孟 順, 吳江全,2, 孫紹增,2, 趙義軍,2, 王鵬翔, 王 東, 秦裕琨,2
(1.哈爾濱工業(yè)大學(xué) 能源科學(xué)與工程學(xué)院,哈爾濱150001; 2.燃煤污染物減排國(guó)家工程實(shí)驗(yàn)室(哈爾濱工業(yè)大學(xué)),哈爾濱150001)
?
氣氛和壓力對(duì)脫灰煤顆粒著火溫度的影響
孟 順1, 吳江全1,2, 孫紹增1,2, 趙義軍1,2, 王鵬翔1, 王 東1, 秦裕琨1,2
(1.哈爾濱工業(yè)大學(xué) 能源科學(xué)與工程學(xué)院,哈爾濱150001; 2.燃煤污染物減排國(guó)家工程實(shí)驗(yàn)室(哈爾濱工業(yè)大學(xué)),哈爾濱150001)
為實(shí)現(xiàn)高效低污染能源利用,提出煤基燃料氧水蒸氣燃燒的近零排放發(fā)電技術(shù).在一維沉降爐上研究伊敏脫灰煤、準(zhǔn)東脫灰煤在不同氧濃度、水蒸氣濃度下的著火溫度,并利用快速升溫水蒸氣高壓熱重分析儀研究壓力對(duì)著火溫度的影響.結(jié)果表明:氧濃度對(duì)脫灰煤著火溫度影響較大,隨著氧體積濃度的增加,著火溫度逐漸降低;隨著水蒸氣體積濃度的增加,脫灰煤著火溫度逐漸升高,水蒸氣體積分?jǐn)?shù)從10%~50%每增加10%,著火溫度升高約30℃.當(dāng)壓力小于1.0 MPa時(shí),隨著壓力的增加,準(zhǔn)東脫灰煤著火溫度降低;當(dāng)壓力在1.0~2.0 MPa增大時(shí),著火溫度基本不變;在壓力大于2.0 MPa時(shí),著火溫度逐漸升高.
脫灰煤;氧燃燒;水蒸氣;著火溫度;熱重分析
近年來,環(huán)境污染和全球氣候變化越來越受到各國(guó)的重視,研究和開發(fā)先進(jìn)的潔凈煤燃燒技術(shù)具有重要的意義.富氧燃燒技術(shù)是一項(xiàng)非常有潛力的CO2減排技術(shù).加拿大CANMET能源技術(shù)中心Salvador[1]和美國(guó)的Anderson等[2-3]都提出了采用水作為稀釋劑的富氧燃燒技術(shù),并進(jìn)行了大量的研究.基于中國(guó)以煤為主的能源結(jié)構(gòu),孫紹增等[4-5]提出了煤基燃料氧水蒸氣燃燒近零排放發(fā)電技術(shù),原煤經(jīng)過去礦物質(zhì)預(yù)處理,得到超凈煤,在純氧條件下燃燒,把逐級(jí)噴入燃燒室內(nèi)的水直接加熱成高溫高壓混合氣體(水蒸氣體積分?jǐn)?shù)90%左右,其余以CO2為主),推動(dòng)先進(jìn)的透平做功,排氣中的水蒸氣冷凝后得到高濃度的CO2,實(shí)現(xiàn)CO2的低成本捕集.煤中的礦物質(zhì)制約著煤的清潔和高效利用,礦物質(zhì)的組分和含量影響著煤著火、燃燒及氣化特性[6-7].礦物質(zhì)能夠通過化學(xué)方法洗去,HPC[8-9](hyper-coal) 和 UCC[10-11](ultra clean coal)技術(shù)能獲取灰分質(zhì)量分?jǐn)?shù)低于0.1%的脫灰煤,它能夠直接應(yīng)用在燃?xì)廨啓C(jī)、整體煤氣化聯(lián)合循環(huán)發(fā)電和先進(jìn)的煤燃燒技術(shù)中,提高了燃燒效率并減少了污染物的排放[12-13].已有研究表明[14-16],脫灰煤的燃燒、氣化和熱解特性比原煤好很多,因此,原煤去礦物質(zhì)處理是潔凈煤燃燒的重要處理過程.
煤粉顆粒著火過程的研究對(duì)于煤高效穩(wěn)定燃燒是非常重要的.煤粉顆粒的著火特性不僅受顆粒自身特性的影響,而且受顆粒周圍著火環(huán)境的影響[17-21].煤粉顆粒的著火與煤種、顆粒大小、揮發(fā)分含量等有關(guān),其著火模式能夠從異相著火到均相著火變化[22].初偉[23]研究發(fā)現(xiàn)O2/CO2氣氛下,隨著氧濃度的增加著火溫度逐漸降低.喬瑜等[24-25]研究發(fā)現(xiàn)在O2/CO2氣氛下煤粉顆粒的著火較空氣氣氛下延遲,顆粒周圍氣氛的導(dǎo)熱特性對(duì)顆粒的著火溫度具有重要的影響.鄒春等[26]對(duì)原煤在O2/H2O氣氛下的燃燒特性進(jìn)行了研究,發(fā)現(xiàn)O2/H2O氣氛下煤粉的著火較空氣氣氛下出現(xiàn)延遲,隨著氧濃度的增加,煤粉的著火溫度降低.
煤基燃料氧水蒸氣燃燒技術(shù)在燃燒條件和燃料上具有特殊性,整個(gè)燃燒過程具有高溫、高壓、高氧濃度和高水蒸氣濃度的特點(diǎn).燃料由于去除了灰,表現(xiàn)為純煤的燃燒特性,其著火特性將發(fā)生很大變化.已有的研究主要集中在燃燒氣氛對(duì)原煤的著火溫度的影響,脫灰煤在O2/H2O氣氛下的著火特性還未見相關(guān)研究,因此,高水蒸氣濃度氧燃燒條件下脫灰煤的著火特性的研究具有重要的科學(xué)意義.
本文在一維沉降爐上研究伊敏脫灰煤(YMT)和準(zhǔn)東脫灰煤(ZDT)在不同氧濃度和不同水蒸氣濃度下的著火溫度,分析氧濃度和水蒸氣濃度對(duì)著火溫度的影響,并利用快速升溫水蒸氣高壓熱重分析儀研究壓力對(duì)脫灰煤著火溫度的影響,獲得脫灰煤在高水蒸氣濃度氧燃燒條件下著火特性的清晰認(rèn)識(shí).
對(duì)于煤粉著火溫度的測(cè)量一般不能直接得到其著火溫度的絕對(duì)值,而是通過一些間接的方法代表煤粉顆粒的著火溫度[27].考慮到沉降爐具有高升溫速率(103~104℃/s)以及良好的動(dòng)態(tài)性能等特點(diǎn),煤粉顆粒處于氣體攜帶狀態(tài),更貼合實(shí)際鍋爐反應(yīng)狀況,所以采用沉降爐測(cè)量脫灰煤煤粉顆粒的著火溫度.沉降爐的原理圖如圖1所示.本試驗(yàn)采用測(cè)量沉降爐煙氣的溫度作為著火溫度的方法測(cè)量脫灰煤在常壓下的著火溫度.詳細(xì)測(cè)量方法參考初偉[23]和肖佳元等[28]的實(shí)驗(yàn)方法,這里只對(duì)測(cè)量過程簡(jiǎn)單描述.待爐膛溫度和給粉穩(wěn)定后,在沉降爐出口用鏡子觀察是否著火;同時(shí)在爐膛出口采用煙氣分析儀監(jiān)測(cè)氧氣含量,依次往復(fù)升高或降低沉降爐的溫度,直到找到氧氣含量基本不變,且恰能使給粉完全著火的溫度;測(cè)量不給粉和給粉兩種情況下爐膛軸線上的煙氣溫度變化曲線;兩曲線分離點(diǎn)說明溫度發(fā)生突變,即煤粉發(fā)生著火現(xiàn)象,此點(diǎn)即定義為煤粉在該氣氛下的著火溫度.
圖1 DTF實(shí)驗(yàn)系統(tǒng)示意
壓力對(duì)著火溫度影響的實(shí)驗(yàn)在快速升溫水蒸氣高壓熱重分析儀[29]上進(jìn)行,升溫速率為20 ℃/min,從室溫升高至700 ℃,根據(jù)實(shí)驗(yàn)樣品的失重曲線,采用常用的TG-DTG曲線切線法[23,30]定義著火溫度,能夠獲得不同壓力下的著火溫度.
伊敏脫灰煤和準(zhǔn)東脫灰煤均采用HCl-HF-HCl[31]的方法獲得,煤質(zhì)參數(shù)見表1.實(shí)驗(yàn)所有工況均以N2作為平衡氣體,給粉量為0.5 g/min,反應(yīng)氣體為O2/H2O/N2的混合氣體,總流量為10 L/min, 攜帶氣體的總流量為1 L/min.在研究不同氧氣體積分?jǐn)?shù)(10%~50%)的影響時(shí),水蒸氣的體積分?jǐn)?shù)保持30%不變;研究水蒸氣濃度影響時(shí),O2體積分?jǐn)?shù)保持在30%;研究壓力(0.1~3.0 MPa)影響時(shí),保持O2和水蒸氣體積分?jǐn)?shù)均為30%.
表1 準(zhǔn)東脫灰煤及伊敏煤脫灰煤工業(yè)分析及元素分析(空干基,質(zhì)量分?jǐn)?shù))
Tab.1 Proximate analysis and element analysis of the Zhundong demineralized coal and Yimin demineralized coal (air dry basis, mass fraction) %
煤樣質(zhì)量分?jǐn)?shù)工業(yè)分析水分灰分揮發(fā)分固定碳元素分析CHN準(zhǔn)東脫灰煤5.820.3231.2962.5775.773.640.94伊敏脫灰煤6.260.1742.3451.2367.844.520.91
2.1 氧濃度對(duì)著火溫度的影響
不同氧體積分?jǐn)?shù)(10%~50%)下伊敏脫灰煤著火過程中爐膛煙氣溫度的變化如圖2所示,水蒸氣體積分?jǐn)?shù)全部為30%.由圖2可以觀察到,在給粉前與給粉后爐膛煙氣溫度曲線產(chǎn)生分離,給粉后的溫度線開始高于給粉前溫度值的點(diǎn),即作為著火溫度點(diǎn).對(duì)比不同氧濃度下爐膛中心煙氣溫度線可知,隨著氧濃度的增加,給粉前后溫度的差值逐漸增大.隨著氧氣濃度的增大,會(huì)有更多的氧氣擴(kuò)散到揮發(fā)分火焰中[32-33],脫灰煤粉周圍氣體混合物的活性增加,脫灰煤一旦著火,燃燒速率增大,熱釋放速度加快.因此隨著氧氣濃度的增加,煤粉著火后火焰溫度上升速率增大,導(dǎo)致給粉前后爐膛中心煙氣的溫度上升幅度逐漸增大.
圖2 不同O2體積分?jǐn)?shù)下伊敏脫灰煤的溫度分離曲線(水蒸氣體積分?jǐn)?shù)為30%)
Fig.2 The temperature separation curves of Yimin demineralized coal in different O2volume fraction (water vapor volume fraction: 30%) 伊敏脫灰煤和準(zhǔn)東脫灰煤的著火溫度隨氧體積分?jǐn)?shù)增加的變化規(guī)律如圖3所示.
圖3 著火溫度隨氧體積分?jǐn)?shù)的變化
Fig.3 Variation of ignition temperature with O2volume fraction
兩種脫灰煤的著火溫度都隨著氧體積分?jǐn)?shù)的增加呈單調(diào)下降規(guī)律.這是因?yàn)樵诔合?,隨著氧濃度的增加,氧氣的濃度梯度增大,而壓力和擴(kuò)散系數(shù)是恒定的,由菲克擴(kuò)散定律可知,擴(kuò)散通量等于濃度梯度與擴(kuò)散系數(shù)之積.隨著氧濃度的提高,氧氣獲得了更強(qiáng)擴(kuò)散能力,這不僅促進(jìn)了O2與揮發(fā)分的擴(kuò)散混合,也使氧分子可以占據(jù)更多的煤粉顆粒孔隙,為氧化反應(yīng)的發(fā)生提供了有利條件,能夠促進(jìn)脫灰煤粉顆粒的著火,因此,著火溫度隨氧氣濃度的增加而降低,與煤粉在O2/CO2和O2/N2氣氛下[23-25]的研究結(jié)果一致.與伊敏脫灰煤相比,準(zhǔn)東脫灰煤具有高碳且低揮發(fā)分的特點(diǎn),準(zhǔn)東煤脫灰煤進(jìn)入爐膛后揮發(fā)分的析出較慢,顆粒周圍的揮發(fā)分與氧氣混合達(dá)到著火極限后才能發(fā)生著火,因此,準(zhǔn)東脫灰煤相對(duì)伊敏脫灰煤較難著火,使得準(zhǔn)東脫灰煤的著火溫度高出伊敏脫灰煤約50 ℃.
2.2 水蒸氣濃度對(duì)著火溫度的影響
伊敏脫灰煤在不同水蒸氣濃度下的著火過程如圖4所示.
圖4 不同水蒸氣體積分?jǐn)?shù)下伊敏脫灰煤的溫度分離曲線(氧氣體積分?jǐn)?shù):30%)
Fig.4 The temperature separation curves of Yimin demineralized coal in different water vapor volume fraction (oxygen volume fraction: 30%)
從圖4中可以看出,隨著水蒸氣體積分?jǐn)?shù)的增加,給粉前后爐膛中心煙氣的溫度差逐漸下降.分析原因,水蒸氣的比熱較N2更高些,水蒸氣濃度高時(shí),混氣的比熱較大,脫灰煤粉燃燒所產(chǎn)生的熱量對(duì)爐膛中心煙氣加熱作用變得不明顯.
準(zhǔn)東脫灰煤和伊敏脫灰煤的著火溫度隨水蒸氣濃度的變化規(guī)律見圖5.隨著水蒸氣體積分?jǐn)?shù)的增加,兩種脫灰煤的著火溫度逐漸升高.產(chǎn)生這種現(xiàn)象的原因是水蒸氣比熱值較高,在溫度為500 ℃~700 ℃的區(qū)間內(nèi),水蒸氣的比熱較同溫下的氮?dú)饧s高出20%.煤粉顆粒的著火可以解釋為由于煤粉顆粒從外界吸收熱量,自身溫度提高,當(dāng)散熱量不足以補(bǔ)償吸熱量時(shí),溫度逐漸升高至著火溫度后發(fā)生著火.隨著水蒸氣體積分?jǐn)?shù)的增加,混合氣中水蒸氣比重增加,導(dǎo)致混合氣體平均比熱整體增加.煤粉顆粒在混合氣體中沉降的過程即為混合氣在顆粒表面繞流的過程,比熱較高混合氣在繞流過程中會(huì)攜帶煤粉顆粒周圍的熱量,增加了對(duì)煤粉吸熱量的補(bǔ)償,最終表現(xiàn)為煤粉顆粒的著火溫度升高.由理論計(jì)算可知,常壓下水蒸氣與焦炭的氣化反應(yīng)一般發(fā)生在高溫下,所以在溫度為500~700 ℃時(shí)水蒸氣氣化反應(yīng)可認(rèn)為沒有發(fā)生或極其微弱.
圖5 著火溫度隨水蒸氣體積分?jǐn)?shù)的變化
Fig.5 Variation of ignition temperature with water vapor volume fraction
2.3 壓力對(duì)脫灰煤著火溫度的影響
準(zhǔn)東脫灰煤在不同壓力下的著火溫度如圖6所示.當(dāng)壓力從0.1 MPa 增加到1.0 MPa時(shí),著火溫度快速下降,降低約70 ℃;當(dāng)壓力超過1.0 MPa 時(shí),壓力對(duì)著火溫度的促進(jìn)作用趨于平穩(wěn),1.0 MPa與2.0 MPa壓力下的著火溫度已無明顯差距;在壓力超過2 MPa時(shí)著火溫度出現(xiàn)小幅度的增加.
圖6 準(zhǔn)東脫灰煤著火溫度隨壓力的變化規(guī)律Fig.6 Variation of ignition temperature of Zhundong demineralized coal with pressure
在環(huán)境氣氛一定時(shí)(O2體積分?jǐn)?shù)30%,水蒸氣體積分?jǐn)?shù)30%),壓力升高會(huì)提高顆粒附近的氧分壓,進(jìn)而提高碳氧反應(yīng)速率,熱量的釋放和熱傳遞過程得到增強(qiáng),使煤粒溫度上升,著火溫度下降[34-35].當(dāng)壓力繼續(xù)增大超過2.0 MPa 后,著火溫度出現(xiàn)緩慢上升,總壓力較高時(shí),氧氣擴(kuò)散系數(shù)減小,削弱了氧分壓提高的作用.同時(shí),總壓升高,揮發(fā)分的擴(kuò)散減慢,導(dǎo)致?lián)]發(fā)分的釋放速率減慢,使煤粉顆粒非均相著火的成分增大,揮發(fā)分在顆粒內(nèi)氧化比在顆粒外氧化容易[36],揮發(fā)分在析出顆粒前就與煤焦一起發(fā)生了著火,著火模式逐漸向非均相著火轉(zhuǎn)變.因此,壓力逐漸增大時(shí),由于氧氣的擴(kuò)散特性和揮發(fā)分的釋放特性的共同作用,導(dǎo)致準(zhǔn)東脫灰煤的著火溫度先下降后升高.
1)氧濃度對(duì)伊敏脫灰煤及準(zhǔn)東脫灰煤著火溫度的影響較大,隨著氧體積分?jǐn)?shù)的增加,著火溫度近似呈現(xiàn)單調(diào)下降規(guī)律.與伊敏脫灰煤相比,準(zhǔn)東脫灰煤具有高碳且低揮發(fā)分的特點(diǎn),使得準(zhǔn)東脫灰煤的著火溫度高出伊敏脫灰煤約50 ℃.
2)水蒸氣濃度對(duì)伊敏脫灰煤及準(zhǔn)東脫灰煤具有相同的影響規(guī)律,即脫灰煤著火溫度隨著水蒸氣體積分?jǐn)?shù)的增加呈上升趨勢(shì),水蒸氣體積分?jǐn)?shù)每增加10%,著火溫度升高約30 ℃.
3)當(dāng)壓力<1.0 MPa時(shí),隨著壓力的增加,準(zhǔn)東脫灰煤著火溫度呈降低趨勢(shì);當(dāng)壓力在1.0~2.0 MPa增大時(shí),著火溫度基本不變;當(dāng)壓力超過2.0 MPa時(shí),著火溫度逐漸升高.
[1] SALVADOR C.Modeling, design, and pilot-scale experiments of CANMET’s Advanced Oxy-fuel/steam Burner:2nd intern.oxy-combustion Research Network.2b-13 [R].Windsor: IEA GHG, 2007.
[2] ANDERSON R, BRANDT H, MUEGGENBURG H, et al.A power plant concept which minimizes the cost of carbon dioxide sequestration and eliminates the emission of atmospheric pollutants[C]//The Fourth International Conference on Greenhouse Gas Control Technologies.Laken: [s.n.], 1999: 59-64.DOI: 10.1016/B978-008043018-8/50010-2.
[3] ANDERSON R, HUSTAD C, SKUTLEY P, et al.Oxy-fuel turbo machinery development for energy intensive industrial applications[J].Energy Procedia, 2014, 63: 511-523.DOI:10.1016/j.egypro.2014.11.056.
[4] 孫紹增, 孟順, 許煥煥,等.一種煤基燃料近零排放發(fā)電系統(tǒng)及方法: CN102628401A[P].2012-08-08.
SUN Shaozeng, MENG Shun, XU Huanhuan, et al.One kind of coal-based near-zero emissions power generation system and method: China CN 102628401A[P].2012-08-08.
[5] 孫紹增, 孟順, 趙義軍,等.水蒸氣純氧條件下合成氣的燃燒特性[J].化工學(xué)報(bào), 2015, 66(12):5119-5126.
SUN Shaozeng, MENG Shun, ZHAO Yijun, et al.Combustion characteristics of syngas under oxygen steam conditions [J].CIESC Journal, 2015, 66(12):5119-5126.
[6] HAYKIRI-A?MA H, ERSOY-MERI?BOYU A, Kü?üKBAYRAK S.Effect of demineralization on the reactivity oflignites[J].Thermochimica Acta, 2000, 362(1): 131-135.DOI: 10.1016/S0040-6031(00)00577-3.
[7] YAMAN S, YAVUZ R, Kü?üKBAYRAK S, et al.Stepwise demineralisation and chemical isolation of the mineral matter of G?ynük lignite[J].Energy Conversion and Management, 2001, 42(18): 2119-2127.DOI: 10.1016/S0196-8904(00)00172-2.
[8] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, et al.Characterisation of HyperCoals from coals of various ranks[J].Fuel, 2008, 87(4): 592-598.DOI: 10.1016/j.fuel.2007.02.017.
[9] SHUI Hengfu, ZHOU Yan, LI Haiping, et al.Thermal dissolution of Shenfu coal in different solvents[J].Fuel, 2013, 108: 385-390.DOI: 10.1016/j.fuel.2012.11.005.
[10]STEEL K M, PATRICK J W.The production of ultra clean coal by chemical demineralisation[J].Fuel, 2001, 80(14): 2019-2023.DOI: 10.1016/S0016-2361(01)00092-8.
[11]STEEL K M, BESIDA J, O’DONNELL TA, et al.Production of ultra clean coal: part II-ionicequilibria in solution when mineral matter from black coal is treated with aqueous hydrofluoric acid[J].Fuel Processing Technology, 2001, 70(3): 193-219.DOI: 10.1016/S0378-3820(01)00173-4.
[12]OKUYAMA N, KOMATSU N, SHIGEHISA T, et al.Hyper-coal process to produce the ash-free coal[J].Fuel Processing Technology, 2004, 85(8/9/10): 947-967.DOI: 10.1016/j.fuproc.2003.10.019.
[13]WIJAYA N, ZHANG Lian.A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal[J].Energy & Fuels, 2011, 25(1): 1-16.DOI: 10.1021/ef1008192.
[14]RUBIERA F, ARENILLAS A, ARIAS B, et al.Combustion behaviour of ultra clean coal obtained by chemical demineralisation[J].Fuel, 2003, 82(15): 2145-2151.DOI: 10.1016/S0016-2361(03)00181-9.
[15]WANG Jie, SAKANISHI K, SAITO I, et al.High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate: Comparison with raw coal[J].Energy & Fuels, 2005, 19(5): 2114-2120.DOI: 10.1021/ef040089k.
[16]RUBIERA F, ARENILLAS A, PEVIDA C, et al.Coal structure and reactivity changes induced by chemical demineralisation[J].Fuel Processing Technology, 2002, 79(3): 273-279.DOI: 10.1016/S0378-3820(02)00185-6.
[17]JüNTGEN H, VAN HEEK K.An update of German non-isothermal coal pyrolysis work[J].Fuel Processing Technology, 1979, 2(4): 261-293.DOI:10.1016/0378-3820(79)90018-3.
[18]GURURAJAN V, WALL T, GUPTA R, et al.Mechanisms for the ignition of pulverized coal particles[J].Combustion and Flame, 1990, 81(2): 119-132.DOI: 10.1016/0010-2180(90)90059-Z.
[19]PONZIO A, SENTHOORSELVAN S, YANG WH, et al.Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations[J].Fuel, 2008, 87(6): 974-987.DOI: 10.1016/j.fuel.2007.06.027.
[20]LIU Bing, ZHANG Zhezi, ZHANG Hai, et al.An experimental investigation on the effect of convection on the ignition behaviour of single coal particles under various O2concentrations[J].Fuel, 2014, 116: 77-83.DOI: 10.1016/j.fuel.2013.07.112.
[21]ESSENHIGH R H, MISRA M K, SHAW D W.Ignition of coal particles: a review[J].Combustion and Flame, 1989, 77(1): 3-30.DOI: 10.1016/0010-2180(89)90101-6.
[22]CHEN Yong, MORI S, PAN Weiping.Studying the mechanisms of ignition of coal particles by TG-DTA[J].Thermochimica Acta, 1996, 275(1): 149-158.DOI: 10.1016/0040-6031(95)02727-0.
[23]初偉.O2/CO2氣氛下不同煤種煤粉顆粒著火溫度及燃燒特性的研究[D].上海:上海交通大學(xué),2012.
CHU Wei.Coal particle ignition temperatures and combustion characteristics of different rank coals in O2/CO2environments[D].Shanghai: Shanghai Jiao Tong University, 2012.
[24]吳樂, 徐明厚, 喬瑜,等.空氣和O2/CO2氣氛下煤粉著火特性試驗(yàn)研究[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011 (8): 129-132.
WU le, XU Minghou, QIAO Yu, et al.Experimental study of pulverized coal ignition characteristics under air and O2/CO2combustion [J].Journal of Huazhong University of Science and Technology(Natural Science Edition), 2011 (8): 129-132.
[25] QIAO Yu, ZHANG Lian, BINNER E, et al.An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O2/CO2[J].Fuel, 2010, 89(11): 3381-3387.DOI: 10.1016/j.fuel.2010.05.037.
[26]ZOU Chun, ZHANG Liang, CAO Shiying, et al.A study of combustion characteristics of pulverized coal in O2/H2O atmosphere[J].Fuel, 2014, 115: 312-320.DOI: 10.1016/j.fuel.2013.07.025.
[27]汪淞, 陳祥君, 胡國(guó)江,等.影響煤粉系統(tǒng)著火的因素[J].應(yīng)用能源技術(shù), 2008 (5): 12-14.
WANG Song, CHEN Xiangjun, HU Guojiang, et al.Influencing factors of coal powder ignition system[J].Applied Energy Technology, 2008 (5): 12-14.
[28]肖佳元, 章明川, 齊永鋒.低氧再燃條件下煤粉均相著火溫度的測(cè)量[J].動(dòng)力工程, 2008 (2): 279-283,301.
XIAO Jiayuan, ZHANG Mingchuan, QI Yongfeng.Measurement of homogeneous gas ignition temperature of pulverized coal under reburning conditions with low oxygen concentration[J].Journal of Power Engineering, 2008 (2): 279-283,301.
[29]汪印, 許光文, 崔鑫, 等.控制熱天平分析儀反應(yīng)氣竄流的方法及加壓熱天平分析儀: CN102109446A[P].2011-06-29.
WANG Yin, XU Guangwen, CUI Xin, et al.Method for controlling reaction gas channeling of thermal balance analyzer and pressurized thermal balance analyzer: China CN102109446A[P].2011-06-29.
[30] HUANG Xiangyong, JIANG Xiumin, HAN Xiangxin, et al.Combustion characteristics of fine-and micro-pulverized coal in the mixture of O2/CO2[J].Energy & Fuels, 2008, 22(6): 3756-3762.DOI: 10.1021/ef800444c.
[31]張洪, 蒲文秀, 哈斯,等.化學(xué)脫灰對(duì)低灰煤粉性質(zhì)的影響[J].工程熱物理學(xué)報(bào), 2009 (4): 699-702.
ZHANG Hong, PU Wenxiu, HA Si, et al.Influence of acid treatment on the properties of pulverized coals with low ash content [J].Journal of Engineering Thermophysics, 2009 (4): 699-702.
[32]SHADDIX CR, MOLINA A.Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion[J].Proceedings of the Combustion Institute, 2009, 32(2): 2091-2098.DOI: 10.1016/j.proci.2008.06.157.
[33]MURPHY J J, SHADDIX C R.Combustion kinetics of coal chars in oxygen-enriched environments[J].Combustion and Flame, 2006, 144(4): 710-729.DOI: 10.1016/j.combustflame.2005.08.039.
[34]應(yīng)芝, 張彥威, 葛立超, 等.加壓O2/CO2氣氛下煤粉著火特性的實(shí)驗(yàn)研究[J].中國(guó)電機(jī)工程學(xué)報(bào), 2013 (8): 44-49. YING Zhi, ZHANG Yanwei, GE Lichao, et al.Experimental research on ignition characteristics of pulverized coal under pressurized O2/CO2atmosphere[J].Proceedings of the CSEE, 2013 (8): 44-49.
[35]雷鳴, 王春波, 閻維平,等.大同煙煤增壓富氧燃燒的熱重實(shí)驗(yàn)研究[J].中國(guó)電機(jī)工程學(xué)報(bào), 2012, 32(5):21-26.
LEI Ming, WANG Chunbo, YAN Weiping, et al.Thermogravimetric research on pressurized Oxy-fuel combustion of datong bituminous coal [J].Proceedings of the CSEE, 2012, 32(5):21-26.
[36]SUN Chenliang, ZHANG Mingyao.Ignition of coal particles at high pressure in a thermogravimetric analyzer[J].Combustion and Flame, 1998, 115(1/2): 267-274.DOI: 10.1016/S0010-2180(97)00350-7.
(編輯 楊 波)
Influence of atmosphere and pressure on the ignition temperature of demineralized coal particles
MENG Shun1, WU Jiangquan1, 2, SUN Shaozeng1, 2, ZHAO Yijun1, 2, WANG Pengxiang1, WANG Dong1, QIN Yukun1, 2
(1.School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;2.National Engineering Laboratory for Reducing Emissions from Coal Combustion(Harbin Institute of Technology), Harbin 150001, China)
For energy conversion with high efficiency and low carbon emission, Oxy-Coal Combustion Steam System for power generation with near-zero emissions was proposed.The Ignition Temperature of Yimin demineralized coal and Zhundong demineralized coal were studied in a one-dimensional drop tube furnace at different oxygen concentration and steam concentration.The impact of pressure on the ignition temperature was investigated by High Pressure Steam TGA.The results show that the oxygen volume concentration is very important for the ignition temperature of demineralized coal.With the increasing of oxygen concentration, the ignition temperature is gradually reduced.With the increasing of the concentration of steam, the ignition temperature is gradually raised.When the steam volume concentration, range from 10% to 50%, increases 10%, the ignition temperature increases about 30 ℃.When the pressure is less than 1.0 MPa, with the increasing of pressure, the ignition temperature of Zhundong demineralized coal decreases, when the pressure is in the range of 1.0-2.0 MPa, then no obvious change for the ignition temperature, but when the pressure is greater than 2.0 MPa, the ignition temperature increases.
demineralized coal; Oxy-coal combustion; steam; ignition temperature;thermogravimetric analysis
10.11918/j.issn.0367-6234.2017.01.012
2015-12-14
國(guó)家自然科學(xué)基金(51276045)
孟 順(1983—),男,博士研究生; 孫紹增(1963—),男,教授,博士生導(dǎo)師; 秦裕琨(1933—),男,教授,中國(guó)工程院院士.
趙義軍,zhaoyijun@hit.edu.cn
TK16
A
0367-6234(2017)01-0087-06