国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

考慮層流分離的低速風(fēng)力機(jī)翼型氣動(dòng)性能研究

2017-02-08 03:00唐新姿黃軒晴孫松峰彭銳濤
動(dòng)力工程學(xué)報(bào) 2017年1期
關(guān)鍵詞:層流風(fēng)力機(jī)雷諾數(shù)

唐新姿,黃軒晴,孫松峰,彭銳濤

(湘潭大學(xué) 機(jī)械工程學(xué)院,湖南湘潭 411105)

考慮層流分離的低速風(fēng)力機(jī)翼型氣動(dòng)性能研究

唐新姿,黃軒晴,孫松峰,彭銳濤

(湘潭大學(xué) 機(jī)械工程學(xué)院,湖南湘潭 411105)

以風(fēng)力機(jī)DU93-W-210翼型為研究對(duì)象,采用數(shù)值計(jì)算與實(shí)驗(yàn)驗(yàn)證方法研究了低雷諾數(shù)(2×105~5×105)下翼型升阻氣動(dòng)性能,基于修正轉(zhuǎn)捩模型分析了多雷諾數(shù)多攻角下翼型層流分離泡對(duì)氣動(dòng)性能的影響.結(jié)果表明:基于四方程轉(zhuǎn)捩模型Transition SST計(jì)算所得升阻力系數(shù)及翼型表面轉(zhuǎn)捩位置與實(shí)驗(yàn)值接近,低雷諾數(shù)流動(dòng)計(jì)算適用性較好;雷諾數(shù)越小,翼型層流分離泡越明顯,翼型升阻比越小; 失速前雷諾數(shù)對(duì)翼型升阻比影響較大而失速后影響較小,且雷諾數(shù)越小該翼型失速越緩和;攻角越大,翼型上表面層流分離泡越靠近前緣而下表面越靠近尾緣; 失速前上表面和下表面轉(zhuǎn)捩位置均呈線性變化,失速后上表面轉(zhuǎn)捩位置呈非線性變化.

風(fēng)力機(jī)翼型;低雷諾數(shù);層流分離;氣動(dòng)性能;數(shù)值模擬

風(fēng)力機(jī)翼型氣動(dòng)性能是影響風(fēng)力機(jī)性能的關(guān)鍵因素,已受到國(guó)內(nèi)外學(xué)者的廣泛關(guān)注.低速風(fēng)力機(jī)的性能主要取決于低雷諾數(shù)翼型氣動(dòng)性能,研究低雷諾數(shù)下風(fēng)力機(jī)的翼型邊界層流動(dòng)與翼型氣動(dòng)性能,對(duì)中小型風(fēng)力機(jī)性能分析和葉片優(yōu)化設(shè)計(jì)有著重要意義.

對(duì)于風(fēng)力機(jī)翼型氣動(dòng)性能研究而言,低雷諾數(shù)通常指的是雷諾數(shù)小于5×105,低雷諾數(shù)翼型邊界層流動(dòng)發(fā)生層流分離引起翼型氣動(dòng)性能劇烈變化[1].近年來(lái),隨著低速風(fēng)力機(jī)與微型飛行器的發(fā)展,低雷諾數(shù)翼型氣動(dòng)性能研究受到越來(lái)越多的關(guān)注[2-3].如美國(guó)國(guó)家航空航天局(NASA)和伊利諾伊大學(xué)厄巴納香檳分校(UIUC)等研究機(jī)構(gòu)進(jìn)行了很多實(shí)驗(yàn)和數(shù)值計(jì)算研究,研發(fā)了E387、SD7003等低雷諾數(shù)翼型[4-7].在風(fēng)洞實(shí)驗(yàn)方面,Butterfield等[8]測(cè)試了S809翼型在雷諾數(shù)為3×105以上的一系列氣動(dòng)數(shù)據(jù).Ananda等[9]通過(guò)開(kāi)展風(fēng)洞實(shí)驗(yàn)研究了低雷諾數(shù)(0.6×105~1.6×105)下準(zhǔn)三維葉片展弦比和尖根比對(duì)氣動(dòng)性能的影響.黃宸武等[10]采用表面壓力測(cè)量方式研究了在雷諾數(shù)小于5×105時(shí),不同轉(zhuǎn)捩條件和雷諾數(shù)下S809翼型的氣動(dòng)性能.低雷諾數(shù)風(fēng)洞實(shí)驗(yàn)對(duì)湍流強(qiáng)度、展弦比和數(shù)據(jù)修正等較為敏感,有必要深入研究翼型邊界層流動(dòng)機(jī)理.如白鵬等[11]采用Rogers擬壓縮方法求解不可壓縮Navier-Stokes方程,研究了低雷諾數(shù)(6.0×104~2.0×105)條件下E387翼型在攻角為0°、4°和7°時(shí)上表面后緣部分的流動(dòng)分離現(xiàn)象.靳允立等[12]采用基于Spalart-Allnaras(S-A)和SSTk-ω湍流模型的數(shù)值計(jì)算方法研究了翼型失速及雷諾數(shù)變化(1.0×104~1.0×106)對(duì)S809翼型的性能影響.Wata等[13-14]利用XFoil翼型分析軟件設(shè)計(jì)并測(cè)試了適用于小型風(fēng)力機(jī)的低雷諾數(shù)翼型.Counsil等[15]基于轉(zhuǎn)捩模型研究了2種航空翼型NACA0012與SD7003在雷諾數(shù)為4.8×104~2.5×105、攻角為0°~8°時(shí)翼型轉(zhuǎn)捩位置變化及升阻力特性.祖紅亞等[16-17]采用XFoil軟件和全湍流模型的數(shù)值計(jì)算方法研究了襟翼長(zhǎng)度和尾緣修剪對(duì)翼型氣動(dòng)性能的影響.

上述研究多針對(duì)翼型的設(shè)計(jì)改進(jìn)及雷諾數(shù)對(duì)翼型氣動(dòng)性能的影響,而對(duì)于考慮層流分離的低速風(fēng)力機(jī)翼型多雷諾數(shù)、多攻角(包括失速前和失速后)下的氣動(dòng)性能影響研究相對(duì)較少.筆者以風(fēng)力機(jī)專用翼型DU93-W-210為研究對(duì)象,采用基于修正轉(zhuǎn)捩模型的數(shù)值計(jì)算與風(fēng)洞實(shí)驗(yàn)驗(yàn)證相結(jié)合的方法,研究在不同雷諾數(shù)(2×105~5×105)和不同攻角(-3°~16°)下的翼型邊界層流動(dòng)分離變化規(guī)律,以及分離泡大小和位置對(duì)低雷諾數(shù)下風(fēng)力機(jī)翼型升阻氣動(dòng)性能的影響,為中小型風(fēng)力機(jī)葉片設(shè)計(jì)及流動(dòng)控制提供參考.

1 數(shù)值計(jì)算方法

1.1 湍流模型

湍流模型方法主要分為雷諾平均法(RANS)、大渦模擬法(LES)和直接數(shù)值法(DNS)3大類.考慮到計(jì)算精度與計(jì)算資源要求的平衡,采用基于RANS方法,并分別采用湍流模型一方程模型S-A、兩方程模型SSTk-ω和四方程轉(zhuǎn)捩模型Transition SST求解翼型繞流場(chǎng).

(1)

(2)

式中:ρ為密度;t為時(shí)間;uj為速度;j為張量中的自由標(biāo);xj為坐標(biāo)值;θ為動(dòng)量厚度;μ為層流黏性系數(shù);μt為湍流黏性系數(shù);Pγ、Eγ和Pθ t的具體形式可參閱文獻(xiàn)[19],方程常數(shù)σγ=1.0,σθ t=2.0.

當(dāng)發(fā)生流動(dòng)分離時(shí),在分離泡處γ迅速增加,隨著湍流黏性比的提高,γ的增加趨于平緩,因此專門為分離流轉(zhuǎn)捩設(shè)計(jì)的間歇因子γsep可表示為

γsep=2Fθ t·min(1.0,FreattachRev,max)

(3)

(4)

式中:開(kāi)關(guān)函數(shù)Fθ t的具體形式可參閱文獻(xiàn)[19].

最終考慮分離情況的間歇因子可表示為

γeff=max(γ,γsep)

(5)

然后,將修正后的間歇因子γeff與SST湍流模型中的k方程耦合聯(lián)合模擬轉(zhuǎn)捩過(guò)程,轉(zhuǎn)捩模型與SST湍流模型的結(jié)合控制方程為

(6)

其中,

(7)

式中:Pk、Dk分別為原SST湍流方程的生成項(xiàng)和耗散項(xiàng);σk為k對(duì)應(yīng)的湍流普朗特參數(shù).

1.2 網(wǎng)格與邊界條件

數(shù)值計(jì)算翼型外流域?yàn)槎SC型,取翼型前方半徑和寬度為15倍翼型弦長(zhǎng),翼型后方長(zhǎng)度為20倍翼型弦長(zhǎng).邊界如圖1所示,流域進(jìn)口abcde設(shè)置為速度進(jìn)口,通過(guò)改變進(jìn)口來(lái)流風(fēng)速來(lái)改變雷諾數(shù)大小,速度方向由來(lái)流攻角確定;來(lái)流湍流強(qiáng)度為0.2%,湍流黏度比為10;流域出口a-f-e設(shè)置為壓力出口,總壓為101.325 kPa;翼型表面g-m-h-n-g滿足壁面無(wú)滑移條件.采用基于壓力算法和二階迎風(fēng)差分格式離散,Simple壓力速度耦合雙精度求解.非定常RANS計(jì)算物理時(shí)間推進(jìn)步長(zhǎng)為Δt,各計(jì)算收斂標(biāo)準(zhǔn)為殘差小于1×10-5.Δt可表示為

(8)

式中:c為翼型弦長(zhǎng);V∞為進(jìn)口來(lái)流風(fēng)速大小.

圖1 二維流域拓?fù)浣Y(jié)構(gòu)

采用ICEM生成四邊形網(wǎng)格,取物面法向第一層網(wǎng)格高度為10-5倍弦長(zhǎng),滿足y+小于1.同時(shí),兼顧網(wǎng)格縱橫比翼型上下表面共分布376個(gè)網(wǎng)格節(jié)點(diǎn),并對(duì)翼型周圍網(wǎng)格進(jìn)行局部加密,S809翼型和DU93-W-210翼型計(jì)算網(wǎng)格總數(shù)分別為91 024和99 719.流域計(jì)算網(wǎng)格如圖2所示.

2 結(jié)果與分析

2.1 低雷諾數(shù)計(jì)算模型驗(yàn)證

為驗(yàn)證低雷諾數(shù)數(shù)值計(jì)算方法的正確性與轉(zhuǎn)捩模型的適用性,采用3種不同湍流模型比較分析了在雷諾數(shù)為3×105時(shí)S809翼型的升阻氣動(dòng)性能,并與美國(guó)科羅拉多州州立大學(xué)(CSU)風(fēng)洞實(shí)驗(yàn)值[8]進(jìn)行比較,結(jié)果如圖3所示.

圖2 DU93-W-210翼型計(jì)算網(wǎng)格

從圖3(a)和圖3(b)可以看出,3種湍流模型計(jì)算所得的升力系數(shù)與實(shí)驗(yàn)值吻合較好,變化趨勢(shì)基本相同.在攻角較小時(shí),3種湍流模型計(jì)算所得的升力系數(shù)基本一致,且與實(shí)驗(yàn)值基本吻合;而攻角較大時(shí),升力系數(shù)計(jì)算值開(kāi)始呈現(xiàn)波動(dòng)趨勢(shì).這是因?yàn)楣ソ窃龃蠛?,翼型邊界層開(kāi)始存在非定常流動(dòng),造成不同湍流模型預(yù)測(cè)的結(jié)果不一致.從圖3(c)和圖3(d)可以看出,與另外2種湍流模型相比,四方程轉(zhuǎn)捩模型Transition SST計(jì)算所得的升力系數(shù)稍大而阻力系數(shù)較小,說(shuō)明在低雷諾數(shù)層流狀態(tài)下,摩擦阻力影響更大.同時(shí),由于四方程轉(zhuǎn)捩模型Transition SST加入了額外的兩變量運(yùn)輸方程來(lái)捕捉層流分離與轉(zhuǎn)捩過(guò)程,計(jì)算收斂所需時(shí)間較其他湍流模型所需時(shí)間長(zhǎng),但計(jì)算結(jié)果更接近實(shí)驗(yàn)值,因此,對(duì)于低雷諾數(shù)流動(dòng)四方程轉(zhuǎn)捩模型Transition SST更適用.

2.2 雷諾數(shù)對(duì)DU93-W-210翼型氣動(dòng)性能的影響

采用四方程轉(zhuǎn)捩模型Transition SST對(duì)雷諾數(shù)分別為2×105、3×105、5×105和1×106時(shí)DU93-W-210翼型的氣動(dòng)性能進(jìn)行比較計(jì)算,并與文獻(xiàn)[20]的風(fēng)洞實(shí)驗(yàn)數(shù)據(jù)進(jìn)行比較,結(jié)果見(jiàn)圖4,各計(jì)算收斂標(biāo)準(zhǔn)為殘差小于1×10-5.由圖4(a)可知,隨著雷諾數(shù)的增大,該翼型升力系數(shù)Cl幅值逐漸增大,而圖4(b)則顯示阻力系數(shù)Cd隨著雷諾數(shù)的增大而減小.同時(shí),如圖4(c)和圖4(d)所示,該翼型升阻比Cl/Cd隨著雷諾數(shù)的減小急劇降低,而最大升阻比對(duì)應(yīng)的攻角略有增大.當(dāng)攻角增大發(fā)生失速后,雷諾數(shù)對(duì)升阻比的影響逐漸減弱,且雷諾數(shù)越小該翼型失速特性越緩和.

2.3 DU93-W-210翼型邊界層分離泡的影響

為研究邊界層分離泡對(duì)DU93-W-210翼型氣動(dòng)性能的影響,采用四方程轉(zhuǎn)捩模型TransitionSST對(duì)低雷諾數(shù)(2×105~5×105)、攻角為-3°~16°的翼型邊界層速度分布和壓力分布進(jìn)行深入分析,結(jié)果如圖5~圖8所示,各計(jì)算收斂標(biāo)準(zhǔn)為殘差小于1×10-5.

圖3 S809翼型不同湍流模型的計(jì)算值與實(shí)驗(yàn)值的對(duì)比(Re=3×105)

圖4 不同雷諾數(shù)下DU93-W-210翼型氣動(dòng)性能曲線

由圖5和圖6(其中Cp為壓力系數(shù))可知,雷諾數(shù)為2×105時(shí)不同攻角下的上下翼型表面邊界都存在尺度較明顯的細(xì)長(zhǎng)分離泡.這是由于在低雷諾數(shù)流動(dòng)情況下,翼型邊界層流動(dòng)常處于層流狀態(tài),其抵抗逆壓梯度的能力較弱,容易產(chǎn)生分離、轉(zhuǎn)捩等流動(dòng)現(xiàn)象.而隨著攻角的增大,上下翼型表面的分離泡位置和大小都發(fā)生了改變,翼型上表面分離泡位置前移,而翼型下表面分離泡位置后移,且與圖6翼型表面壓力分布變化基本一致.這是由于翼型繞流發(fā)生分離后形成分離泡,分離泡影響了翼型表面的壓力分布,進(jìn)而對(duì)翼型的升阻力系數(shù)以及風(fēng)力機(jī)葉片的氣動(dòng)性能等產(chǎn)生影響.當(dāng)攻角增大到失速發(fā)生之后,尾緣氣流分離變劇烈,雷諾數(shù)對(duì)阻力系數(shù)的影響相對(duì)減小.

圖5 不同攻角下的速度流線圖(Re=2×105)

圖6 不同攻角下翼型表面壓力分布圖(Re=2×105)

圖7 不同攻角下的速度流線圖(Re=5×105)

圖8 不同攻角下翼型表面壓力分布圖(Re=5×105)

從圖7和圖8可以看出雷諾數(shù)為5×105時(shí),不同攻角下的上下翼型表面邊界層速度分布與壓力分布,此時(shí)分離泡變小.從圖5與圖7可以看出,同一攻角時(shí),雷諾數(shù)越小,翼型上下表面層流分離泡弦向分離跨度越大,分離泡越厚;對(duì)比圖4(b)得出,低雷諾數(shù)翼型阻力上升主要由于翼型表面層流分離更明顯.對(duì)比圖6和圖8可以看出,雷諾數(shù)越大,翼型表面壓力分布越光滑,表明此時(shí)黏性邊界層流動(dòng)影響減小,其抵抗逆壓梯度能力增強(qiáng),因而升力系數(shù)增大,阻力系數(shù)減小,與圖4結(jié)果一致.

2.4 DU93-W-210翼型轉(zhuǎn)捩位置的預(yù)測(cè)

層流向湍流的轉(zhuǎn)捩處表面摩阻系數(shù)會(huì)突然增大,這是判斷轉(zhuǎn)捩與否的重要依據(jù).翼型表面摩阻系數(shù)分布圖中摩阻系數(shù)突然增大的位置就是轉(zhuǎn)捩點(diǎn).如圖9所示,S809翼型在攻角為1.02 °時(shí),計(jì)算所得翼型上表面摩阻系數(shù)Cf在弦長(zhǎng)0.55處顯著增大,表明該處發(fā)生轉(zhuǎn)捩,該轉(zhuǎn)捩位置與文獻(xiàn)[21]一致.同時(shí),將S809翼型轉(zhuǎn)捩位置的計(jì)算值與實(shí)驗(yàn)值[22]進(jìn)行比較(見(jiàn)表1).從表1可以看出,采用四方程轉(zhuǎn)捩模型Transition SST預(yù)測(cè)的轉(zhuǎn)捩位置與實(shí)驗(yàn)值接近.

圖9 攻角為1.02 °時(shí)S809翼型上表面摩阻系數(shù)

攻角/(°)實(shí)驗(yàn)轉(zhuǎn)捩點(diǎn)(x/c)預(yù)測(cè)轉(zhuǎn)捩點(diǎn)(x/c)上表面下表面上表面下表面1.020.550.500.500.475.130.500.520.500.487.990.070.520.050.499.960.030.540.010.50

圖10給出了不同雷諾數(shù)和攻角下DU93-W-210翼型上下表面轉(zhuǎn)捩位置在弦長(zhǎng)方向的變化.由圖10可知,雷諾數(shù)越大,上表面轉(zhuǎn)捩位置越靠近前緣而下表面轉(zhuǎn)捩位置越靠近尾緣.隨著攻角的增大,不同雷諾數(shù)下上表面轉(zhuǎn)捩位置均向翼型前緣移動(dòng),而下表面轉(zhuǎn)捩位置均向尾緣移動(dòng).翼型失速前,上表面和下表面的轉(zhuǎn)捩位置均呈線性變化;翼型失速后,上表面轉(zhuǎn)捩位置呈非線性變化.當(dāng)雷諾數(shù)為2×105,攻角小于10°時(shí),上表面轉(zhuǎn)捩位置在30%c~60%c處,攻角大于10°時(shí),上表面轉(zhuǎn)捩點(diǎn)迅速前移,在16°攻角時(shí)達(dá)到前緣4%c處;當(dāng)雷諾數(shù)為5×105,同樣在攻角為10°左右時(shí)上表面轉(zhuǎn)捩點(diǎn)迅速前移,在大攻角失速后上表面轉(zhuǎn)捩位置接近前緣而下表面更接近尾緣.這與圖5和圖7中分離泡位置的變化相吻合,也與文獻(xiàn)[15]結(jié)論一致.

圖10 DU93-W-210翼型表面轉(zhuǎn)捩位置隨攻角的變化

3 結(jié) 論

(1)四方程轉(zhuǎn)捩模型Transition SST計(jì)算所得升、阻力系數(shù)與實(shí)驗(yàn)值吻合較好,且能夠捕捉低雷諾數(shù)翼型表面層流分離泡,低雷諾數(shù)流動(dòng)計(jì)算適用性較好.

(2)隨著雷諾數(shù)的減小,DU93-W-210翼型升力系數(shù)減小而阻力系數(shù)增大,升阻比Cl/Cd急劇降低;同時(shí),隨著雷諾數(shù)減小最大升阻比對(duì)應(yīng)的攻角略有增大,翼型發(fā)生失速后,雷諾數(shù)對(duì)升阻比的影響逐漸減弱,且雷諾數(shù)越小該翼型失速越緩和.

(3)雷諾數(shù)越小,翼型表面層流分離泡越明顯;攻角越大,翼型上表面層流分離泡越靠近翼型前緣而下表面分離泡越靠近尾緣.翼型失速前上表面和下表面轉(zhuǎn)捩位置均呈線性變化,翼型失速后上表面轉(zhuǎn)捩位置急劇前移且呈非線性變化.翼型表面層流分離泡產(chǎn)生位置和大小影響低雷諾數(shù)阻力上升幅度.低雷諾數(shù)翼型升阻氣動(dòng)性能和層流分離泡的預(yù)測(cè)為低速風(fēng)力機(jī)葉片設(shè)計(jì)與流動(dòng)控制提供了依據(jù).

[2] KIM D H,CHANG J W.Low-Reynolds-number effect on the aerodynamic characteristics of a pitching NACA0012 airfoil[J].Aerospace Science and Technology,2014,32:162-168.

[3] MALDONADO V,CASTILLO L,THORMANN A,et al.The role of free stream turbulence with large integral scale on the aerodynamic performance of an experimental low Reynolds number S809 wind turbine blade[J].Journal of Wind Engineering and Industrial Aerodynamics,2015,142:246-257.

[4] SELIG M S,GUGLIELMO J J,BROERN A,et al.Experiments on airfoils at low Reynolds numbers[C]//AIAA 34th Aerospace Sciences Meeting and Exhibit.Reno,USA:American Institute of Aeronautics and Astronautics,Inc.,1996.

[5] LIN J C M,PAULEY L L.Low-Reynolds-number separation on an airfoil[J].AIAA Journal,1996,34(8):1570-1577.

[6] CATALANO P,TOGNACCINI R.Turbulence modeling for low-Reynolds-number flows[J].AIAA Journal,2010,48(8):1673-1685.

[7] KOJIMA R,NONOMURA T,OYAMA A,et al.Large-eddy simulation of low-Reynolds-number flow over thick and thin NACA airfoils[J].Journal of Aircraft,2013,50(1):187-196.

[8] BUTTERFIELD C P,MUSIAL W P,SIMMS D A.Combined experiment phase I.Final report[R].Golden,Colorado,USA:NREL,1992.

[9] ANANDA G K,SUKUMAR P P,SELIG M S.Measured aerodynamic characteristics of wings at low Reynolds numbers[J].Aerospace Science and Technology,2015,42:392-406.

[10] 黃宸武,楊科,廖猜猜,等.S809風(fēng)力機(jī)專用翼型低雷諾數(shù)氣動(dòng)性能實(shí)驗(yàn)研究[J].工程熱物理學(xué)報(bào),2014,35(11):2197-2201.

HUANG Chenwu,YANG Ke,LIAO Caicai,et al.Experimental study on aerodynamic characteristics of S809 dedicated wind turbine airfoil at low Reynolds numbers[J].Journal of Engineering Thermophysics,2014,35(11):2197-2201.

[11] 白鵬,崔爾杰,周偉江,等.翼型低雷諾數(shù)層流分離泡數(shù)值研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),2006,24(4):416-424.

BAI Peng,CUI Erjie,ZHOU Weijiang,et al.Numerical simulation of laminar separation bubble over 2D airfoil at low Reynolds number[J].Acta Aerodynamica Sinica,2006,24(4):416-424.

[12] 靳允立,胡駿.翼型失速及雷諾數(shù)變化對(duì)風(fēng)力機(jī)氣動(dòng)性能影響的數(shù)值研究[J].太陽(yáng)能學(xué)報(bào),2009,30(9):1280-1285.

JIN Yunli,HU Jun.Numerical research of the influence of airfoil stall and Reynolds number change on wind turbine aerodynamic performance[J].Acta Energiae Solaris Sinica,2009,30(9):1280-1285.

[13] WATA J,FAIZAL M,TALU B,et al.Studies on a low Reynolds number airfoil for small wind turbine applications[J].Science China Technological Sciences,2011,54(7):1684-1688.

[14] SINGH R K,AHMED M R.Blade design and performance testing of a small wind turbine rotor for low wind speed applications[J].Renewable Energy,2013,50:812-819.

[15] COUNSIL J N N,BOULAMA K G.Low-Reynolds-number aerodynamic performances of the NACA 0012 and Selig-Donovan 7003 airfoils[J].Journal of Aircraft,2013,50(1):204-216.

[16] 祖紅亞,李春,李潤(rùn)杰,等.襟翼相對(duì)長(zhǎng)度對(duì)翼型氣動(dòng)性能的影響[J].動(dòng)力工程學(xué)報(bào),2015,35(8):666-673,692.

ZU Hongya,LI Chun,LI Runjie,et al.Effect of relative flap length on aerodynamic performance of the airfoil[J].Journal of Chinese Society of Power Engineering,2015,35(8):666-673,692.

[17] 葉舟,郝文星,祖紅亞,等.尾緣修剪對(duì)風(fēng)力機(jī)翼型氣動(dòng)性能的影響[J].動(dòng)力工程學(xué)報(bào),2015,35(7):593-598,604.

YE Zhou,HAO Wenxing,ZU Hongya,et al.Influence of trailing edge trim on aerodynamic performance of the wind turbine airfoil[J].Journal of Chinese Society of Power Engineering,2015,35(7):593-598,604.

[18] MENTER F R,LANGTRY R B,LIKKI S R,et al.A correlation-based transition model using local variables-part I:model formulation[J].Journal of Turbomachinery,2006,128(3):413-422.

[19] LANGTRY R B,MENTER F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal,2009,47(12):2894-2906.

[20] TIMMER W A,van ROOIJ R P J O M.Summary of the delft university wind turbine dedicated airfoils[J].Journal of Solar Energy Engineering,2003,125(4):488-496.

[21] 鐘偉,王同光,王強(qiáng).轉(zhuǎn)捩對(duì)S809翼型氣動(dòng)性能影響的數(shù)值模擬[J].太陽(yáng)能學(xué)報(bào),2011,32(10):1523-1527.

ZHONG Wei,WANG Tongguang,WANG Qiang.Numerical Simulation of transition effect on aerodynamic performance of aerofoil S809[J].Acta Energiae Solaris Sinica,2011,32(10):1523-1527.

[22] SOMERS D M.Design and experimental results for the S809 airfoil[R].Colorado,USA:National Renewable Energy Laboratory,1997.

Study on Aerodynamic Characteristics of Low-speed Wind Turbine Airfoil in Consideration of Laminar Separation

TANGXinzi,HUANGXuanqing,SUNSongfeng,PENGRuitao

(School of Mechanical Engineering,Xiangtan University,Xiangtan 411105,Hunan Province,China)

The aerodynamic characteristics of DU93-W-210 wind turbine airfoil were studied at low Reynolds numbers (2×105-5×105) through numerical simulation and experimental tests,so as to analyze the effect of laminar separation bubble on the airfoil aerodynamic characteristics using corrected transition model at different Reynolds numbers and different angles of attack.Results show that the corrected Transition SST turbulence model predicts the lift and drag coefficients as well as the transition location well compared to experimental results at low Reynolds numbers; the lower the Reynolds number is,the more obvious the laminar separation bubble and the smaller the lift-drag ratio will be; the effect of Reynolds number on the lift-drag ratio of airfoil is evident but less obvious when stall exists,and the stall is softer at lower Reynolds numbers; at larger angles of attack,the laminar separation bubble on the upper surface of airfoil is closer to the leading edge,while that on the lower surface is closer to the trailing edge; the transition position on the lower and upper surface both moves in a linear manner before stall,and the transition position on the upper surface moves in a non-linear manner after stall.

wind turbine airfoil; low Reynolds number; laminar separation; aerodynamic characteristic; numerical simulation

2016-02-22

2016-04-06

國(guó)家自然科學(xué)基金資助項(xiàng)目(51305377,51375417)

唐新姿(1981-),女,副教授,博士,主要從事葉輪機(jī)械氣動(dòng)力學(xué)方面的研究.電話(Tel.):15173269528;E-mail:xinzitang@163.com.

1674-7607(2017)01-0052-08

TK83

A 學(xué)科分類號(hào):480.60

猜你喜歡
層流風(fēng)力機(jī)雷諾數(shù)
層流輥道電機(jī)IP56防護(hù)等級(jí)結(jié)構(gòu)設(shè)計(jì)
摻氫對(duì)二甲醚層流燃燒特性的影響
層流切應(yīng)力誘導(dǎo)microRNA-101下調(diào)EZH2抑制血管新生
基于UIOs的風(fēng)力機(jī)傳動(dòng)系統(tǒng)多故障診斷
基于Transition SST模型的高雷諾數(shù)圓柱繞流數(shù)值研究
失穩(wěn)初期的低雷諾數(shù)圓柱繞流POD-Galerkin 建模方法研究
基于轉(zhuǎn)捩模型的低雷諾數(shù)翼型優(yōu)化設(shè)計(jì)研究
民機(jī)高速風(fēng)洞試驗(yàn)的阻力雷諾數(shù)效應(yīng)修正
大型風(fēng)力機(jī)整機(jī)氣動(dòng)彈性響應(yīng)計(jì)算
小型風(fēng)力機(jī)葉片快速建模方法