徐基勝,趙炳梓,張佳寶
(1.土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),封丘農(nóng)田生態(tài)系統(tǒng)國家試驗(yàn)站,南京 210008;2.中國科學(xué)院大學(xué),北京 100049)
長期稻草還田對(duì)胡敏酸化學(xué)結(jié)構(gòu)的影響
——高級(jí)13C NMR研究
徐基勝1,2,趙炳梓1*,張佳寶1
(1.土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),封丘農(nóng)田生態(tài)系統(tǒng)國家試驗(yàn)站,南京 210008;2.中國科學(xué)院大學(xué),北京 100049)
為了從分析技術(shù)上對(duì)胡敏酸的結(jié)構(gòu)分異進(jìn)行定量化研究,以湖南桃源地區(qū)的長期(1990—2011年)田間試驗(yàn)為平臺(tái),采用元素分析、穩(wěn)定碳同位素分析和高速多重傾斜幅度交叉極化/魔角自旋(Multiple cross-polarization/magic angle spinning,multiCP/ MAS)定量測(cè)定技術(shù)結(jié)合選擇性官能團(tuán)測(cè)定的固態(tài)13C核磁共振(Nuclear magnetic resonance,NMR)方法,旨在利用系列技術(shù)闡明連續(xù)22年稻草還田對(duì)土壤胡敏酸化學(xué)結(jié)構(gòu)的影響。結(jié)果表明,稻草還田后胡敏酸含量增加了78%,但元素組成沒有發(fā)生顯著變化,其分子飽和程度、氧化度和極性都與不施肥對(duì)照很接近。稻草還田土壤胡敏酸的δ13C值低于對(duì)照,表明長期稻草還田提高了非極性物質(zhì)來源的碳。定量multiCP/MAS NMR方法則證實(shí)稻草還田后主要提高了土壤胡敏酸的脂類、芳香族物質(zhì)和木質(zhì)素比例,而蛋白質(zhì)、多肽和糖類物質(zhì)的比例則有所降低,從而導(dǎo)致烷基/烷氧基比值及疏水性指數(shù)增大,表明其分解程度增加,疏水性特征更加明顯。高級(jí)NMR技術(shù)進(jìn)一步發(fā)現(xiàn)胡敏酸中有大量的質(zhì)子化碳,稻草還田后質(zhì)子化芳香碳比例增加,但質(zhì)子化異頭碳和烷氧基比例降低,而它們的非質(zhì)子化碳相對(duì)穩(wěn)定;δ113~93化學(xué)位移內(nèi)除異頭碳外還含有芳香碳,且稻草還田的芳香碳在此化學(xué)位移內(nèi)的比例更高。可見稻草還田后土壤胡敏酸的量和結(jié)構(gòu)均有所變化,高級(jí)測(cè)定技術(shù)對(duì)結(jié)構(gòu)的刻畫有助于了解長期稻草還田肥力的提升機(jī)制。
胡敏酸;水稻土;multiCP/MAS;δ13C;元素分析
紅壤性水稻土廣泛分布于我國南方稻作區(qū),為保障糧食高產(chǎn)該地區(qū)往往過量施用化肥,導(dǎo)致農(nóng)田面源污染和湖泊富營養(yǎng)化[1-2]。稻草秸稈可為土壤提供豐富的有機(jī)質(zhì)和速效養(yǎng)分[3],長期稻草還田可以促進(jìn)土壤有機(jī)碳積累、提高土壤肥力和作物產(chǎn)量[4]。研究表明,稻草在腐解轉(zhuǎn)化過程中可影響土壤腐殖質(zhì)的性質(zhì)與結(jié)構(gòu)[5],而土壤腐殖質(zhì)正是構(gòu)成土壤肥力的物質(zhì)基礎(chǔ)[6]。胡敏酸作為土壤腐殖質(zhì)的重要組成部分,其含量和結(jié)構(gòu)的變化會(huì)影響到土壤肥力、作物產(chǎn)量以及土壤污染物的行為[7-8]。以往的研究表明施用不同有機(jī)物料如秸稈能不同程度提高土壤胡敏酸的含量,甚至影響其化學(xué)結(jié)構(gòu)[9-10]。Chien等[9]報(bào)道施用豬糞堆肥增加了土壤胡敏酸中烷基比例,Dou等[10]研究發(fā)現(xiàn)長期稻草還田能使遼寧盤錦水稻土胡敏酸結(jié)構(gòu)變得更加簡單,脂肪性更強(qiáng)。但目前對(duì)腐殖化途徑或過程學(xué)界仍沒有統(tǒng)一的認(rèn)識(shí)[7],對(duì)胡敏酸的精細(xì)結(jié)構(gòu)也缺乏足夠的了解,其中一個(gè)重要原因是受限于當(dāng)前的測(cè)定技術(shù)[11]。13C核磁共振波譜(Nuclear magnetic resonance,NMR)技術(shù)是目前為止研究有機(jī)質(zhì)結(jié)構(gòu)最有效的方法之一,可以直接測(cè)定碳骨架[10,12]。但學(xué)者們大都采用常規(guī)的交叉極化/魔角自旋(Cross-polarization/magic angle spinning,CP/MAS)技術(shù)[13-15],由于交叉極化效率低、易受自旋邊帶影響,因此難以定量化結(jié)果[16-17]。準(zhǔn)確把握胡敏酸的化學(xué)結(jié)構(gòu)對(duì)于深入研究腐殖化作用和提升土壤肥力都有重要的意義,一方面要從定性分析發(fā)展到定量分析,另一方面要從粗放的官能團(tuán)結(jié)構(gòu)細(xì)化到特定的官能團(tuán)結(jié)構(gòu)。高速多重傾斜幅度交叉極化/魔角自旋(Multiple cross-polarization/magic angle spinning,multiCP/MAS)技術(shù)是近年來發(fā)展出的簡單快速測(cè)定有機(jī)質(zhì)結(jié)構(gòu)的新興技術(shù)[18],可以實(shí)現(xiàn)胡敏酸的定量分析。高級(jí)NMR技術(shù)[17,19]則可以選擇性測(cè)定特定結(jié)構(gòu)的官能團(tuán),如偶極相移(Dipolar dephasing,DD)可測(cè)定非質(zhì)子碳和可轉(zhuǎn)動(dòng)碳,化學(xué)位移各向異性過濾(Chemical-shift-anisotropy,CSA)技術(shù)可測(cè)定sp3雜化碳,CH編輯和CH2編輯分別測(cè)定帶有一個(gè)和兩個(gè)質(zhì)子的碳,而CHn-only編輯技術(shù)則能測(cè)定質(zhì)子化碳。高級(jí)技術(shù)之間的組合能提供更為準(zhǔn)確精細(xì)的有機(jī)質(zhì)結(jié)構(gòu)。目前這些技術(shù)已成功應(yīng)用于秸稈分解[20]、古土壤[16]和腐殖質(zhì)[12,17]等多個(gè)領(lǐng)域,但用于長期施肥對(duì)胡敏酸結(jié)構(gòu)的研究還很少。
為此,本研究以湖南桃源地區(qū)的長期田間定位試驗(yàn)為平臺(tái),采用元素分析、穩(wěn)定碳同位素分析和高級(jí)固態(tài)13C NMR技術(shù),包括multiCP/MAS、DD、CSA和CHn-only編輯技術(shù)對(duì)水稻土長期稻草還田土壤中胡敏酸的結(jié)構(gòu)特征進(jìn)行了定量研究,旨在為探明土壤肥力與胡敏酸之間的相互關(guān)系以及腐殖化過程提供理論依據(jù)。
1.1 試驗(yàn)設(shè)計(jì)與樣品采集
土壤樣品采自中國科學(xué)院桃源農(nóng)業(yè)生態(tài)試驗(yàn)站(111°33′E,28°55′N)的長期肥料定位試驗(yàn)。該站年平均氣溫16.5℃,降水量1448 mm,日照1531 h。土壤為發(fā)育于第四紀(jì)紅色黏土的水稻土,土壤類型為水耕人為土,種植制度為早稻-晚稻。試驗(yàn)始于1990年,共設(shè)10個(gè)施肥處理,詳細(xì)介紹請(qǐng)見文獻(xiàn)[21]。本研究選取兩種施肥處理:不施肥對(duì)照和連續(xù)稻草還田。每個(gè)處理3次重復(fù),每個(gè)小區(qū)面積33 m2。稻草還田處理為將小區(qū)的稻草還田到相應(yīng)小區(qū),每年的還田量為14.5 t· hm-2。本研究用樣品于2011年3月在每個(gè)小區(qū)采用五點(diǎn)取樣法采集0~20 cm表層土壤,混勻,即截止樣品采集時(shí)間,該長期試驗(yàn)已經(jīng)歷22年的連續(xù)不同施肥處理。采集樣品風(fēng)干后磨細(xì),過2mm篩備用。連續(xù)22年不同施肥處理的土壤基本理化性質(zhì)見表1。
1.2 胡敏酸的提取和純化
胡敏酸的提取和純化主要參考國際腐植酸協(xié)會(huì)(IHSS)和Preston等[22]的研究。按土液比1∶10(m/V)加入0.1 mol·L-1NaOH和0.1 mol·L-1Na4P2O7溶液(1∶1,V/V),室溫下進(jìn)行堿提取,每次振蕩時(shí)間為16 h,離心收集上清液。堿提取步驟多次重復(fù),直到離心液無色。所有的離心液匯總,并酸化到pH為1~2,在室溫下靜置12~16 h,離心分離出沉淀。沉淀繼續(xù)用0.5 mol·L-1NaOH溶解,用鹽酸酸化。反復(fù)溶解、酸化,直到離心液無色,最終的沉淀為粗胡敏酸。粗胡敏酸用HF∶HCl(1%∶1%)去除礦物質(zhì),純化5次后用去離子水反復(fù)清洗,冷凍干燥后得到純胡敏酸。
1.3 分析測(cè)定
1.3.1 元素分析
樣品的C、N和H含量用元素分析儀(Vario micro cube,Elementar Analysensysteme GmbH,德國)測(cè)定?;曳趾吭?00℃、4 h條件下測(cè)定。氧含量用差減法求得,即O%=100%-C%-H%-N%-灰分%。樣品的內(nèi)部氧化度(ω)要據(jù)Debska等[23]計(jì)算:ω=(2O+3N-H)/C,其中O、N、H和C均為原子百分比。
1.3.2 穩(wěn)定性碳同位素比值(δ13C)分析
δ13C值用FLASHEA-DELTAV聯(lián)用儀(Flash-2000 Delta V ADVADTAGE,賽默飛世爾)測(cè)定,采用Pee Dee Belemnite(PDB)標(biāo)準(zhǔn)。
1.3.313C核磁共振
核磁共振實(shí)驗(yàn)分析在Bruker Avance 400核磁共振儀上完成,采用固體雙共振探頭,4 mm轉(zhuǎn)子。13C的檢測(cè)共振頻率為100 MHz。主要采用的NMR技術(shù)有以下幾種:
(1)13C高速多重傾斜幅度交叉極化-魔角自旋(multiCP/MAS)NMR:魔角自旋頻率為14 kHz,接觸時(shí)間0.1 ms,循環(huán)延遲時(shí)間0.35 s,90°13C脈寬4 μs。圖譜旋轉(zhuǎn)邊帶峰面積非常小(<3%),與中心峰重疊很少。
(2)13C multiCP/MAS與偶極相移(DD)技術(shù)聯(lián)用:偶極相移時(shí)間為68 μs,其他條件同13C multiCP/MAS。
(3)13C化學(xué)位移各向異性過濾(CSA)技術(shù):在全碳圖譜中δ90~120區(qū)域內(nèi)sp3雜化的異頭碳和sp2雜化的芳香碳都有吸收峰,兩種官能團(tuán)信號(hào)互相重疊。利用五脈沖CSA技術(shù)可以將異頭碳信號(hào)區(qū)分開來,CSA-濾波時(shí)間為35 μs。將該技術(shù)再與DD技術(shù)聯(lián)用可以進(jìn)一步區(qū)分出非質(zhì)子異頭碳(OCqO),偶極相移時(shí)間為40 μs。
(4)CHn-only圖譜編輯技術(shù):該圖譜由兩個(gè)交叉極化-總邊帶抑制(CP/TOSS)子圖譜進(jìn)行差減而得。第一個(gè)子圖譜交叉極化接觸時(shí)間為50 μs,該子圖譜主要包括不可轉(zhuǎn)動(dòng)官能團(tuán)中的質(zhì)子化碳信號(hào)和雙鍵磁化轉(zhuǎn)移過程中殘留的季碳信號(hào)。第二個(gè)子圖譜交叉極化接觸時(shí)間為50 μs并配合DD技術(shù),偶極相移時(shí)間為40 μs,該子圖譜只包含殘留的季碳信號(hào)或可轉(zhuǎn)動(dòng)碳如CH3。這兩個(gè)子圖譜的差值顯示的就是CH2和CH官能團(tuán)信號(hào),并含有少量CH3信號(hào)。
為準(zhǔn)確計(jì)算出芳香度,應(yīng)區(qū)分δ90~120區(qū)域的芳香碳和異頭碳信號(hào),具體計(jì)算方法參見Mao等[19]。烷基/烷氧基比值(A/O-A)計(jì)算公式為:A/O-A=(δ0~ 44)/(δ64~93)。疏水性指數(shù)(HI)為所有非極化烷基和芳香碳信號(hào)與極化官能團(tuán)信號(hào)的比值[17],計(jì)算公式為:HI=[(δ0~44)+(δ113~142)]/[(δ44~113)+(δ142~ 220)]。
2.1 胡敏酸碳回收率和含量
純化后不施肥和稻草還田處理中胡敏酸碳含量分別為51.5%和52.8%;有機(jī)碳回收率較高,分別為84.7%和79.8%(表2)。長期稻草還田的胡敏酸含量比不施肥處理增加了78%,說明稻草還田有利于胡敏酸的產(chǎn)生,從而改善土壤有機(jī)質(zhì)品質(zhì)。該研究結(jié)果與周衛(wèi)軍等[4]一致,但胡敏酸含量有所不同,可能與胡敏酸提取和純化方法不同有關(guān)。Dou等[10]研究結(jié)果也表明,與不施肥處理相比,長期稻草還田增加了遼寧盤錦水稻土胡敏酸含量。一般施用有機(jī)物料如糞肥、綠肥都會(huì)提高土壤中的胡敏酸含量[9,24]。
表1 連續(xù)22年不同處理的土壤基本理化性質(zhì)Table 1 Physical and chemical properties of the soils after 22 years of rice straw incorporation and no fertilization
表2 胡敏酸的碳含量、有機(jī)碳回收率和產(chǎn)量Table 2 Carbon content,organic carbon recovery rate and yield of humic acid after rice straw incorporation
2.2 元素分析和同位素分析
由表3可見,稻草還田后胡敏酸各元素組成與不施肥相比變化不大,其中碳含量略有增加,而氮和氧含量略有下降。因此二者原子比大小和內(nèi)部氧化度均較為接近。H/C表征胡敏酸的分子飽和程度或縮合度,O/C表征氧化度,(N+O)/C表征分子極性[8,25],3種原子比的均值分別為1.35、0.51和0.60。內(nèi)部氧化度ω表示胡敏酸氧化過程的程度,其值越高表明腐殖化程度也越高[7,23]。Chien等[9]也發(fā)現(xiàn)長期施用糞肥和綠肥并未顯著改變胡敏酸的H/C和O/C,且與本實(shí)驗(yàn)結(jié)果較為接近。Jindo等[13]研究表明,無論是添加新鮮的有機(jī)物還是成熟堆肥,土壤胡敏酸的H/C和O/C都沒有明顯變化。這一方面表明了稻草還田難以改變水稻土胡敏酸的元素組成,但另一方面也暗示其化學(xué)結(jié)構(gòu)的深入刻畫還依賴于更高級(jí)的分析手段。
穩(wěn)定碳同位素可以指示有機(jī)質(zhì)來源[15]。長期稻草還田后δ13C值降低(表3),說明稻草還田使土壤胡敏酸積累了新的有機(jī)碳,這部分碳來源于稻草輸入轉(zhuǎn)化的新鮮有機(jī)質(zhì)。δ13C值的變化還可能與胡敏酸的結(jié)構(gòu)有關(guān)[26]。極性化合物如糖類和氨基酸一般富13C,而非極性物質(zhì)如脂類和木質(zhì)素等則貧13C[15],由此推斷稻草還田處理的胡敏酸相對(duì)不施肥處理可能還有更多的非極性物質(zhì),而極性物質(zhì)則較少。
2.3 高級(jí)13C NMR分析
長期稻草還田及不施肥對(duì)照土壤胡敏酸的全碳圖譜和選擇性碳圖譜如圖1所示。其中圖1(a)和圖1 (f)為multiCP/MAS NMR圖譜,可顯示δ0~220所有碳吸收峰。不同化學(xué)位移區(qū)域?qū)?yīng)的官能團(tuán)及其可能的來源物質(zhì)如表4所示??梢婇L期稻草還田和對(duì)照土壤胡敏酸的全碳圖譜很相似;其中烷基吸收峰最高,其次為羧基,表明胡敏酸中可能含有較多的角質(zhì)、軟木脂和蠟等植物大分子物質(zhì)[27],以及來自于多肽或蛋白質(zhì)的羧酸或酰胺類物質(zhì)[16]。但稻草還田處理中胡敏酸的δ56處的吸收峰比對(duì)照更加明顯。
通過DD技術(shù)可以選擇性識(shí)別出非質(zhì)子碳和可轉(zhuǎn)動(dòng)碳信號(hào),如圖1(b)和圖1(g),包括δ173處的羧基、δ156的酚碳、δ130的非質(zhì)子芳香碳、δ72的烷氧基、δ56的甲氧基、δ30的聚亞甲基和δ20的甲基。其中芳香碳信號(hào)相比全碳圖譜降低較多,表明胡敏酸多數(shù)芳香碳都是質(zhì)子化碳。δ72峰高相比全碳圖譜下降明顯,說明胡敏酸含有很少的非質(zhì)子烷氧基(OCq)。經(jīng)過DD處理后,δ56處殘留一個(gè)小尖峰,說明胡敏酸在該處的吸收峰大多來自于含氮烷基(NCH)而非甲氧基(OCH3)。含氮烷基主要來自于多肽[17],而甲氧基和酚碳是木質(zhì)素的顯著特征[14]。綜上,長期稻草還田的土壤胡敏酸經(jīng)DD技術(shù)處理后圖譜與對(duì)照也較為相似。
通過CSA技術(shù)可以識(shí)別出脂肪族碳尤其是異頭碳(OCO)信號(hào)。從圖1(c)和圖1(h)看,δ113~93的碳信號(hào)相對(duì)全碳圖譜衰減較少,表明該區(qū)域主要為異頭碳,而非芳香碳。異頭碳主要來自于多糖中的糖環(huán)[16],且在不施肥對(duì)照處理中的信號(hào)要比稻草還田處理的略強(qiáng)。CSA技術(shù)與DD技術(shù)聯(lián)用后可以識(shí)別出非質(zhì)子異頭碳(OCqO)信號(hào)。非質(zhì)子異頭碳可能來源于單寧酸[12]。由圖1(d)和圖1(i)可知,兩種胡敏酸的異頭碳只有很少是非質(zhì)子化的。這一點(diǎn)可以從圖1(e)和圖1(j)上進(jìn)一步得到證實(shí),其中δ113~93處的吸收峰為質(zhì)子化異頭碳(OCHO),與全碳圖譜相比信號(hào)相當(dāng)。另外還能觀察到δ130的質(zhì)子芳香碳、δ72的質(zhì)子烷氧基(OCH)、δ56的含氮烷基和δ20的聚亞甲基信號(hào);其中對(duì)照土壤胡敏酸中δ72峰要比δ56峰高,而在稻草還田處理中則剛好相反。表明盡管長期稻草還田與對(duì)照土壤胡敏酸中都含有大量的質(zhì)子化碳,但稻草還田后不同質(zhì)子化碳的比例與對(duì)照有別。
表3 胡敏酸的元素組成(無灰分)、原子比、內(nèi)部氧化度和同位素成分Table 3 Elemental content(ash-free),atomic ratios,ω and isotopic compositions of humic acid after rice straw incorporation
圖1 胡敏酸的multiCP/MAS NMR圖譜和選擇性官能團(tuán)碳圖譜Figure 1 MultiCP/MAS NMR and identification of13C NMR signals from specific functional groups in humic acids
通過對(duì)圖譜進(jìn)行積分,可以獲得胡敏酸中不同官能團(tuán)的相對(duì)比例,尤其是借助高級(jí)NMR技術(shù)可以獲得更為詳細(xì)的定量結(jié)果,包括準(zhǔn)確的芳香碳和異頭碳比例以及質(zhì)子和非質(zhì)子碳的比例(表5)。這一點(diǎn)比常規(guī)的CP/MAS NMR結(jié)果有明顯的優(yōu)勢(shì)。由表5可知,水稻土胡敏酸中烷基比例最高,占全碳的31.9%~ 33.0%,稻草還田使烷基比例略有增加;其次為芳香碳、烷氧基、含氮烷基和羧基,相對(duì)比例在10%~20%之間;而酚碳、異頭碳、甲氧基比例較少,均低于5%;羧基比例最低(<1%)。長期稻草還田和不施肥對(duì)照土壤胡敏酸中芳香碳非質(zhì)子化的比例分別為40%和42%;異頭碳和烷氧基則大多數(shù)質(zhì)子化,其中異頭碳質(zhì)子化比例分別為84%和85%,烷氧基質(zhì)子化比例分別為91%和92%。
表4 不同化學(xué)位移區(qū)域?qū)?yīng)的官能團(tuán)及其可能的來源物質(zhì)Table 4 Assignments of the chemical shift region to types of carbon and their organic matter sources
表5 胡敏酸不同官能團(tuán)碳占總碳的相對(duì)比例(%)Table 5 Percentages of total spectral area assigned to different functional groups obtained by multiCP/MAS13C NMR and spectral-editing techniques for the humic acids(%)
通過高級(jí)NMR技術(shù)可甄別出長期稻草還田對(duì)胡敏酸結(jié)構(gòu)的影響。主要體現(xiàn)在以下幾方面:首先,稻草還田整體上降低了羧基和含氮烷基的比例,這和元素分析結(jié)果中胡敏酸氮含量略有降低是一致的(表3),據(jù)此推測(cè)稻草還田導(dǎo)致土壤胡敏酸中蛋白質(zhì)和多肽類物質(zhì)[16]比例降低。其次,稻草還田增加了芳香族物質(zhì)(包括酚碳和芳香碳)比例,增幅為10%,其中增加的芳香碳主要是質(zhì)子化碳;而主要來源于糖類物質(zhì)的異頭碳和烷氧基比例降低,且主要是質(zhì)子化碳的降低。再次,甲氧基比例雖然整體較低,但稻草還田后其比例相比對(duì)照增加了37%;綜合稻草還田對(duì)酚碳比例的增加,推測(cè)稻草還田還提高了胡敏酸中木質(zhì)素[14]的比例。最后,值得注意的是δ113~93化學(xué)位移區(qū)域同時(shí)存在異頭碳和芳香碳,要據(jù)其積分值和異頭碳相對(duì)比例(表5)可計(jì)算出稻草還田后胡敏酸異頭碳在此化學(xué)位移內(nèi)的比例由71%降到57%,即稻草還田后有更多的芳香碳來源于δ113~93。綜上,可推測(cè)稻草還田后土壤胡敏酸中的芳香族物質(zhì)增加,而糖類物質(zhì)降低;非質(zhì)子化碳相對(duì)較穩(wěn)定,而質(zhì)子化碳則易受稻草還田影響。稻草還田后胡敏酸的糖類、多肽物質(zhì)比例降低和脂類、木質(zhì)素比例的增加與同位素分析結(jié)果非極性物質(zhì)的增加也是一致的(表3)。
由于稻草還田后烷基的增加和烷氧基的降低,導(dǎo)致A/O-A要高于不施肥對(duì)照(圖2),說明稻草還田加速了胡敏酸的分解和腐殖化[5,13]。同時(shí)不施肥和稻草還田處理胡敏酸的芳香度均較低,分別為0.23和0.26,表現(xiàn)出明顯的脂肪族特性。趙光等[5]研究紫色水稻土稻草腐解過程中胡敏酸的形成,發(fā)現(xiàn)胡敏酸也以脂肪族化合物為主,芳香度介于0.27~0.28之間。胡敏酸的疏水性指數(shù)則是稻草還田的略高,說明稻草還田后胡敏酸的疏水性特征更加明顯[15]。疏水性結(jié)構(gòu)可以保護(hù)生物活性分子如生長素,同時(shí)能夠提高微生物和要際區(qū)域中要系生長的交互作用[13]。
圖2 胡敏酸的A/O-A、芳香度和疏水性指數(shù)Figure 2 Variations of A/O-A,aromaticity and hydrophobic index(HI)of humic acids in paddy soil
(1)長期稻草還田有利于水稻土胡敏酸的增加,相比不施肥處理提高了78%。
(2)胡敏酸的元素組成、分子飽和程度、氧化度和極性在稻草還田后均未發(fā)生明顯改變。δ13C結(jié)果顯示稻草還田使胡敏酸中積累了新的有機(jī)碳,含有更多的非極性物質(zhì)。
(3)要據(jù)高級(jí)NMR定量分析結(jié)果可推測(cè),水稻土胡敏酸以脂肪族化合物為主,且含有大量的質(zhì)子化碳,芳香度較低。稻草還田增加了胡敏酸在δ113~93化學(xué)位移內(nèi)芳香碳的比例,以及芳香族物質(zhì)和木質(zhì)素比例,但整體上降低了蛋白質(zhì)、多肽類和糖類物質(zhì)的比例。非質(zhì)子化碳相對(duì)不易受稻草還田影響,而質(zhì)子化芳香碳增加,質(zhì)子化異頭碳和烷氧基比例降低。稻草還田還提高了胡敏酸中烷基和烷氧基比值,疏水性特征也更加明顯。
致謝:本研究在采集土壤樣品過程中得到中國科學(xué)院桃源農(nóng)業(yè)生態(tài)試驗(yàn)站魏文學(xué)研究員和相關(guān)工作人員的大力幫助和支持,在此謹(jǐn)表謝意!
[1]陳惟財(cái),王凱榮,謝小立.長期不同施肥處理對(duì)紅壤性水稻土團(tuán)聚體中碳、氮分布的影響[J].土壤通報(bào),2009,40(3):523-528.
CHEN Wei-cai,WANG Kai-rong,XIE Xiao-li.Effects on distributions of carbon and nitrogen in a reddish paddy soil under long-term different fertilization treatments[J].Chinese Journal of Soil Science,2009,40(3):523-528.
[2]馬 力,楊林章,肖和艾,等.長期施肥和秸稈還田對(duì)紅壤水稻土氮素分布和礦化特性的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2011,17(4):898-905.
MA Li,YANG Lin-zhang,XIAO He-ai,et al.Effects of long-term fertilization and straw returning on distribution and mineralization of nitrogen in paddy soils in subtropical China[J].Plant Nutrition and Fertilizer Science,2011,17(4):898-905.
[3]陳春蘭,陳 哲,朱亦君,等.水稻土細(xì)菌硝化作用基因(amoA和hao)多樣性組成與長期稻草還田的關(guān)系研究[J].環(huán)境科學(xué),2010,31 (6):1624-1632.
CHEN Chun-lan,CHEN Zhe,ZHU Yi-jun,et al.Effects of rice straw on the diversity of nitrifying genes(amoA and hao)in paddy soil[J].En-vironmental Science,2010,31(6):1624-1632.
[4]周衛(wèi)軍,王凱榮,郝金菊,等.紅壤稻田生態(tài)系統(tǒng)有機(jī)物料循環(huán)對(duì)土壤有機(jī)碳轉(zhuǎn)化的影響[J].生態(tài)學(xué)雜志,2006,25(2):140-144.
ZHOU Wei-jun,WANG Kai-rong,HAO Jin-ju,et al.Effects of organic materials cycling on soil organic carbon turnover in a red soil paddy ecosystem[J].Chinese Journal of Ecology,2006,25(2):140-144.
[5]趙 光,唐曉紅,呂家恪,等.紫色水稻土胡敏酸的形成:稻草腐解試驗(yàn)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(12):2596-2602.
ZHAO Guang,TANG Xiao-hong,Lü Jia-ke,et al.The formation of humic acids in purple paddy soil:Based on decomposition of rice straw[J]. Journal of Agro-Environment Science,2009,28(12):2596-2602.
[6]張 葛,竇 森,謝祖彬,等.施用生物質(zhì)炭對(duì)土壤腐殖質(zhì)組成和胡敏酸結(jié)構(gòu)特征影響[J].環(huán)境科學(xué)學(xué)報(bào),2016,36(2):614-620.
ZHANG Ge,DOU Sen,XIE Zu-bin,et al.Effect of biochar application on composition of soil humus and structural characteristics of humic acid[J].ActaScientiae Circumstantiae,2016,36(2):614-620.
[7]Tan K H.Humic matter in soil and the environment:Principles and controversies[M].2nd Edition.Boca Raton:CRC Press,2014.
[8]張晉京,竇 森,謝修鴻,等.長期石油污染土壤中胡敏酸結(jié)構(gòu)特征的研究[J].光譜學(xué)與光譜分析,2009,29(6):1531-1535.
ZHANG Jin-jing,DOU Sen,XIE Xiu-hong,et al.Structural characteristics of humic acids from a long-term petroleum contaminated soil[J]. Spectroscopy and Spectral Analysis,2009,29(6):1531-1535.
[9]Chien S W C,Wang M C,Hsu J H,et al.Influence of fertilizers applied to a paddy-upland rotation on characteristics of soil organic carbon and humic acids[J].Journal of Agricultural and Food Chemistry,2006,54 (18):6790-6799.
[10]Dou S,Zhang J J,Li K.Effect of organic matter applications on13CNMR spectra of humic acids of soil[J].European Journal of Soil Science,2008,59(3):532-539.
[11]Mao J D,Chen N,Cao X Y.Characterization of humic substances by advanced solid state NMR spectroscopy:Demonstration of a systematic approach[J].Organic Geochemistry,2011,42(8):891-902.
[12]Mao J D,Xing B S,Schmidt-Rohr K.New structural information on a humic acid from two-dimensional1H-13C correlation solid-state nuclear magnetic resonance[J].Environmental Science&Technology, 2001,35(10):1928-1934.
[13]Jindo K,Hernandez T,Garcia C,et al.Influence of stability and origin of organic amendments on humification in semiarid soils[J].Soil Science Society of AmericaJournal,2011,75(6):2178-2187.
[14]Panettieri M,Knicker H,Murillo J M,et al.Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools,enzymatic activities and CPMAS13C NMR[J].Soil Biology and Biochemistry,2014,78:170-181.
[15]Spaccini R,Piccolo A,Haberhauer G,et al.Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by13C distribution and CPMAS-NMR spectra [J].European Journal of Soil Science,2000,51(4):583-594.
[16]Zhou Z G,Chen N,Cao X Y,et al.Composition of clay-fraction organic matter in Holocene paleosols revealed by advanced solid-state NMR spectroscopy[J].Geoderma,2014,223/224/225:54-61.
[17]Mao J D,Tremblay L,Gagné J-P.Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR:Insights into sources,preservation and molecularly uncharacterized components[J].Geochimicaet Cosmochimica Acta,2011,75(24):7864-7880.
[18]Johnson R L,Schmidt-Rohr K.Quantitative solid-state13C NMR with signal enhancement by multiple cross polarization[J].Journal of Magnetic Resonance,2014,239:44-49.
[19]Mao J D,Schmidt-Rohr K.Accurate quantification of aromaticity and nonprotonated aromatic carbon fraction in natural organic matter by13C solid-state nuclear magnetic resonance[J].Environmental Science& Technology,2004,38(9):2680-2684.
[20]Gao H J,Chen X,Wei J L,et al.Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions[J].PLoS one,2016,11(7):e0158172.
[21]周衛(wèi)軍,王凱榮,劉 鑫.有機(jī)物循環(huán)對(duì)紅壤稻田土壤N礦化的影響[J].生態(tài)學(xué)雜志,2004,23(1):39-43.
ZHOU Wei-jun,WANG Kai-rong,LIU Xin.Effects of organic residue cycling on soil nitrogen mineralization characteristics of rice cropping system in red soil region of China[J].Chinese Journal of Ecology,2004, 23(1):39-43.
[22]Preston C M,Hempfling R,Schulten H R,et al.Characterization of organic-matter in a forest soil of coastal British-Columbia by NMR and pyrolysis-field ionization mass-spectrometry[J].Plant and Soil,1994, 158(1):69-82.
[23]Debska B,Szombathova N,Banach-Szott M.Properties of humic acids of soil under different management regimes[J].Polish Journal of Soil Science,2009,42(2):131-138.
[24]Pramanik P,Kim P J.Fractionation and characterization of humic acids from organic amended rice paddy soils[J].Science of the Total Environment,2014,466/467(1):952-956.
[25]Yang Y,Shu L,Wang X L,et al.Impact of De-Ashing humic acid and humin on organic matter structural properties and sorption mechanisms ofphenanthrene[J].Environmental Science&Technology,2011,45(9):3996-4002.
[26]張晉京,竇 森,張大軍.長期施肥對(duì)土壤有機(jī)質(zhì)δ13C值影響的初步研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2006,25(2):382-387.
ZHANG Jin-jing,DOU Sen,ZHANG Da-jun.Preliminary study of impact of long-term fertilization on δ13C values of soil organic matter[J]. Journal of Agro-Environment Science,2006,25(2):382-387.
[27]Wang C,He N,Zhang J,et al.Long-term grazing exclusion improves the composition and stability of soil organic matter in Inner Mongolian grasslands[J].PloS one,2015,10(6):e0128837.
[28]Alexis M A,Rasse D P,Knicker H,et al.Evolution of soil organic matter after prescribed fire:A 20-year chronosequence[J].Geoderma, 2012,189/190:98-107.
Advanced13C NMR analysis of humic acid after long-term rice straw incorporation into paddy soil
XU Ji-sheng1,2,ZHAO Bing-zi1*,ZHANG Jia-bao1
(1.State Key Laboratory of Soil and Sustainable Agriculture(Institute of Soil Science,Chinese Academy of Sciences),State Experimental Station of Agro-Ecosystem in Fengqiu,Nanjing 210008,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)
As an essential component of soil organic matter,humic acid may vary in chemical composition after long-term straw incorporation.However,the quantitative studies on structural differentiations of soil humic acid were limited by the development of analytical techniques,especially for samples in the paddy soil.This study investigated the qualitative and quantitative characteristics of humic acids extracted from a paddy soil from Taoyuan County in China after 22 years of rice-rice(Oryza sativa L.)rotations,with two fertilizations i.e.no fertilizer application as a control and rice straw incorporation.Several analytical techniques including elemental analysis,isotopic analysis (δ13C)and advanced13C NMR[i.e.multiple cross-polarization/magic angle spinning(multiCP/MAS)and spectral-editing techniques]were used.Results indicated that the yield of humic acid increased from 2.25 g·kg-1(as in the control)to 4.01 g·kg-1in the rice straw incorpo-ration treatment,whereas elemental compositions of the two humic acids were similar.The average atomic ratios of H/C,O/C and(N+O)/C were 1.35,0.51 and 0.60,respectively,indicating the two humic acids experienced similar degree of saturation,oxidation,and polarity.In comparison with the control,the δ13C value of humic acid decrease from-2.783%to-2.849%after straw incorporation,which represents the contents of apolar components increased.The increase was verified through multiCP/MAS results and was ascribe to the higher proportion of lipids,aromatics and lignin.The contents of proteins,peptides,and carbohydrates decreased after rice straw incorporation.The conversion of constituents resulted in higher ratio of the alkyl C to O-alkyl C in humic acids and improved their hydrophobicity,indicating the higher decomposition degree and more obvious hydrophobic characteristics of humic acids after straw incorporation.As revealed by advanced NMR results,substantial protonated carbon existed in two humic acids.More protonated aromatic carbon were found in humic acids after straw incorporation while the protonated anomerics and O-alkyls in the samples decreased.The proportion of nonprotonated carbon were independent of the rice straw incorporation.Specially,aromatics between δ113 and δ93 were found in both humic acids while the experimental samples showed higher proportion.Our results indicate that both the quantity and chemical structures of humic acid changed after rice straw incorporation and stress the importance of advanced NMR techniques in elucidating the fertility-improving mechanism through rice straw incorporation on soil.
humic acid;paddy soil;multiCP/MAS;δ13C;elemental analysis
S153
A
1672-2043(2017)01-0116-08
10.11654/jaes.2016-1032
2016-08-11
徐基勝(1987—),男,安徽安慶人,博士研究生,主要從事土壤有機(jī)質(zhì)研究。E-mail:jsxu@issas.ac.cn
*通信作者:趙炳梓 E-mail:bzhao@issas.ac.cn
國家自然科學(xué)基金面上項(xiàng)目(41271311);國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200107,2016YFD0300802);中國科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(STS計(jì)劃)項(xiàng)目(KFJ-SW-STS-142-03);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金項(xiàng)目(CARS-03)
Project supported:The National Natural Science Foundation of China(41271311);The National Key Research and Development Program(2016YFD 0200107,2016YFD0300802);The Science and Technology Service Network Initiative Program of Chinese Academy of Sciences(KFJ-SW-STS-142-03);The Earmarked Fund for China Agriculture Research System(CARS-03)
徐基勝,趙炳梓,張佳寶.長期稻草還田對(duì)胡敏酸化學(xué)結(jié)構(gòu)的影響——高級(jí)13C NMR研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(1):116-123.
XU Ji-sheng,ZHAO Bing-zi,ZHANG Jia-bao.Advanced13C NMR analysis of humic acid after long-term rice straw incorporation into paddy soil[J].Journal of Agro-Environment Science,2017,36(1):116-123.