国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

中國設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀與未來研究方向

2017-02-07 23:40魏曉明張躍峰
農(nóng)業(yè)工程學(xué)報 2017年24期
關(guān)鍵詞:工程學(xué)日光溫室園藝

齊 飛,魏曉明,張躍峰

?

中國設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀與未來研究方向

齊 飛,魏曉明,張躍峰

(1. 農(nóng)業(yè)部規(guī)劃設(shè)計研究院,北京 100125; 2. 農(nóng)業(yè)部農(nóng)業(yè)設(shè)施結(jié)構(gòu)工程重點實驗室,北京 100125)

近年來,中國設(shè)施園藝裝備產(chǎn)業(yè)得到了跨越式發(fā)展,一個完備的技術(shù)體系正在逐步建立。受設(shè)施環(huán)境-作物交互影響機理缺乏、設(shè)施-設(shè)備匹配性差等因素的制約,中國設(shè)施園藝裝備在穩(wěn)定性、智能化等方面與國際先進水平仍存在較大差距,制約了產(chǎn)業(yè)效益水平和勞動生產(chǎn)效率的提升。有必要對中國設(shè)施園藝裝備技術(shù)進行一個系統(tǒng)總結(jié),為下一步產(chǎn)業(yè)的技術(shù)研發(fā)指明方向。該文在準確把握中國設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀的基礎(chǔ)上,從種苗裝備、生產(chǎn)裝備、物流裝備、管理裝備等4個環(huán)節(jié)入手,將中國設(shè)施園藝裝備技術(shù)與國際發(fā)達國家的水平進行了比對,并找出了相關(guān)差距。研究得出了中國設(shè)施園藝裝備技術(shù)發(fā)展中存在的技術(shù)研發(fā)系統(tǒng)性持續(xù)性不夠、與裝備匹配的農(nóng)藝參數(shù)積累缺乏、裝備的整體性和工程性亟需提高等問題,明確了區(qū)域化園藝作物生長機理、北方日光溫室結(jié)構(gòu)與裝備升級、全產(chǎn)業(yè)鏈自動化作業(yè)、園藝信息化智能化管理、非耕地基地化與城鎮(zhèn)化裝備等未來重點研發(fā)的方向,提出了制定設(shè)施園藝裝備技術(shù)創(chuàng)新發(fā)展規(guī)劃、實施設(shè)施園藝技術(shù)促進與產(chǎn)業(yè)促進的“全面趕超”計劃、創(chuàng)新以激發(fā)協(xié)同研發(fā)活力的體制機制、強化技術(shù)推廣服務(wù)體系建設(shè)等政策建議,從而為指導(dǎo)中國設(shè)施園藝裝備技術(shù)的革新提供借鑒。

溫室;裝備;技術(shù);設(shè)施園藝;發(fā)展現(xiàn)狀;重點研究方向

0 引 言

從當前現(xiàn)代農(nóng)業(yè)發(fā)展的要求看,“設(shè)施園藝”不僅是創(chuàng)造人工環(huán)境進行生產(chǎn)的過程,而應(yīng)以整個產(chǎn)業(yè)鏈為基礎(chǔ)、從實現(xiàn)使用價值的全過程出發(fā),在廣義上定義為:設(shè)施園藝是為農(nóng)產(chǎn)品商品化各階段提供最適宜環(huán)境和條件, 以擺脫自然環(huán)境和傳統(tǒng)生產(chǎn)條件的束縛,從而獲得高產(chǎn)、優(yōu)質(zhì)、高效農(nóng)產(chǎn)品的現(xiàn)代農(nóng)業(yè)經(jīng)營活動,具有高投入、高產(chǎn)出、高效益的特點[1-2]。設(shè)施園藝技術(shù)主要由生物、環(huán)境、工程3部分組成,將具有明顯工程特點、特別是裝備(含設(shè)施)特征的技術(shù)統(tǒng)稱為“裝備技術(shù)”,即那些在不同層次上具有完整功能、直接或間接通過裝備發(fā)揮效用的“設(shè)備、工藝、材料”,包括“種苗裝備技術(shù)、生產(chǎn)裝備技術(shù)、物流裝備技術(shù)、管理裝備技術(shù)”4方面[3]。

中國設(shè)施園藝技術(shù)經(jīng)過多年發(fā)展已全面突破并漸成體系,成為實現(xiàn)農(nóng)業(yè)現(xiàn)代化的重要技術(shù)手段。30多年來,科研項目及成果數(shù)量近700項[4],一個龐大、獨立、融合多學(xué)科及多門類科學(xué)知識的技術(shù)體系正在形成。作為主要載體的裝備技術(shù)也取得長足進步,中國已基本建立起立足本土的裝備研發(fā)、生產(chǎn)、服務(wù)體系,除部分信息化高技術(shù)裝備外,全面替代進口。從歷史和現(xiàn)實看,中國現(xiàn)代設(shè)施園藝裝備是在引進基礎(chǔ)上通過跨越式發(fā)展而來,受設(shè)施環(huán)境-作物交互影響機理研究缺乏、設(shè)施-設(shè)備匹配性差、裝備制造業(yè)整體水平低等因素的影響,在裝備質(zhì)量、技術(shù)含量、信息化、智能化方面與世界先進水平還存在差距,需在“十三五”找準方向、協(xié)同攻關(guān)、重點突破。

1 國內(nèi)外設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀與比較

1.1 總體發(fā)展現(xiàn)狀

中國現(xiàn)代設(shè)施園藝裝備技術(shù)發(fā)展始于20世紀90年代中期。整體上看,無論單項技術(shù)還是裝備集成都與發(fā)達國家存在較大差距。2012年中國設(shè)施園藝機械化水平僅為32.45%[5]、2014年蔬菜機械化綜合水平約20%,按農(nóng)業(yè)機械化發(fā)展階段理論劃分[6],處于發(fā)展初級階段。各作業(yè)環(huán)節(jié)發(fā)展也不均衡,如機耕、機灌施肥環(huán)節(jié)機械化率超過50%,但環(huán)境調(diào)控、機播、機收等環(huán)節(jié),機械化率仍較低[5]。

從全球看,荷蘭、美國、以色列等國的設(shè)施園藝已處在產(chǎn)業(yè)升級期,規(guī)?;痉€(wěn)定,但新裝備配置速度和裝備升級加快,集成再創(chuàng)新成為亮點[7],而中國仍處在設(shè)施園藝高速發(fā)展期,裝備技術(shù)研發(fā)積累不足、先進裝備推廣應(yīng)用速度落后于溫室工程建設(shè)速度,因此距世界先進國家的差距依然較大。但裝備技術(shù)發(fā)展的空間和潛力也很大,成為“十三五”乃至以后時期內(nèi)技術(shù)創(chuàng)新的目標和重點。

1.2 種苗裝備技術(shù)

種苗裝備主要由籽種生產(chǎn)加工裝備和種苗生產(chǎn)裝備2部分組成。籽種生產(chǎn)加工裝備包括育種、種子檢驗、種子加工(清選、分級、干燥、消毒、包衣等)裝備,種苗生產(chǎn)裝備包括種子處理、穴盤播種、嫁接繁育、移苗等裝備技術(shù)。

發(fā)達國家在育種技術(shù)和商品化方面一直占據(jù)領(lǐng)先地位,因此在裝備技術(shù)方面已很完善,如種子處理和播種裝備方面也已較為普及,目前研發(fā)重點在嫁接、移苗2方面,其中移苗技術(shù)產(chǎn)業(yè)化較快,但嫁接技術(shù)在效率上還有待提高。國外連棟溫室蔬菜種苗廣泛采用自動化生產(chǎn)線,荷蘭使用精量播種、嫁接、巖棉種苗生產(chǎn)線和機具,開發(fā)出穴盤輸送、巖棉塊搬運鋪放等物料搬運裝備,構(gòu)成自動化生產(chǎn)體系,實現(xiàn)了高效、省力、自動化生產(chǎn)[8]。

中國設(shè)施種苗裝備研發(fā)起步于20世紀80年代末,至今初步形成了較完整的裝備研發(fā)與生產(chǎn)體系,具有了一定的研發(fā)生產(chǎn)經(jīng)驗[9]。但裝備產(chǎn)品在技術(shù)含量和生產(chǎn)效果上還存在缺陷,如針對中小農(nóng)戶使用的播種機缺乏、播種效率和精度上還有待提高[10],嫁接機也存在低效、性價比不佳的情況[11-14],穴盤苗分選移栽機距離產(chǎn)業(yè)化應(yīng)用仍存在種苗質(zhì)量識別、專用手爪開發(fā)等技術(shù)瓶頸需要突破[15-19]。在實際生產(chǎn)應(yīng)用中,僅播種、覆土、基質(zhì)填裝等部分環(huán)節(jié)實現(xiàn)了機械化,但距種苗全程自動化生產(chǎn)的要求,仍存在較大差距。

1.3 生產(chǎn)裝備技術(shù)

生產(chǎn)裝備主要由設(shè)計、建造、環(huán)境調(diào)控、栽培、資源利用等5大類相關(guān)的設(shè)備技術(shù)組成。其中設(shè)計類包括工藝、建筑、結(jié)構(gòu)、水、電、暖;建造類包括骨架、圍護、施工機具;環(huán)境調(diào)控類包括增溫、降溫、調(diào)光、調(diào)濕、調(diào)氣、保溫;栽培類包括耕整、種植槽、施肥、植保裝備;資源利用類包括可再生能源、廢棄物利用、空間利用裝備等。

發(fā)達國家結(jié)合各自氣候特征、經(jīng)濟水平、種植習(xí)慣開發(fā)出了諸如Venlo連棟溫室[20-21]、管架塑料大棚、充氣膜溫室等適合各自國情的設(shè)施類型,形成了精準化的設(shè)計理論工具,如荷蘭開發(fā)了Classim、Kaspro等模擬軟件,對Venlo溫室溫光性能提升和結(jié)構(gòu)優(yōu)化起到了重要推動作用[22-23],荷蘭國家應(yīng)用科學(xué)研究院(Netherlands Organisation for Applied Science Research, TNO)開發(fā)了CASTA溫室結(jié)構(gòu)計算軟件供荷蘭統(tǒng)一使用。日本農(nóng)業(yè)食品產(chǎn)業(yè)技術(shù)綜合研究機構(gòu)(National Agriculture and Food Research Organization, NARO)、大學(xué)開發(fā)了超低成本并可抵御50m/s風(fēng)載的連棟管架塑料大棚。發(fā)達國家還不斷推出新的裝備,如荷蘭開發(fā)了減反射玻璃(anti-relection, AR)使透光率提高6%~8%,散射光玻璃提高作物產(chǎn)量10%左右[24];在節(jié)能上除已開發(fā)的淺層地?zé)崮?、中空玻璃保溫、熱電?lián)產(chǎn)(combined heat and power, CHP)技術(shù)外,在光伏溫室結(jié)構(gòu)形式[25-27]、光伏布置方式對作物影響[28-30]和下一代半封閉(semi-closed)溫室[31-32]的研究方面也取得較好進展,經(jīng)統(tǒng)計可將溫室每年每平方米天然氣能耗由40 m3降低到8 m3。

中國連棟溫室最早由國外引進,設(shè)施裝備主要參照荷蘭、美國等模式,目前基本實現(xiàn)國產(chǎn)化,但在結(jié)構(gòu)設(shè)計理論、重要部件生產(chǎn)方面仍依賴國外。如中國至今未正式頒布連棟溫室的設(shè)計規(guī)范,溫室企業(yè)也參照荷蘭、美國等國的規(guī)范進行設(shè)計;中國許多環(huán)境調(diào)控設(shè)備實現(xiàn)了國產(chǎn)化[33-34],但在設(shè)備間協(xié)同發(fā)揮以及栽培設(shè)備的匹配上,仍不盡人意。中國日光溫室已超過70萬hm2,在裝備上形成了不少具有鮮明特色和生產(chǎn)效用的產(chǎn)品[35-39],在光熱傳遞機理研究[40-45]、溫室結(jié)構(gòu)標準化[46-48]、設(shè)施裝備工程化方面取得了很多成果。但從產(chǎn)業(yè)發(fā)展的角度來看,95%以上設(shè)施簡陋、裝備水平低、環(huán)境調(diào)控及防災(zāi)能力差、勞動強度高;在結(jié)構(gòu)方面種類繁多,缺乏規(guī)范,類型達20多種[49],致使很多地方日光溫室建筑、結(jié)構(gòu)形式不合理,嚴重制約了保溫蓄熱性能的發(fā)揮,造成了大量的資源浪費和經(jīng)濟損失[50-53];日光溫室自動化程度較低,大部分溫室缺少環(huán)境調(diào)控和自動化操作設(shè)備[54],單位面積勞動生產(chǎn)率僅為日本的1/20、美國的1/40[55],溫室番茄年產(chǎn)10~15 kg/m2,黃瓜15~20 kg/m2,為國際先進水平的1/5~1/4[56],目前還面臨著成本升高、土地緊缺、比較效益降低、產(chǎn)品安全問題突出的挑戰(zhàn)。近年來,中國溫室研發(fā)人員也開展針對性的研究,不斷開發(fā)新型日光溫室結(jié)構(gòu)形式[57-60],來改變以上存在的問題。

1.4 物流裝備技術(shù)

物流裝備主要由內(nèi)部輸送、分級分選、清洗、包裝、儲藏保鮮、商品追溯等6大類相關(guān)設(shè)備組成。其中內(nèi)部輸送類包括苗床、天車、室內(nèi)叉車;分級分選類包括分級、分選裝備;清洗類包括洗凈、殺菌裝備等;包裝類包括包裝材料、機械裝備;儲藏保鮮類包括預(yù)冷、儲藏、保鮮裝備;商品追溯類包括條碼、射頻識別裝置、數(shù)據(jù)庫、商品標識等。

發(fā)達國家十分重視物流裝備的研發(fā),將其作為設(shè)施園藝商品化的最重要環(huán)節(jié)之一。荷蘭20世紀50年代起就有專門的研發(fā)企業(yè),幾乎與溫室同步。以最常用的輸送設(shè)備為例,美國、荷蘭等國利用物流輸送系統(tǒng)節(jié)約了30%的人工費用[61]。荷蘭盆花生產(chǎn)各環(huán)節(jié)均由輸送帶、自動搬運軌道、苗床天車和叉車等有機連接,構(gòu)成了內(nèi)部物流體系,大大提高了效率,減輕了勞動強度[62],如Walking Plant System使人工減少60%、空間使用率提高20%。裝備應(yīng)用極大提高了勞動生產(chǎn)效率,自動化則大幅減少了勞力、降低了操作失誤;更重要的是,主要環(huán)節(jié)的自動化,為信息化提供了條件,在荷蘭,生產(chǎn)管理軟件應(yīng)用達到100%。

中國在設(shè)施園藝自動化物流裝備的研發(fā)上基本處于起步階段,清洗、分級、包裝、追溯也大多采用通用設(shè)備,針對性不強,這主要受經(jīng)營規(guī)模的影響和農(nóng)產(chǎn)品價格的限制。近年來隨著勞動力成本上升和規(guī)模效益的驅(qū)動,國內(nèi)自動化物流裝備的研發(fā)逐步開始,但只被極少數(shù)高檔花卉溫室采用。適合日光溫室和連棟塑料大棚的簡易小型省力化物流設(shè)備,需求日益旺盛,但缺乏相應(yīng)技術(shù)標準來進行規(guī)范。

1.5 管理裝備技術(shù)

管理裝備主要由信息化管理、安全生產(chǎn)、現(xiàn)場檢測、設(shè)施維護等4大類相關(guān)設(shè)備組成。其中信息化管理類包括軟件(環(huán)境、綜合、運營等),硬件(傳感器、遠程傳輸裝備、ID識別裝備);安全生產(chǎn)類包括工程防疫、安全應(yīng)急;現(xiàn)場檢測類包括水體、氣體、土壤、農(nóng)藥殘留檢測裝備;設(shè)施維護類包括清洗、維修更換裝備等。

發(fā)達國家基于提質(zhì)、節(jié)本、安全的目的,非常重視管理裝備技術(shù)研發(fā),特別是在綜合管理信息化、操作維護自動化、省力化方面優(yōu)勢明顯。如荷蘭PRIVA公司在20世紀70年代中期就開發(fā)出第1套用于花卉栽培的管理專家系統(tǒng);國外盆花生產(chǎn)中,專家系統(tǒng)通過視覺系統(tǒng)、傳感器自動監(jiān)測盆花的生長狀況和環(huán)境狀況,分析各類相關(guān)數(shù)據(jù),判斷長勢,自動調(diào)控肥水、補光、通風(fēng)等,操作人員只進行監(jiān)視管理。

中國在栽培管理系統(tǒng)方面也有一定的開發(fā)與研究[63-65],但仍處于初級階段。在其他裝備技術(shù)方面,中國正處于研發(fā)逐步完善、應(yīng)用局部推進的階段。

2 中國設(shè)施園藝裝備技術(shù)發(fā)展中存在的問題

2.1 技術(shù)研發(fā)系統(tǒng)性和持續(xù)性不夠

受立項制度影響,中國自“十五”開展大規(guī)模、全方位的設(shè)施園藝科技攻關(guān)以后,立項數(shù)目、經(jīng)費總額開始逐年下降,目前規(guī)模也很小。事實上,中國第一次科研高潮是以模仿為主要技術(shù)路線,成果是直接面對應(yīng)用的“殼”,而非系統(tǒng)的技術(shù)產(chǎn)品。受體制影響,創(chuàng)新主要集中在科研機構(gòu)和大學(xué),科研行為主要以經(jīng)費為導(dǎo)向,而不是產(chǎn)業(yè)需求,加之中國設(shè)施園藝裝備企業(yè)整體科研素質(zhì)和實力弱,絕大多數(shù)從仿造中起步,原創(chuàng)性技術(shù)成果十分有限[66],即使在設(shè)施園藝長期的快速發(fā)展中,創(chuàng)新的系統(tǒng)性、持續(xù)性始終沒有根本提高,而多是“倒逼式”的發(fā)展或為避免“查重”而采取換湯不換藥的立項模式,那些尚未摸清規(guī)律的技術(shù)難題始終得不到徹底解決,客觀上形成了低水平的“惡性循環(huán)”。

2.2 與裝備匹配的農(nóng)藝參數(shù)缺乏長期的積累

設(shè)施園藝由農(nóng)機農(nóng)藝融合而起源,發(fā)揮技術(shù)潛力更有賴于農(nóng)機農(nóng)藝的耦合提升,在科研起步期,曾出現(xiàn)“重硬件、輕軟件”的狀況,隨后又出現(xiàn)了“重軟件、輕硬件”的現(xiàn)象,農(nóng)藝人員在缺乏對硬件了解的情況下單純研究作物栽培[67],各類科研成果難以銜接,針對不同氣候、區(qū)域、裝備的農(nóng)藝參數(shù)始終沒有形成權(quán)威性的結(jié)果,獲得的作物生長模型尚未在不同條件下得到廣泛的檢驗和應(yīng)用[68],直接造成了裝備研發(fā)針對性弱、產(chǎn)出長期徘徊不前、信息化管理裝備只有硬件而缺乏“頭腦”(針對特定作物和環(huán)境的控制策略)等問題。根本上講,裝備服務(wù)于植物生長,要實現(xiàn)在特定設(shè)施裝備條件下最大限度發(fā)揮生物潛能的最終目標,就需要長期的“生物-環(huán)境”大數(shù)據(jù)支撐,這又恰恰是中國所欠缺的。

2.3 裝備的整體性和工程性亟需提高

從中國設(shè)施園藝裝備技術(shù)的內(nèi)容上看,研發(fā)應(yīng)用已呈現(xiàn)出全面、完整的形態(tài),某些單項技術(shù)、裝備、材料也具有了一定的質(zhì)量水平和國際競爭力,但從完整的生產(chǎn)系統(tǒng)看,裝備的整體性有待加強,工程性還很不足。裝備整體性主要受設(shè)計理論、裝備質(zhì)量影響,在裝備配套的科學(xué)性、合理性上還沒有實現(xiàn)功能最優(yōu)、效益最佳的整體優(yōu)化狀態(tài);裝備的工程性主要體現(xiàn)在裝備的成熟性、實用性、穩(wěn)定性和可操作性上,中國在動力、環(huán)境調(diào)控、信息化和自動化裝備方面,還存在著效率發(fā)揮不足、質(zhì)量不穩(wěn)、操作安全性不高、維護困難等問題。此外,特定工程系統(tǒng)中不同裝備的技術(shù)成熟度也不均衡。

2.4 系統(tǒng)化的前瞻性研究還未展開

與中國農(nóng)業(yè)發(fā)展一樣,設(shè)施園藝也面臨著成本、效益、質(zhì)量、生態(tài)、土地、勞動力等方面的挑戰(zhàn),實現(xiàn)由大國向強國轉(zhuǎn)變的任務(wù)越來越緊迫和艱巨,因此要盡早建立適應(yīng)未來要求的技術(shù)支撐體系,以適應(yīng)中國設(shè)施園藝現(xiàn)代化的新要求,特別是針對日光溫室升級換代、連棟溫室高效高產(chǎn)、低碳材料與裝備等方面的技術(shù)需要及早部署研究。但從目前項目布局和科技計劃看,這些內(nèi)容或沒有得到重視或在進行小范圍的局部攻關(guān),系統(tǒng)化的研究布局尚未形成,前瞻性的研究體系還沒有得到完全確立。

3 未來重點研究方向

3.1 中國區(qū)域化園藝作物生長機理的長期協(xié)同研究

以加強設(shè)施園藝裝備技術(shù)研發(fā)基礎(chǔ)理論和實踐依據(jù)為目標,以果菜、葉菜、果樹為試驗對象,組織中國不同典型氣候區(qū)域的研發(fā)單位開展針對連棟溫室、北方日光溫室、南方連棟塑料大棚的“裝備-環(huán)境-生理”長期觀測研究,通過全國聯(lián)網(wǎng)的實時傳輸系統(tǒng)和定期的專家聯(lián)席會議機制,逐步建立中國不同區(qū)域相關(guān)設(shè)施裝備下溫、光、水、肥、氣等主要環(huán)境因子組合模式與作物產(chǎn)量及品質(zhì)的關(guān)系,為完善中國設(shè)施裝備條件下的生長模型提供長期、權(quán)威的基礎(chǔ)數(shù)據(jù)支撐,也為各類裝備的改進、研發(fā)提供量化的機理性指導(dǎo)。

3.2 北方日光溫室升級換代工程技術(shù)研究

為進一步提高日光溫室資源利用率、土地產(chǎn)出率、勞動生產(chǎn)率,以新設(shè)施、新材料、新裝備為重點,開展適應(yīng)不同區(qū)域的節(jié)地、節(jié)能、節(jié)勞動力、四季兼用的日光溫室標準化新結(jié)構(gòu)和栽培模式,使土地利用率、單位產(chǎn)量、人均管理規(guī)模得到顯著提高。通過此項研究,也為實現(xiàn)其他2個近遠期目標打好基礎(chǔ),一是為解決日光溫室日益嚴重的性能下降問題,為其改造重建提供技術(shù)支撐和裝備條件;二是為著手研發(fā)10 a后日光溫室的全面換代產(chǎn)品提供技術(shù)經(jīng)驗和裝備配套模式。

3.3 全產(chǎn)業(yè)鏈自動化關(guān)鍵技術(shù)與裝備研究

以溫室生產(chǎn)集約化、精細化、規(guī)?;?、高效化為目標,以番茄、黃瓜等大宗果菜為對象,瞄準世界先進水平,研究從籽種、生產(chǎn)到物流的全產(chǎn)業(yè)鏈自動化生產(chǎn)裝備,如育苗生產(chǎn)研發(fā)集成基質(zhì)處理、消毒、填料、播種、催芽、轉(zhuǎn)運、移苗等技術(shù)裝備;生產(chǎn)環(huán)節(jié)集成建造、環(huán)境控制、營養(yǎng)管理、植保、采收、低碳裝備等等,以信息化為管理手段,在中小規(guī)模上實現(xiàn)作物的優(yōu)質(zhì)高產(chǎn)指標(如番茄穩(wěn)產(chǎn)達到75 kg/m2以上);同時探索小規(guī)模新型“魚菜共生”系統(tǒng)的技術(shù)模式。該前瞻性研究的重點是通過國產(chǎn)裝備的研發(fā)集成實現(xiàn)設(shè)施整體功能最優(yōu),不僅為各類高新技術(shù)在其他低端設(shè)施上的應(yīng)用提供有針對性的借鑒,也為在基本定量的前提下實現(xiàn)商業(yè)化的高效生產(chǎn)打下良好基礎(chǔ)。

3.4 設(shè)施園藝信息化智能化裝備技術(shù)研究

以改造傳統(tǒng)裝備運行方式和管理模式為目標,以全面提高生產(chǎn)效率、效益、競爭力為目的,研發(fā)針對規(guī)模化設(shè)施園藝生產(chǎn)的信息化管理軟件(環(huán)境、栽培、能源、行為),開發(fā)基于區(qū)域性的設(shè)施園藝云計算數(shù)據(jù)庫(環(huán)境、成本、產(chǎn)量為重點),使軟件和云計算平臺實現(xiàn)規(guī)模以上生產(chǎn)的商業(yè)化運行。深入研究物聯(lián)網(wǎng)技術(shù)在設(shè)施園藝上的應(yīng)用,形成具有針對性的控制策略、傳輸策略與管理策略。開發(fā)設(shè)施園藝智能裝備技術(shù)和產(chǎn)品,如植保、內(nèi)部運輸、巡檢、采收、貨物管理等機器人,實現(xiàn)重點智能裝備的樣機研制和運行數(shù)據(jù)積累,為未來商業(yè)化開發(fā)打好基礎(chǔ)。

3.5 非耕地基地化與城鎮(zhèn)化裝備技術(shù)研究

以優(yōu)化種植業(yè)空間結(jié)構(gòu)、增加耕地儲備、創(chuàng)新設(shè)施園藝發(fā)展方式為目標,在小規(guī)模非耕地利用研究的基礎(chǔ)上,通過延伸技術(shù)鏈條、放大技術(shù)空間,使設(shè)施園藝非耕地技術(shù)向大規(guī)模擴展,將“生產(chǎn)”技術(shù)全面擴展到“生活、生態(tài)”技術(shù)方面,以裝備技術(shù)為主線、以低碳循環(huán)為特色,實現(xiàn)2個空間維度的技術(shù)應(yīng)用,一是形成城鎮(zhèn)邊緣非耕地“半島式”大規(guī)模生產(chǎn)基地;二是建設(shè)與城鎮(zhèn)分離的“孤島式”設(shè)施園藝城鎮(zhèn)。該研究主要是借鑒以色列發(fā)展設(shè)施園藝的經(jīng)驗,通過水資源高效利用、無土栽培技術(shù)的全面使用、基礎(chǔ)設(shè)施的配套,在非耕地大規(guī)模利用的前提下,實現(xiàn)設(shè)施園藝生產(chǎn)經(jīng)營的規(guī)?;?、效益化、持續(xù)化。

4 意見和建議

4.1 制訂設(shè)施園藝裝備技術(shù)創(chuàng)新發(fā)展規(guī)劃

中國設(shè)施園藝裝備研發(fā)不系統(tǒng)、不持續(xù)的問題由來已久,其他問題也與此相關(guān),雖然2011年出臺了第一個《全國設(shè)施農(nóng)業(yè)“十二五”發(fā)展規(guī)劃》,但側(cè)重于產(chǎn)業(yè),技術(shù)支撐的問題涉及很少。在中國設(shè)施園藝規(guī)模已居世界首位、作用凸顯的形勢下,應(yīng)盡早制定《設(shè)施園藝裝備技術(shù)創(chuàng)新發(fā)展規(guī)劃(2016-2025)》,以指導(dǎo)中國全領(lǐng)域、全行業(yè)科技創(chuàng)新工作。規(guī)劃重點是要立足農(nóng)業(yè)發(fā)展的新形勢、新矛盾,以中國由設(shè)施園藝大國向強國轉(zhuǎn)變?yōu)槟繕?,對重點研究領(lǐng)域、重要技術(shù)裝備、重大研究項目進行科學(xué)規(guī)劃,結(jié)合科技管理體制改革的新要求,對體制機制創(chuàng)新、保障體系建設(shè)進行安排,特別對那些長期存在的“短板”問題,要建立長期支持的重點扶持計劃,保障設(shè)施園藝裝備科技創(chuàng)新合理有序、持續(xù)健康發(fā)展。

4.2 實施設(shè)施園藝“全面趕超”發(fā)展計劃

通過綜合性發(fā)展計劃在短時間內(nèi)提升設(shè)施園藝產(chǎn)業(yè)的發(fā)展質(zhì)量和水平是許多國家的成功經(jīng)驗。如2011年荷蘭農(nóng)業(yè)部制定的“Kas als energiebron”計劃[69],日本2009年推出的《植物工廠基礎(chǔ)技術(shù)研究基地事業(yè)》和《植物工廠實證、展示和研修事業(yè)》[70]、2014年推出的《次世代設(shè)施園藝推進事業(yè)》[71]等。中國也應(yīng)針對整個設(shè)施園藝產(chǎn)業(yè)的薄弱環(huán)節(jié)、長期短板和國家現(xiàn)代農(nóng)業(yè)發(fā)展的階段性要求,從裝備技術(shù)提升、節(jié)能減排、經(jīng)營效益等方面,制訂綜合性的技術(shù)促進和產(chǎn)業(yè)促進“全面趕超”計劃,從技術(shù)、資金、人才、政策等多方面為設(shè)施園藝在短期內(nèi)實現(xiàn)適度的跨越式發(fā)展提供新契機、新動力。

4.3 創(chuàng)新體制機制激發(fā)協(xié)同主體研發(fā)活力

以激發(fā)設(shè)施園藝裝備技術(shù)創(chuàng)新主體活力、發(fā)揮不同層次創(chuàng)新主體作用為目標,通過財稅政策引導(dǎo)、技術(shù)推廣平臺建設(shè)、知識產(chǎn)權(quán)保護等措施,逐步形成科研院校關(guān)注基礎(chǔ)共性技術(shù)、企業(yè)積極投身應(yīng)用技術(shù)研發(fā)推廣的局面。如設(shè)立裝備技術(shù)研發(fā)促進基金,通過少量的政府投入拉動更大規(guī)模的社會研發(fā)資金;又如設(shè)立政府監(jiān)管下的成果“先使用,后付費”技術(shù)推廣機制,政府出資向產(chǎn)權(quán)單位擔(dān)保,在一定期限內(nèi)免費讓企業(yè)使用,到期再支付轉(zhuǎn)讓金等。此外,還要在立項、研發(fā)、應(yīng)用上推動協(xié)作機制,鼓勵農(nóng)機/農(nóng)藝、企業(yè)/院校、專家/用戶、國內(nèi)/國外深度融合、長期協(xié)作,通過這種以生產(chǎn)實踐檢驗結(jié)果來確定技術(shù)成果價值的方式鼓勵真正的創(chuàng)新者、合作者,促進裝備技術(shù)價值的真正實現(xiàn)。

4.4 強化設(shè)施園藝技術(shù)推廣服務(wù)體系建設(shè)

調(diào)研中發(fā)現(xiàn),中國農(nóng)技推廣隊伍中缺少設(shè)施園藝裝備技術(shù)人員,直接造成了許多不當技術(shù)設(shè)備的使用,影響到種植者效益。為確保裝備技術(shù)能更有效地應(yīng)用于生產(chǎn)實踐,應(yīng)進一步優(yōu)化技術(shù)推廣與服務(wù)體系,本著公益、市場相結(jié)合的方針,在公益性推廣部門中,通過增加人員數(shù)量、強化培訓(xùn)等方式,提高推廣的科學(xué)性、及時性;同時,通過市場化手段,建立社會化的推廣服務(wù)體系,調(diào)動企業(yè)、科研、教學(xué)機構(gòu)的積極性,吸引其廣泛參與,最終形成層次分明、分工協(xié)作、推廣到位、服務(wù)及時、充滿活力的技術(shù)推廣服務(wù)體系。

5 結(jié) 論

隨著中國溫室園藝面積的快速增長,現(xiàn)有設(shè)施裝備技術(shù)體系在技術(shù)含量、穩(wěn)定性、信息化、智能化等方面的不足,導(dǎo)致的對產(chǎn)業(yè)瓶頸制約作用越來越明顯,影響了產(chǎn)業(yè)整體效益水平和勞動生產(chǎn)效率的提升。本文按照溫室生產(chǎn)所涉及的種苗、生產(chǎn)、物流、管理4個環(huán)節(jié)入手,對中國設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀進行了分析,并于國際設(shè)施園藝發(fā)達國家的水平進行了比對,找出了在種苗全程自動化生產(chǎn)、溫室結(jié)構(gòu)標準化和設(shè)施設(shè)備工程化、室內(nèi)智能物流輸送技術(shù)研發(fā)和栽培管理系統(tǒng)開發(fā)等方面存在的差距。進而明確了設(shè)施園藝裝備產(chǎn)業(yè)發(fā)展中存在的技術(shù)研發(fā)系統(tǒng)性和持續(xù)性不夠、與裝備匹配的農(nóng)藝參數(shù)缺乏長期積累、裝備整體性和工程性亟需提高、系統(tǒng)化前瞻性研究還未展開等問題。針對性的提出包括:區(qū)域化園藝作物生長機理、北方日光溫室結(jié)構(gòu)與裝備升級、全產(chǎn)業(yè)鏈自動化作業(yè)、園藝信息化智能化管理、非耕地基地化與城鎮(zhèn)化裝備等未來重點研發(fā)的方向,以及制定設(shè)施園藝裝備技術(shù)創(chuàng)新發(fā)展規(guī)劃、實施設(shè)施園藝技術(shù)促進與產(chǎn)業(yè)促進的“全面趕超”計劃、創(chuàng)新以激發(fā)協(xié)同研發(fā)活力的體制機制、強化技術(shù)推廣服務(wù)體系建設(shè)等政策建議,供科研單位、政府部門未來計劃和政策的制定提供參考,為指導(dǎo)中國設(shè)施園藝裝備技術(shù)的革新、切實發(fā)揮裝備技術(shù)對設(shè)施園藝產(chǎn)業(yè)健康、持續(xù)發(fā)展的重要支撐作用,提供借鑒和保障。

[1] 郭世榮,孫錦,束勝,等. 國外設(shè)施園藝產(chǎn)業(yè)概況、特點及趨勢分析[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報,2012,35(5):43-52.

Guo Shirong, Sun Jin, Shu Sheng, et al. General situation’ charactics and trends of protected horticulture in foreigns[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 43-52. (in Chinese with English abstract)

[2] 設(shè)施園藝發(fā)展對策研究課題組. 我國設(shè)施園藝產(chǎn)業(yè)發(fā)展對策研究[J]. 長江蔬菜,2010(3):1-5.

[3] 齊飛,周新群,丁小明,等. 設(shè)施農(nóng)業(yè)工程技術(shù)分類方法探討[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(10):1-7.

Qi Fei, Zhou Xinqun, Ding Xiaoming, et al. Discussion on classification method of protected agricultural engineering technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 1-7. (in Chinese with English abstract)

[4] 魏曉明,齊飛,丁小明,等. 我國設(shè)施園藝取得的主要成就[J]. 農(nóng)機化研究,2010(12):222-226.

Wei Xiaoming, Qi Fei, Ding Xiaoming, et al. Main achievements in China facility horticulture[J]. Journal of Agricultural Mechanization Research, 2010(12): 222-226. (in Chinese with English abstract)

[5] 李中華,孫少磊,丁小明,等.我國設(shè)施園藝機械化水平現(xiàn)狀與評價研究[J]. 新疆農(nóng)業(yè)科學(xué),2014,51(6):1143-1148.

Li Zhonghua, Sun Shaolei, Ding Xiaoming, et al. Research on the present situation and evaluation of protected horticulture mechanization level in China[J]. Xinjiang Agricultural Sciences, 2014, 51(6): 1143-1148. (in Chinese with English abstract)

[6] 楊敏麗,白人樸. 我國農(nóng)業(yè)機械化發(fā)展的階段性研究[J]. 農(nóng)業(yè)機械學(xué)報,2005,36(12):167-170.

[7] 齊飛,周新群,張躍峰,等. 世界現(xiàn)代化溫室裝備技術(shù)發(fā)展及對中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(10):279-285.

Qi Fei, Zhou Xinqun, Zhang Yuefeng, et al. Development of world greenhouse equipment and technology and some implications to China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 279-285. (in Chinese with English abstract)

[8] 辜松,楊艷麗,張躍峰, 等. 荷蘭蔬菜種苗生產(chǎn)裝備系統(tǒng)發(fā)展現(xiàn)狀及對中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(14):185-194.

Gu Song, Yang Yanli, Zhang Yuefeng, et al. Development status of automated equipment systems for greenhouse vegetable seedlings production in Netherlands and its inspiration for China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(14): 185-194. (in Chinese with English abstract)

[9] 于亞波,伍萍輝,馮青春, 等. 我國蔬菜育苗裝備研究應(yīng)用現(xiàn)狀及發(fā)展對策[J]. 農(nóng)機化研究,2017(6):1-6. Yu Yabo, Wu Pinghui, Feng Qingchun, et al. Situation and strategy of automatic seedling machine in China[J]. Journal of Agricultural Mechanization Research, 2017(6): 1-6. (in Chinese with English abstract)

[10] 朱盤安,李建平,樓建忠,等. 便攜式蔬菜穴盤自動播種機設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(8):7-13.

Zhu Panan, Li Jianping, Lou Jianzhong, et al. Design and test of portable automatic vegetable seeding machine[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(8): 7-13. (in Chinese with English abstract)

[11] 姜凱,鄭文剛,張騫,等. 蔬菜嫁接機器人的研制與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(4):8-12.

Jiang Kai, Zheng Wengang, Zhang Qian, et al. Development and experiment of vegetable grafting robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 8-12. (in Chinese with English abstract)

[12] 彭玉平,辜松,初麒,等. 茄果類嫁接機砧木上苗裝置設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(11):76-82.

Peng Yuping, Gu Song, Chu Qi, et al. Design of stock feeding device of grafting robot for[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 76-82. (in Chinese with English abstract)

[13] 辜松. 2JC-350型蔬菜插接式自動嫁接機的研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(12):103-106.

Gu Song. Development of 2JC-350 automatic grafting machine with cut grafting method for vegetable seedling [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(12): 103-106. (in Chinese with English abstract)

[14] 辜松,李愷,初麒,等. 2JX-M系列蔬菜嫁接切削器作業(yè)試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(10):27-32.

Gu Song, Li Kai, Chu Qi, et al. Experiment of 2JX-M series vegetable cutting devices for grafting [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 27-32. (in Chinese with English abstract)

[15] 馮青春,王秀,姜凱, 等. 花卉幼苗自動移栽機關(guān)鍵部件設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(6):21-27.

Feng Qingchun, Wang Xiu, Jiang Kai, et al. Design and test of key parts on automatic transplanter for flower seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 21-27. (in Chinese with English abstract)

[16] 馮青春,劉新南,姜凱,等. 基于線結(jié)構(gòu)光視覺的穴盤苗外形參數(shù)在線測量系統(tǒng)研制及試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(21):143-149.

Feng Qingchun, Liu Xinnan, Jiang Kai, et al. Development and experiment on system for tray-seedling on-line measurement based on line structured-light vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 143-149. (in Chinese with English abstract)

[17] 孫國祥,汪小旵,何國敏. 基于邊緣鏈碼信息的番茄苗重疊葉面分割算法[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(12):206-211.

Sun Guoxiang, Wang Xiaochan, He Guomin. Segmentation algorithm of overlapping tomato seedling leaves based on edge chaincode information [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 206-211. (in Chinese with English abstract)

[18] 楊振宇,張文強,李偉. 基于單目視覺的移栽缽苗葉片朝向的調(diào)整方法[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(14):26-33.

Yang Zhenyu, Zhang Wenqiang, Li Wei. Monocular vision-based method for direction adjustment of transplanting potted-seedling leaves[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 26-33. (in Chinese with English abstract)

[19] 楊振宇,張文強,李偉. 利用單目視覺獲取缽苗移栽適合度信息的方法[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(3):112-119.

Yang Zhenyu, Zhang Wenqiang, Li Wei. Information acquisition method of potted-seedling transplanting fitness using monocular vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 112-119. (in Chinese with English abstract)

[20] Heuvelinka E, Batta L, Damen T. Transmission of solar radiation by a multispan Venlo-type glasshouse: validation of a model[J]. Agricultural and Forest Meteorology, 1995, 74(1): 41-59.

[21] Reichrath S, Davies T. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(3): 139-149.

[22] 楊其長. 荷蘭溫室結(jié)構(gòu)形式及其發(fā)展[J]. 農(nóng)業(yè)工程技術(shù):溫室園藝,2006(11):9-10.

[23] 楊其長. 荷蘭溫室技術(shù)發(fā)展歷程與啟始(上)[J]. 農(nóng)業(yè)工程技術(shù):溫室園藝,2006(9):9-10.

[24] Hemming S, Mohammadkhani V, Dueck T. Diffuse greenhouse covering materials-material technology, measurements and evaluation of optical properties[J]. Acta Horticulturae, 2008(797): 469-476.

[25] Sonneveld P, Swinkels G, Campen J, et al. Performance results of a solar greenhouse combining electrical and thermal energy production[J]. Biosystems Engineering, 2010, 106(1): 48-57.

[26] Sonneveld P, Swinkels G, Bot G, et al. Feasibility study for combining cooling and high grade energy production in a solar greenhouse[J]. Biosystems Engineering, 2010, 105(1): 51-58.

[27] Marucci A, Zambon I, Colantoni A, et al. A combination of agricultural and energy purposes: Valuation of a prototype of photovoltaic greenhouse tunnel[J]. Renewable and Sustainable Energy Reviews, 2018, 82(1): 1178-1186.

[28] Allardyce C, Fankhauser C, Zakeeruddin S, et al. The influence of greenhouse-integrated photovoltaics on crop production[J]. Solar Energy, 2017(155): 517-522.

[29] Trypanagnostopoulos G, Kavga A, Souliotis M, et al. Greenhouse performance results for roof installed photovoltaics[J]. Renewable Energy, 2017(111): 724-731.

[30] Cossu M, Murgia L, Ledda L, et al. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity[J]. Applied Energy, 2014(133): 89-100.

[31] Coomans M, Allaerts K, Wittemanns L, et al. Monitoring and energetic performance of two similar semi-closed greenhouse ventilation systems[J]. Energy Conversion and Management, 2013(76): 128-136.

[32] Katsoulas N, Sapounas A, Zwart F, et al. Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency[J]. Agricultural Water Management, 2015, (156): 90-99.

[33] 張國祥,傅澤田,張領(lǐng)先,等. 中國日光溫室機械卷簾技術(shù)發(fā)展現(xiàn)狀與趨勢[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(增刊1):1-10.

Zhang Guoxiang, Fu Zetian, Zhang Lingxian, et al. Development status and prospect of mechanical rolling shutter technology in solar greenhouse in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 1-10. (in Chinese with English abstract)

[34] 黃震宇,高浩天,朱森林,等. 南方連棟塑料溫室夏季機械通風(fēng)優(yōu)化設(shè)計[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(1):252-259,182.

Huang Zhenyu, Gao Haotian, Zhu Senlin, et al. Optimization design of mechanical ventilation for multi-span plastic greenhouses in southern China during summer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 252-259, 182. (in Chinese with English abstract)

[35] 陳超,張明星,鄭宏飛,等. 日光溫室用雙集熱管多曲面槽式空氣集熱器性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(15):245-252.

Chen Chao, Zhang Mingxing, Zheng Hongfei, et al. Thermal performance experiment for multiple clamber trough solar air collector with dual collector tubes for solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 245-252. (in Chinese with English abstract)

[36] 鮑恩財,朱超,曹晏飛,等. 固化沙蓄熱后墻日光溫室熱工性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):187-194.

Bao Encai, Zhu Chao, Cao Yanfei, et al. Thermal performance test of solidified sand heat storage wall in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 187-194. (in Chinese with English abstract)

[37] 李明,周長吉,丁小明,等. 日光溫室聚苯乙烯型磚復(fù)合墻保溫蓄熱性能[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(1):200-205.

Li Ming, Zhou Changji, Ding Xiaoming, et al. Heat insulation and storage performances of polystyrene-brick composite wall in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 200-205. (in Chinese with English abstract)

[38] 馬承偉,姜宜琛,程杰宇,等. 日光溫室鋼管屋架管網(wǎng)水循環(huán)集放熱系統(tǒng)的性能分析與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(21):209-216.

Ma Chengwei, Jiang Yichen, Cheng Jieyu, et al. Analysis and experiment of performance on water circulation system of steel pipe network formed by roof truss for heat collection and release in Chinese solar greenhouse [J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(21): 209-216. (in Chinese with English abstract)

[39] 方慧,張義,楊其長,等. 日光溫室金屬膜集放熱裝置增溫效果的性能測試[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(15):177-182.

Fang Hui, Zhang Yi, Yang Qichang, et al. Performance testing on warming effect of heat storage-release metal film in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 177-182. (in Chinese with English abstract)

[40] 張勇,鄒志榮. 日光溫室主動采光機理與透光率優(yōu)化試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):178-186.

Zhang Yong, Zou Zhirong. Optimization experiment of light transmittance and active lighting mechanism of solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 178-186. (in Chinese with English abstract)

[41] 白青,張亞紅,孫利鑫. 基于溫波傳遞理論的日光溫室土墻體蓄熱層及墻體厚度分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(22):207-213.

Bai Qing, Zhang Yahong, Sun Lixin. Analysis on heat storage layer and thickness of soil wall in solar greenhouse based on theory of temperature-wave transfer[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 207-213. (in Chinese with English abstract)

[42] 韓亞東,薛學(xué)武,羅新蘭,等.日光溫室內(nèi)太陽輻射估算模型的構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(10):174-181.

Han Yadong, Xue Xuewu, Luo Xinlan, et al. Establishment of estimation model of solar radiation within solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 174-181. (in Chinese with English abstract)

[43] 張勇,高文波,鄒志榮. 日光溫室主動蓄熱后墻傳熱CFD模擬及性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(5):203-211.Zhang Yong, Gao Wenbo, Zou Zhirong. Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 203-211. (in Chinese with English abstract)

[44] Zhang X,Wang H,Zou Z,et al. CFD and weighted entropy based simulation and optimization of Chinese Solar greenhouse temperature distribution[J]. Biosystems Engineering, 2016(142): 12-26.

[45] Tong G, Christopher D, Li B. Numerical modelling of temperature variations in a Chinese solar greenhouse[J]. Computers and Electronics in Agriculture, 2010, 68(1): 129-139.

[46] 曹晏飛,荊海薇,趙淑梅,等. 日光溫室后屋面投影寬度與墻體高度優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(7):183-189.

Cao Yanfei, Jing Haiwei, Zhao Shumei, et al. Optimization of back roof projection width and northern wall height in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 183-189. (in Chinese with English abstract)

[47] 李明,周長吉,魏曉明. 日光溫室墻體蓄熱層厚度確定方法[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(2):177-183.

Li Ming, Zhou Changji, Wei Xiaoming. Thickness determination of heat storage layer of wall in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 177-183. (in Chinese with English abstract)

[48] 李明,周長吉,周濤,等. 日光溫室土墻傳熱特性及輕簡化路徑的理論分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):175-181.

Li Ming, Zhou Changji, Zhou Tao, et al. Heat transfer process of soil wall in Chinese solar greenhouse and its theoretical simplification methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 175-181. (in Chinese with English abstract)

[49] 魏曉明,周長吉,曹楠,等. 中國日光溫室結(jié)構(gòu)及性能的演變[J]. 江蘇農(nóng)業(yè)學(xué)報,2012,28(4):855-860.

Wei Xiaoming, Zhou Changji, Cao Nan, et al. Evolution of structure and performance of Chinese solar greenhouse[J]. Jiangsu Journal of Agriculture Science, 2012, 28(4): 855-860. (in Chinese with English abstract)

[50] 火玉潔,張成榮,李桃,等.日光溫室優(yōu)化設(shè)計原理及標準建立研究[J]. 山西農(nóng)業(yè)科學(xué),2014,42(1):69-73.

Huo Yujie, Zhang Chengrong, Li Tao, et al. Principle of solar greenhouse optimization design and standard establishment[J]. Journal of Shanxi Agricultural Sciences, 2014, 42(1): 69-73. (in Chinese with English abstract)

[51] 陳來生. 青海日光溫室建設(shè)現(xiàn)狀、問題與對策探討[J]. 青海農(nóng)林科技,2011(4):14-16.

Chen Laisheng. Current statements, problems and countermeasures of sunshine greenhouse construction in Qinghai province[J]. Qinghai Academy of Agriculture and Forestry, 2011(4): 14-16. (in Chinese with English abstract)

[52] 張紀濤,林琭,閆萬麗,等. 山西省日光溫室結(jié)構(gòu)問題的調(diào)查研究[J]. 中國蔬菜,2013(4):90-94.

Zhang Jitao, Lin Lu, Yan Wanli, et al. Investigation and studies on structure of solar greenhouse in Shanxi province[J]. China Vegetable, 2013(4): 90-94. (in Chinese with English abstract)

[53] 齊飛,魏曉明,金新文. 南疆生產(chǎn)建設(shè)兵團日光溫室建造中的主要技術(shù)問題調(diào)查分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(23):199-206.

Qi Fei, Wei Xiaoming, Jin Xinwen. Investigation and analysis of main technical problems during construction of solar greenhouse in South Xinjiang by Xinjiang Production and Construction Corps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 199-206. (in Chinese with English abstract)

[54] 蔣衛(wèi)杰,鄧杰,余宏軍. 設(shè)施園藝發(fā)展概況、存在問題與產(chǎn)業(yè)發(fā)展建議[J]. 中國農(nóng)業(yè)科學(xué),2015,48(17):3515-3523.

Jiang Weijie, Deng Jie, Yu Hongjun. Development situation, problems and suggestions on industrial development of protected horticulture[J]. Scientia Agricultura Sinica, 2015, 48(17): 3515-3523. (in Chinese with English abstract)

[55] 方虹. 國內(nèi)外日光溫室技術(shù)裝備的研究與應(yīng)用分析[J]. 農(nóng)業(yè)科技與裝備,2014,239(5):40-41.

Fang Hong, Analysis of research and application of solar greenhouse technology and equipment at home and abroad[J]. Agricultural Science and Technology and Equipment, 2014,239(5): 40-41. (in Chinese with English abstract)

[56] 喻景權(quán). “十一五”我國設(shè)施蔬菜生產(chǎn)和科技進展及其展望[J]. 中國蔬菜,2011(2):11-23.

Yu Jingquan. Progress in protected vegetable production and research during ‘The Eleventh Five-year Plan’ in China[J]. China Vegetable, 2011(2): 11-23. (in Chinese with English abstract)

[57] 孫周平,黃文永,李天來,等. 彩鋼板保溫裝配式節(jié)能日光溫室的溫光性能[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(19):159-167.

Sun Zhouping, Huang Wenyong, Li Tianlai, et al. Light and temperature performance of energy-saving solar greenhouse assembled with color plate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 159-167. (in Chinese with English abstract)

[58] 周波,張義,方慧,等. 裝配加溫除濕系統(tǒng)的輕簡裝配式日光溫室設(shè)計及性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(11):226-232.

Zhou Bo, Zhang Yi, Fang Hui, et al. Performance experiment and design of simply assembled Chinese solar greenhouse equipped with heating and dehumidification system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 226-232. (in Chinese with English abstract)

[59] 張勇,鄒志榮,李建明. 傾轉(zhuǎn)屋面日光溫室的采光及蓄熱性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(1):129-137.

Zhang Yong, Zou Zhirong, Li Jianming. Performance experiment on lighting and thermal storage in tilting roof solar-greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 129-137. (in Chinese with English abstract)

[60] 周升,張義,程瑞鋒,等. 大跨度主動蓄能型溫室溫濕環(huán)境監(jiān)測及節(jié)能保溫性能評價[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(6):218-225.

Zhou Sheng, Zhang Yi, Cheng Ruifeng, et al. Evaluation on heat preservation effects in micro environment of large scale greenhouse with active heat storage system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 218-225. (in Chinese with English abstract)

[61] 辜松,楊艷麗,張躍峰. 荷蘭溫室盆花自動化生產(chǎn)裝備系統(tǒng)的發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(19):1-8.

Gu Song, Yang Yanli, Zhang Yuefeng. Development status of automated equipment systems for greenhouse potted flowers production in Netherlands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 1-8. (in Chinese with English abstract)

[62] 姚蓉. 溫室內(nèi)部物流:花卉生產(chǎn)的革命[N]. 中國花卉報,2011-01-01(4).

[63] 陳育輝,許楚榮,劉霓紅,等. 溫室管理信息系統(tǒng)在種植栽培管理的應(yīng)用研究[J]. 現(xiàn)代農(nóng)業(yè)裝備,2010(8):46-49.

[64] 季宇寒,李婷,張漫,等. 基于WSN的溫室CO2氣肥優(yōu)化調(diào)控系統(tǒng)研究[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(增刊1):201-207.

Ji Yuhan, Li Ting, Zhang Man, et al. Design of CO2fertilizer optimizing control system on WSN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(Supp.1): 201-207. (in Chinese with English abstract)

[65] 張漫,李婷,季宇寒,等. 基于BP神經(jīng)網(wǎng)絡(luò)算法的溫室番茄CO2增施策略優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(8):239-245.

Zhang Man, Li Ting, Ji Yuhan, et al. Optimization of CO2enrichment strategy based on BPNN for tomato plants in greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 239-245. (in Chinese with English abstract)

[66] Miguel C, Heuvelink E. Protected Cultivation Rising in China[J]. Flower Tec, 2004(2): 18-21.

[67] 齊飛. 我國溫室及配套設(shè)備產(chǎn)業(yè)現(xiàn)狀及發(fā)展趨勢[J]. 上海農(nóng)業(yè)學(xué)報,2005,21(1):53-57.

Qi Fei, The conditions & trends of Chinese greenhouse and equipment industry[J]. Acta Agriculturae Shanghai, 2005, 21(1): 53-57. (in Chinese with English abstract)

[68] 陳威,郭書普. 中國農(nóng)業(yè)信息化技術(shù)發(fā)展現(xiàn)狀及存在的問題[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(22):196-205.

Chen Wei, Guo Shupu. Current situation and existing problems of agricultural informatization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 196-205. (in Chinese with English abstract)

[69] Hemming S, Zward H, Swinkels G. Development of electricity producing greenhouses: Two case studies[J]. Acta Horticulturae . 2014, (1037): 129-136.

[70] 篠原溫. 植物工場をめぐる動向[R/OL]. 2016-05-01[2017-11-02]http://vegetable.alic.go.jp/yasaijoho/wadai/1105/wadai1.html

[71] 農(nóng)林水產(chǎn)省.次世代施設(shè)園蕓について[R/OL]. 2016-06-12[2017-11-02]http://www.maff.go.jp/j/seisan/ryutu/engei/NextGenerationHorticulture

Development status and future research emphase on greenhouse horticultural equipment and its relative technology in China

Qi Fei, Wei Xiaoming, Zhang Yuefeng

(1.100125,; 2.,100125,)

With the fast increasing of greenhouse scale, the Chinese greenhouse horticultural equipment industry also developed rapidly in recent years. A complete technology system would be establishing gradually. On account of shortage for influencing mechanism between greenhouse environment and plant demand, poor matching of greenhouse with equipment and low level of the whole equipment manufacturing industry, the level of greenhouse horticultural equipment in China is lower than that in developed country in the aspects of technical content, stability, information and intelligent level. The mechanization rate of greenhouse horticulture in China is only 32.45% in 2012, and there was imbalance of mechanization rate among the processes of greenhouse horticulture such as plough, cultivate, harvest, environmental control and so on. These situation limiting the improvement of effectiveness level and labor productivity of greenhouse horticulture industry in China. After the announcement of Made in China 2025 Action Plan, it is necessary to make a systematic summary for equipment and relative technology of greenhouse horticulture in China, and to point out the research main points of the greenhouse horticultural equipment which play the real supporting function roles in greenhouse horticulture. Based on obtaining the present status of Chinese greenhouse horticulture equipment technology exactly, the level of greenhouse horticulture equipment in China was compared with that in the developed country from the aspects of seeding breeding equipment, cultivation producing equipment, logistics transporting equipment, plant management equipment, and the relative gap between countries was found. Meanwhile, the problems existing in the development of Chinese greenhouse horticulture equipment technology were point out, such as: lacking of systematic and constant research and innovation, shortage of accumulation in agronomic technique matching with equipment, absence of systematic research for future technology, insufficiency of integrity and engineering for equipment. The future key research tasks in Chinese greenhouse horticulture equipment were formulated, such as: 1)long-term collaborative research for regional greenhouse horticultural crop growth mechanism, which conducted the continues monitoring for equipment, environment and crop physiology in multi-span greenhouse, Chinese solar greenhouse in the north of China and plastic film greenhouse in the south of China, and established the relation model between mainly environment parameters and crop yield under different greenhouse equipment conditions in different region; 2)technology research for upgrade and update of Chinese solar greenhouse, which developed the new greenhouse structure and cultivation model to achieve whole year planting, labor force saving, land saving and energy saving; 3) whole industrial chain automatic production technology and equipment research, which developed the equipment for seed breeding, cultivation, harvesting and logistics, to archived vegetable automatic production in greenhouse; 4) research for greenhouse horticulture intelligent management equipment, which developed the information management software for large greenhouse production and established regional greenhouse horticulture cloud computing database; 5) research for non-cultivated land greenhouse equipment, which integrated the water saving irrigation technology and soilless cultivation technology to archive planting in greenhouse in non-cultivated land. The policy suggestions were also put forward such as making greenhouse horticultural equipment technology innovation plan, establishing technology promotion service system and so on. This article should provide an important reference for making future planning and policy by government and scientific research institutions and for guiding the innovation of Chinese greenhouse horticulture equipment technology.

greenhouses; equipment; technology; greenhouse horticulture; development status; research emphasis

10.11975/j.issn.1002-6819.2017.24.001

S62

A

1002-6819(2017)-24-0001-09

2016-11-02

2017-12-11

國家重點研發(fā)計劃項目(2017YFD0701500)

齊 飛,總工程師、研究員,主要從事溫室結(jié)構(gòu)、設(shè)備、材料和產(chǎn)業(yè)發(fā)展方面的研究。Email:qf2008@188.com

齊 飛,魏曉明,張躍峰. 中國設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀與未來研究方向[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(24):1-9. doi:10.11975/j.issn.1002-6819.2017.24.001 http://www.tcsae.org

Qi Fei, Wei Xiaoming, Zhang Yuefeng. Development status and future research emphase on greenhouse horticultural equipment and its relative technology in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 1-9. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.001 http://www.tcsae.org

猜你喜歡
工程學(xué)日光溫室園藝
日光溫室番茄高產(chǎn)高效栽培技術(shù)
《水利水運工程學(xué)報》征稿簡則
模塊化蓄熱墻體日光溫室研究進展
歡迎訂閱2022年《北方園藝》
上海市醫(yī)學(xué)會臨床醫(yī)學(xué)工程學(xué)分會第十五屆學(xué)術(shù)年會圓滿舉行
園藝奇葩
園藝系
《照明工程學(xué)報》征稿簡則
園藝
北方冬季日光溫室番瓜高產(chǎn)栽培技術(shù)
靖江市| 和平县| 金门县| 陆丰市| 邵东县| 闻喜县| 龙胜| 汉寿县| 黄大仙区| 桐柏县| 西畴县| 综艺| 南昌市| 南郑县| 通榆县| 广德县| 竹溪县| 当阳市| 宁德市| 唐河县| 尤溪县| 成武县| 巴东县| 手游| 江永县| 北宁市| 托克逊县| 景泰县| 察隅县| 桑植县| 万宁市| 宁晋县| 上思县| 河西区| 嫩江县| 竹溪县| 尼玛县| 札达县| 唐河县| 德兴市| 成武县|