptococcal immunoglobulin-binding proteins:Adhesins,molecular mimicry or sensory proteins[J].Trends in Microbiology,1994,2(4):131-136.
[41]Barnes A C,Horne M T,Ellis A E. Streptococcus iniae expresses a cell surface non-immune trout immunoglobulin-binding factor when grown in normal trout serum[J]. Fish & Shellfish Immunology,2003,15(5):425-431.
[42]Hine P M. The granulocytes of fish[J]. Fish &Shellfish Immunology,1992,2(2):79-98.
[43]Saggers B A,Gould M L. The attachment of micro-organisms to macrophages isolated from the tilapia oreochromis spilurus gunther[J].Journal of Fish Biology,2010,35(2):287-294.
[44]Matsuyama H,Yano T,Yamakawa T,et al.Opsonic effect of the third complement component(C3)of carp(cyprinus carpio)on phagocytosis by neutrophils[J]. Fish & Shellfish Immunology,1992,2(1):69-78.
[45]Chang Y C,Olson J,Beasley F C,et al. Group b streptococcus engages an inhibitory siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo[J].Plos Pathogens,2014,10(1):315-372.
[46]Yung-Chi Chang J O,Aaron Louie,Paul R. Crocker,Ajit Varki,Victor Nizet. Role of macrophage sialoadhesin in host defense against the sialylated pathogen group b streptococcus[J].Journal of Molecular Medicine,2014,92(9):951.
[47]Bohnsack J F,Takahashi S,Hammitt L,et al.Genetic polymorphisms of group b streptococcus scpb alter functional activity of a cell-associated peptidase that inactivates C5a[J]. Infection &Immunity,2000,68(9):5018-5025.
[48]Santi I,Scarselli M,Mariani M,et al. Biba:A novel immunogenic bacterial adhesin contributing to group b streptococcus survival in human blood[J]. Molecular Microbiology,2007,63(3):754-767.
[49]Jarva H,Hellwage J,Jokiranta T S,et al. The group b streptococcal beta and pneumococcal hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor h in an analogous fashion[J]. Journal of Immunology,2004,172(5):3111-3118.
[50]Bryan J D,Shelver D W. Cspa is a serine protease that inactivates chemokines[J]. Journal of Bacteriology,2009,191(6):1847-54.
[51]Gan Z,Chen S,Hou J,et al. Molecular and functional characterization of peptidoglycanrecognition protein sc2(pgrp-sc2) from nile tilapia(oreochromis niloticus)involved in the immune response to streptococcus agalactiae[J].Fish & Shellfish Immunology,2016,54:1-10.
[52]Qing-Lei S,Li S. A short-type peptidoglycan recognition protein from tongue sole(cynoglossus semilaevis) promotes phagocytosis and defense against bacterial infection[J]. Fish & Shellfish Immunology,2015,47(1):313-320.
[53]Guo C M,Chen R R,Kalhoro D H,et al.Identification of genes preferentially expressed by highly virulent piscine streptococcus agalactiae upon interaction with macrophages[J]. Plos One,2014,9(2):e87980.
[54]Wang J,Wu J,Yi L,et al. Pathological analysis,detection of antigens,fasl expression analysis and leucocytes survival analysis in tilapia(Oreochromis niloticus)after infection with green fluorescent protein labeled streptococcus agalactiae[J]. Fish & shellfish immunology,2017,62:86-95.
[55]Zlotkin A,Chilmonczyk S,Eyngor M,et al.Trojan horse effect:Phagocyte-mediated streptococcus iniae infection of fish[J]. Infection and Immunity,2003,71(5):2318-2325.
[56]Doran K S,Liu G Y,Nizet V. Group b streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis[J]. Journal of Clinical Investigation,2003,112(5):736.
[57]Poyart C,Pellegrini E,Gaillot O,et al.Contribution of mn-cofactored superoxide dismutase(soda)to the virulence of streptococcus agalactiae[J]. Infection & Immunity,2001,69(8):5098-5106.
[58]Quach D,van Sorge N M,Kristian S A,et al. The ciar response regulator in group b streptococcus promotes intracellular survival and resistance to innate immune defenses[J]. Journal of Bacteriology,2009,191(7):2023-2032.
[59]Vega L A,Valdes K M,Sundar G S,et al.The transcriptional regulator cpsy is important for innate immune evasion in streptococcus pyogenes[J]. Infection & Immunity,2016,IAI.00925-00916.
[60]Flannagan R S,Heit B,Heinrichs D E.Antimicrobial mechanisms of macrophages and the immune evasion strategies ofstaphylococcus aureus[J]. Pathogens,2015,4(4):826-868.
[61]Shabayek S,Bauer R,Mauerer S,et al. A streptococcal nramp homologue is crucial for the survival of streptococcus agalactiae under low ph conditions[J]. Molecular Microbiology,2016,100(4):589.
[62]Santi I,Grifantini R,Jiang S M,et al. Csrrs regulates group b streptococcus virulence gene expression in response to environmental ph:A new perspective on vaccine development[J].Journal of Bacteriology,2009,191(17):5387.
[63]Cornacchione P,Scaringi L,F(xiàn)ettucciari K,et al.Group b streptococci persist inside macrophages[J]. Immunology,1998,93(1):86–95.
[64]Fettucciari K,Quotadamo F,Noce R,et al.Group b streptococcus(gbs)disrupts by calpain activation the actin and microtubule cytoskeleton of macrophages[J]. Cellular Microbiology,2011,13(6):859–884.
[65]M B,ME H,S D,et al. The pore-forming toxin β hemolysin/cytolysin triggers p38 mapkdependent il-10 production in macrophages and inhibits innate immunity[J]. Plos Pathogens,2012,8(7):e1002812.
[66]Ulett G C,Adderson E E. Nitric oxide is a key determinant of group b streptococcus-induced murine macrophage apoptosis[J]. Journal of Infectious Diseases,2005,191(10):1761-1770.
[67]Kling D E,Tsvang I,Murphy M P,et al. Group b streptococcus induces a caspase-dependent apoptosis in fetal rat lung interstitium[J].Microbial Pathogenesis,2013,61-62(4):1-10.
[68]Ulett G C,Bohnsack J F,Armstrong J,et al.Beta-hemolysin-independent induction of apoptosis of macrophages infected with serotype iii group b streptococcus[J]. Journal of Infectious Diseases,2003,188(7):1049.
[69]Oliveira L,Madureira P,Andrade E B,et al.Group b streptococcus gapdh is released upon cell lysis,associates with bacterial surface,and induces apoptosis in murine macrophages[J].Plos One,2012,7(1):e29963.
Transmission routes of Streptococcus agalactiae and the strategy of immune evasion in tilapia
LI Yuan,WANG Bei,WANG Zhi-wen,CAI Xiao-hui,TANG Ju-fen,LU Yi-shan,JIAN Ji-chang
(Fisheries College of Guangdong Ocean University/Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemilogy for Aquatic Economic Animals/ Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes,Zhanjiang 524088,China)
Tilapia is one of the most important aquaculture fish in China. In recent years,the tilapia aquaculture industry was seriously damaged by the frequently outbreak of streptococcicosis. In this review,the transmission routes ofStreptococcus agalactiae,intestinal colonization and the mechanisms of immune evasion were discussed aim to provide useful idea for further research on pathogenesis ofS. agalactiaeand the prophylaxis and therapy for streptococcicosis of tilapia.
tilapia;Streptococcus agalactiae;transmission route;intestinal colonization;immune evasion
S917.1
A
1004-874X(2017)07-0132-09
黎源,王蓓,汪志文. 羅非魚無乳鏈球菌傳播途徑與逃避宿主免疫防御策略[J].廣東農(nóng)業(yè)科學(xué),2017,44(7):132-140.
2017-04-28
廣東高校國際合作創(chuàng)新平臺項(xiàng)目(2013gjhz0008);廣東省科技計(jì)劃國際科技合作項(xiàng)目(2017 A050501037)
黎源(1993-),男,在讀碩士生,E-mail:mark0622@126.com
魯義善(1974-),男,博士,教授,E-mail:fishdis@163.com
(責(zé)任編輯 崔建勛)