李 橋,丁文川,雍 毅,姜 蔚,曾曉嵐,高嶼濤,侯 江
(1.三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室(重慶大學),重慶400045; 2.中國電建集團成都勘測設(shè)計研究院有限公司,成都610072;3.四川省環(huán)境保護科學研究院,成都610041;4.哈爾濱理工大學 設(shè)計研究院,哈爾濱 150080)
生物質(zhì)炭對氣態(tài)揮發(fā)性有機污染物的吸附性能及機理
李 橋1,2,丁文川1,雍 毅3,姜 蔚4,曾曉嵐1,高嶼濤3,侯 江3
(1.三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室(重慶大學),重慶400045; 2.中國電建集團成都勘測設(shè)計研究院有限公司,成都610072;3.四川省環(huán)境保護科學研究院,成都610041;4.哈爾濱理工大學 設(shè)計研究院,哈爾濱 150080)
為探究生物質(zhì)炭對氣態(tài)有機污染物的吸附能力及作用機理,以核桃殼和椰子殼為原料制備生物質(zhì)炭.采用元素分析儀、傅里葉紅外光譜儀、Boehm滴定和比表面積及孔隙率分析儀分析生物質(zhì)炭理化特征,并利用吸附柱實驗考察生物質(zhì)炭對氣態(tài)揮發(fā)性有機污染物(苯和甲苯)的吸附行為.結(jié)果表明:相同制備條件下,椰殼生物質(zhì)炭吸附性能高于核桃殼生物質(zhì)炭.在實驗溫度范圍內(nèi)(400~700 ℃),隨著制備溫度的升高,生物質(zhì)炭吸附性能增大.低溫下制備的生物質(zhì)炭(400 ℃)吸附行為符合準二級動力學模型,高溫下制備的生物質(zhì)炭(700 ℃)的吸附過程符合準一級動力學模型.在吸附溫度30 ℃時,生物質(zhì)炭對苯和甲苯的等溫吸附過程符合Toth模型,計算得到生物質(zhì)炭最大的理論飽和吸附量為18.98 mg/g苯和61.73 mg/g甲苯.生物質(zhì)炭的表面酸性官能團和孔道結(jié)構(gòu)在吸附過程中起關(guān)鍵作用,影響吸附質(zhì)在生物質(zhì)炭的表面吸附和粒內(nèi)擴散吸附過程.
揮發(fā)性有機污染物;生物質(zhì)炭;吸附;苯;甲苯
對揮發(fā)性有機污染物(VOCs)[1-2]的處理目前主要采用催化氧化[3]、氣體膜分離[4]、生物滴濾[5]和吸附技術(shù)[6],以及其組合工藝[7].其中,以活性炭為主的吸附技術(shù)因操作簡單,處理效率高而被廣泛采用.但活性炭因制備溫度高(一般1 100 ℃以上)、制備原料較單一及活化過程能耗高且易產(chǎn)生二次污染等問題,限制了其大規(guī)模的應用.因而,亟需尋求更為廉價的吸附劑或探索潛在的新型吸附劑材料.
生物質(zhì)炭是一種低溫(一般<700 ℃)熱解生物質(zhì)炭質(zhì)形成的富含炭物質(zhì)的多孔材料,鋸末、秸稈果殼等廉價而豐富的農(nóng)業(yè)廢棄物均可作為制備原材料,制備成本十分低廉[8].大量研究表明,這種廉價的生物質(zhì)炭可用于吸附水體和土壤中的有機污染物質(zhì),如硝基甲苯、苯酚等[9-10].但是,生物質(zhì)炭對氣體中有機污染物的吸附目前還鮮有研究.較多的研究結(jié)果表明,活性炭吸附廢氣中有機氣體機理主要取決于活性炭孔隙結(jié)構(gòu)的物理吸附,但生物質(zhì)炭不同于活性炭,除含有較豐富的孔隙結(jié)構(gòu),其表面還含有豐富的官能團,這勢必影響生物質(zhì)炭對氣體有機污染物的吸附行為.為此,本研究主要探索生物質(zhì)炭對氣態(tài)有機污染物的吸附性能與作用機理.基于苯和甲苯巨大的危害和工業(yè)中的大量使用,選取其作為典型的VOCs,以核桃殼和椰子殼兩種農(nóng)業(yè)廢棄物為原料,不同熱解溫度(400、550和700 ℃)下,制備一系列生物質(zhì)炭材料.通過其理化性質(zhì)分析和批量吸附實驗,探討其吸附效果與機制.
1.1 生物質(zhì)炭制備
椰子殼和核桃殼分別取自中國海南省??谑泻退拇ㄊ〕啥际?熱解之前,將其碎成2~4 mm顆粒,并用去離子水清洗去除灰塵,然后在100 ℃下烘干.將烘干后的核桃殼和椰子殼在管式熱解爐(洛陽西格瑪爐業(yè)有限公司)中熱解.熱解溫度設(shè)定為400、550和700 ℃,升溫速率為10 ℃/min,達到設(shè)定溫度后繼續(xù)熱解2 h,隨后在爐體中冷卻至室溫,全過程以氮氣為保護氣體,流量為400 mL/min.
熱解殘渣即為生物質(zhì)炭.研磨過篩后,取0.125~0.150 mm粒徑的生物質(zhì)炭作為本研究用樣品. 對應熱解溫度下制得的核桃殼和椰殼生物質(zhì)炭樣品分別記為H400、H550、H700和Y400、Y550、Y700.
1.2 苯和甲苯吸附實驗
實驗采用苯/N2標準氣體和甲苯/N2標準氣體,通過高純氮氣和標準氣體稀釋控制所需VOCs的進氣濃度,苯和甲苯標準氣體購于中國測試技術(shù)研究院,實驗裝置見圖1.
圖1 實驗裝置示意Fig.1 A schematic of adsorption apparatus
實驗裝置主要由標準氣體稀釋單元、吸附柱單元和數(shù)據(jù)監(jiān)測單元3部分組成.吸附柱為玻璃制品,長25 cm,直徑1.5 cm,吸附柱置于水浴鍋內(nèi)維持30 ℃吸附溫度.進出口濃度檢測采用ppbRAE3000便攜式VOC在線監(jiān)測儀(美國華瑞PGM7340型).每次吸附實驗生物質(zhì)炭質(zhì)量為3.18 g,進氣量為300 mL/min.當出口濃度等于進口濃度時,視為吸附飽和,停止實驗.
生物質(zhì)炭對苯和甲苯的吸附量通過下式計算
(1)
式中:m為生物質(zhì)炭質(zhì)量,g;qt為t時刻VOCs吸附量,mg/g;ρ0和ρt分別為初始時刻進口處氣體質(zhì)量濃度和t時刻出口處氣體質(zhì)量濃度,mg/m3;v為進氣量,m3/min.
1.3 分析方法
樣品C、H、N、O元素質(zhì)量分數(shù)測定采用varioMACRO cube元素分析儀(德國ELEMENTAR Analysensysteme 股份有限公司).表面含氧官能團和堿性基團質(zhì)量摩爾濃度的測定采取Boehm滴定法[11].紅外光譜(FTIR)采用IRAffinity-1紅外光譜儀(日本島津公司)測定,掃描范圍400~4 000 cm-1,分辨率為4.0 cm-1.生物質(zhì)炭BET比表面積和孔徑分析采用BELSORP-max比表面積和孔隙率分析儀(日本BEL股份有限公司).
2.1 生物質(zhì)炭理化特征
不同制備條件下生物質(zhì)炭的元素組成和表面官能團質(zhì)量摩爾濃度見表1.可以看出,隨著熱解溫度的升高,碳元素質(zhì)量分數(shù)明顯增加,而氧和氫元素下降.氧碳摩爾比和氫碳摩爾比下降,表明生物質(zhì)炭的極性減小,芳香性和疏水性增強[12],這也與表面官能團變化一致.隨著熱解溫度的升高,生物質(zhì)炭表面酸性官能團也逐漸減少,這與許多研究結(jié)果類似[12-13].
生物質(zhì)炭的比表面積和孔隙結(jié)構(gòu)也會對吸附性能產(chǎn)生一定的影響[15].生物質(zhì)炭的BET比表面積(as)、外比表面積(ae)、微孔體積(V1)和介孔體積(V2)見表2.可以看出,生物質(zhì)炭的比表面積和孔隙體積隨著熱解溫度的升高而顯著增加.意味著生物質(zhì)炭的吸附性能可能會隨熱解溫度升高而顯著提升[16].
表1 生物質(zhì)炭元素組成及表面官能團質(zhì)量摩爾濃度Tab.1 Elemental compositions and surface functional groups of biochars at different pyrolysis temperatures
圖2 生物質(zhì)炭傅里葉紅外光譜Fig.2 FTIR spectra of biochars
表2 生物質(zhì)炭比表面積和空隙體積
Tab.2 Surface areas and pore volumes of biochars at various pyrolysis temperatures
生物質(zhì)炭as/(m2·g-1)ae/(m2·g-1)V1/(cm3·g-1)V2/(cm3·g-1)H4000.4720.1895.000E-40.012H550218.5502.1180.0900.037H700399.0703.0410.1620.028Y4000.9130.3453.000E-30.039Y550140.8003.1080.0570.010Y700351.23010.8550.1520.086
生物質(zhì)炭孔徑分布見圖3.可以看出,低溫下制備的生物質(zhì)炭(400 ℃)孔隙結(jié)構(gòu)十分貧瘠,隨著制備溫度升高,生物質(zhì)炭孔隙顯著增加,以微孔為主,且孔半徑主要在5 nm以下.此外,Y700生物質(zhì)炭2~4 nm的介孔顯著高于H700生物質(zhì)炭.
圖3 生物質(zhì)炭孔徑分布Fig.3 Pore size distribution of biochars
2.2 生物質(zhì)炭對苯和甲苯吸附動力學
生物質(zhì)炭對苯和甲苯的吸附動力學曲線見圖4.正如所料,隨著熱解溫度的升高,兩種材質(zhì)的生物質(zhì)炭對苯和甲苯的吸附性能均大大提高,吸附飽和時間也極大延長.H400和H550生物質(zhì)炭在20 min內(nèi)對苯和甲苯的吸附即可達到吸附飽和,而H700生物質(zhì)炭的吸附飽和時間則大大增加,甚至長達近700 min.同時,對苯和甲苯的飽和吸附量也分別由0.05和0.06 mg/g提升至3.27和7.80 mg/g.這種趨勢和不同溫度下制備的椰殼生物質(zhì)炭吸附規(guī)律一致,這可能與高溫制得生物質(zhì)炭具有更加豐富的孔隙結(jié)構(gòu)有關(guān).
為了摸清生物質(zhì)炭對苯和甲苯的吸附行為,采取準一級動力學模型、準二級動力學和Elovich方程進行擬合,其中準一級動力學模型主要描述吸附受擴散步驟控制[17];準二級動力學模型則認為吸附速率受化學吸附機理的控制,涉及到吸附劑與吸附質(zhì)之間的電子共用或轉(zhuǎn)移[18];Elovich方程也通常用于描述氣體物質(zhì)在吸附劑上的化學吸附[19].
準一級動力學模型為
ln(qe-qt)=lnqe-k1t,
(2)
準二級動力學模型為
(3)
Elovich 方程為
(4)
式中:k1(min-1)和k2(g·mg-1·min-1)為吸附速率常數(shù),qe(mg/g)和qt(mg/g)分別表示在吸附平衡和反應t時刻的吸附量,a和b為Elovich 方程常數(shù).
將圖4結(jié)果代入式(2)、(3)和(4),得到動力學參數(shù)見表3.從相關(guān)系數(shù)R2可以看出,低溫下制備的生物質(zhì)炭(如H400)對苯和甲苯的吸附更符合準二級動力學模型(0.997 1>0.965 0>0.948 6;0.999 7>0.987 0>0.968 3),而高溫下制備的生物質(zhì)炭(如H700)對苯和甲苯的吸附過程更符合準一級動力學模型(0.990 6>0.988 2>0.946 4;0.934 4>0.883 6>0.861 7).這表明低溫制備的生物質(zhì)炭對苯和甲苯的吸附受化學機理控制,高溫下制備的生物質(zhì)炭對苯和甲苯的吸附受物理擴散作用控制.可能是因為低溫下制備的生物質(zhì)炭表面含有更多的含氧官能團,使得吸附速率受化學吸附機制控制[20];而隨著制備溫度升高,生物質(zhì)炭孔隙結(jié)構(gòu)變得極為豐富,且表面吸電子基團減少,與苯和甲苯形成氫鍵的能力下降,使得吸附過程主要受空隙內(nèi)擴散機制控制.
圖4 吸附時間對吸附量的影響Fig.4 Effects of adsorption time on the total adsorption amount
表3 生物質(zhì)炭對苯和甲苯吸附動力學參數(shù)Tab.3 Adsorption kinetics parameters of benzene and toluene on biochars
2.3 生物質(zhì)炭對苯和甲苯等溫吸附過程
圖5分析了不同初始濃度下,H700和Y700兩種吸附性能較好的生物質(zhì)炭,在吸附溫度30 ℃時對苯和甲苯的等溫吸附情況.可以看出,初始濃度顯著影響生物質(zhì)炭的吸附量.初始濃度越高,飽和吸附量越大.
生物質(zhì)炭對苯和甲苯平衡吸附通常采用Langmuir[21]、 Freundlich[22]、Sips[23]和Toth[24]模型進行模擬.Langmuir模型主要認為吸附劑表面吸附點位均勻分布,吸附過程主要為單分子層吸附;Freundlich模型描述的為非均勻體系的吸附;Sips模型和Toth模型為三參數(shù)模型,也多用于描述非均勻體系的吸附.其方程式如下:
Langmuir模型為
(5)
Freundlich模型為
(6)
Sips模型為
(7)
Toth模型為
(8)
式中:qe和ρe分別表示吸附平衡時吸附量(mg/g)和吸附平衡時進氣質(zhì)量濃度(mg/m3),qm(mg/g)表示理論最大吸附量,kL表示Langmuir吸附能量,A和n分別表示親和系數(shù)和吸附強度,s和t均為不均勻能量參數(shù).
為了檢驗以上4種模型擬合效果,采用均方根差(RSMD)進行進一步檢驗[25],即
(9)
式中:n為實驗數(shù)據(jù)個數(shù),qexp和qp分別表示實驗測得值和理論計算值.
等溫吸附模型擬合結(jié)果見表4.可以看出,對苯和甲苯的吸附更符合Toth模型,表明其吸附為一個非均勻體系的吸附.
圖5 H700 和Y700生物質(zhì)炭等溫吸附曲線Fig.5 Adsorption isotherms of benzene and toluene on H700 and Y700 biochars
表4 生物質(zhì)炭對苯和甲苯等溫吸附擬合參數(shù)Tab.4 Adsorption isotherm parameters of benzene and toluene on biochars
由Toth模型計算得出吸附性能最佳的生物質(zhì)炭Y700對苯和甲苯的吸附量分別為18.98和 61.73 mg/g,這與文獻報道的活性炭最大吸附量有一定差距(見表5),但生物質(zhì)炭顯然可以作為一種潛在的氣體有機污染物吸附劑.
表5 與文獻報道的多孔炭材料最大吸附量比較
Tab.5 Comparison of maximum adsorption capacity of benzene and toluene on different porous carbons
多孔碳材料吸附溫度/℃最大吸附量/(mg·g-1)苯甲苯文獻硝酸改性活性炭3090.8298.34[27]商業(yè)活性炭(F-400)30151.82166.27[27]顆粒活性炭(GAC)25217.32221.13[28]碳納米管材料(CNTs)2534.4671.27[28]微波改性活性炭30212.77238.10[29]H700-生物質(zhì)炭306.457.76本研究Y700-生物質(zhì)炭3018.9861.73本研究
生物質(zhì)炭具有制備成本低廉、制備原材料廣等優(yōu)點,同時可采取一些改性手段大大提升生物質(zhì)炭的吸附性能,改性后生物質(zhì)炭的吸附性能甚至高于活性炭[26],極大拓展了生物質(zhì)炭在實際工程中的應用.其次,還為農(nóng)、林廢棄物如秸稈、果殼、鋸末及市政污泥等提供了一種資源化利用途徑.因此,本研究具有極大的環(huán)境效應和生態(tài)效應.
2.4 生物質(zhì)炭吸附機理分析
采用粒內(nèi)擴散模型擬合圖4的動力學數(shù)據(jù)[30],其模型為
qt=kit0.5+C.
(10)
式中:ki(mg·g-1·min-0.5)表征顆粒內(nèi)擴散速率,C(mg/g)表征邊界層厚度.
根據(jù)此模型,qt與t0.5若成線性,表示吸附過程存在顆粒內(nèi)擴散.若該直線過原點,則表示該吸附速率受顆粒內(nèi)擴散控制. 擬合結(jié)果見圖6和表6.qt與t0.5擬合呈折線,表明顆粒內(nèi)擴散不是速率主要控制步驟,吸附過程呈現(xiàn)出2個或3個階段的連續(xù)過程.低溫下制得的生物質(zhì)炭(400 ℃)主要為2個階段,第一階段表示苯和甲苯擴散到生物質(zhì)炭表面的表面擴散過程,第二階段為苯和甲苯進入生物質(zhì)炭孔隙內(nèi)部的顆粒內(nèi)擴散過程,且ki1>ki2;而高溫制得的生物質(zhì)炭(700 ℃)則呈現(xiàn)3個吸附階段,第3個階段為吸附與脫附的最終平衡過程,涉及在生物質(zhì)炭微孔內(nèi)的吸附[31],這與高溫制得生物質(zhì)炭微孔結(jié)構(gòu)被打開有關(guān).
圖6 粒內(nèi)擴散模型擬合Fig.6 Test of the intraparticle diffusion kinetic model
表6 粒內(nèi)擴散模型擬合參數(shù)Tab.6 Kinetic data obtained by the intraparticle diffusion model
根據(jù)粒內(nèi)擴散模型擬合結(jié)果,得到不同作用過程對吸附量的貢獻率,見表6. 顯然,生物質(zhì)炭對氣態(tài)苯和甲苯的吸附包含表面擴散和粒內(nèi)擴散等多種機制共同控制.其中,低溫制備的生物質(zhì)炭以表面擴散吸附為主,高溫制得的生物質(zhì)炭則受粒內(nèi)擴散作用支配.
結(jié)合生物質(zhì)炭理化特征和動力學模型分析結(jié)果可知,生物質(zhì)炭對氣態(tài)苯和甲苯的表面擴散吸附主要是基于酸性官能團(如羧基)與苯環(huán)形成電子-電子復合物[32],依靠含氧官能團間的C—H…O氫鍵作用力[14]將苯環(huán)束縛在生物質(zhì)炭表面;而粒內(nèi)擴散作用則是因為苯或甲苯在生物質(zhì)炭內(nèi)部孔壁上通過范德華力而被吸附,甚至有機污染物分子可以在介孔中發(fā)生毛細管凝聚現(xiàn)象[31].吸附機理見圖7.
圖7 生物質(zhì)炭吸附機理示意Fig.7 Mechanism of VOCs adsorption on biochars
1)生物質(zhì)炭可用于氣態(tài)VOCs的吸附.不同材料制備的生物質(zhì)炭,其吸附性能差異顯著.生物質(zhì)炭對氣態(tài)有機污染物的吸附性能低于活性炭的吸附性能.
2)生物質(zhì)炭的吸附過程與表面酸性官能團和孔隙結(jié)構(gòu)有關(guān),低溫制得的生物質(zhì)炭表面酸性官能團豐富,吸附過程以表面擴散吸附為主,高溫制得生物質(zhì)炭表面官能團含量較少且孔隙結(jié)構(gòu)更加豐富,吸附過程以粒內(nèi)擴散控制為主.
3) 為提升生物質(zhì)炭吸附性能的改性研究提供了理論支撐.
[1] LI Yizhou, FAN Zeyun, SHI Jianwei, et al. Post plasma-catalysis for VOCs degradation over different phase structure MnO2catalysts [J]. Chemical Engineering Journal, 2014, 241(4): 251-258.
[2] WU Ye, WANG Renjie, ZHOU Yu, et al. On-road vehicle emission control in Beijing: Past, present, and future [J]. Environmental Science and Technology, 2011, 45(1): 147-153.
[3] 卜龍利,楊力,孫劍宇,等. 雙組分VOCs的催化氧化及動力學分析[J]. 環(huán)境科學, 2014, 35(9): 3302-3308. BO Longli, YANG Li, SUN Jianyu, et al. Catalytic oxidation of two-component VOCs and kinetic analysis [J]. Environmental Science, 2014, 35(9):3302-3308 .
[4] MODELSKI S,KOTUNIEWICZ A,WITEK-KROWIAK A. Kinetics of VOC absorption using capillary membrane contactor [J]. Chemical Engineering Journal, 2011, 168(3): 1016-1023.
[5] DETCHANAMURTHY S, GOSTOMSKI P A. Biofiltration for treating VOCs: An overview [J]. Reviews in Environmental Science and Bio/Technology, 2012, 11(3): 231-241.
[6] CHOU M S, CHIOU J H. Modeling effects of moisture on adsorption capacity of activated carbon for VOCs [J]. Journal of Environmental Engineering, 2015, 123: 437-443.
[7] 席勁瑛,武俊良,胡洪營,等. 工業(yè)VOCs氣體處理技術(shù)應用狀況調(diào)查分析[J]. 中國環(huán)境科學, 2013, 32(11): 1955-1960. XI Jinying, WU Junliang, HU Hongying, et al. Application status of industrial VOCs gas treatment techniques [J]. China Environmental Science, 2013, 32(11): 1955-1960.
[8] LUO Lei, XU Chang, CHEN Zien, et al. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types [J]. Bioresource Technology, 2015, 192: 83-89.
[9] 陳寶梁,周丹丹,朱利中,等. 生物碳質(zhì)吸附劑對水中有機污染物的吸附作用及機理[J]. 中國科學B輯:化學, 2008, 38(6): 530-537. CHEN Baoliang, ZHOU Dandan, ZHU lizhong, et al. Adsorption and interaction mechanisms of organic contaminants in wastewater with biological carbon[J]. Science in China Series B: Chemistry, 2008, 38(6): 530-537.
[10]何秋香,陳祖亮. 柚子皮制備生物炭吸附苯酚的特性和動力學[J]. 環(huán)境工程學報, 2014(9): 3853-3859. HE Qiuxiang, CHEN Zuliang. Characterization and kinetics of biochar prepared from pomelo peel for adsorption of phenol [J]. Chinese Journal of Environmental Engineering, 2014(9): 3853-3859.
[11]BOEHM H P. Surface oxides on carbon and their analysis: A critical assessment [J]. Carbon, 2002, 40(2): 145-149.
[12]CHEN Baoliang, ZHOU Dandan, ZHU Lizhong. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science and Technology, 2008, 42(14): 5137-5143.
[13]MARCO K, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar) [J]. Environmental Science and Technology, 2010, 44(4): 1247-1253.
[14]ISOGAI A, TSUMUKI T, MUROHASHI S, et al. (8-Benzoyl-2,7-diethoxynaphthalen-1-yl)(phenyl)methanone [J]. Acta Crystallographica Section E, 2013, 69(Pt1): o71.
[15]簡敏菲,高凱芳,余厚平,等. 不同溫度生物炭酸化前后的表面特性及鎘溶液吸附能力比較[J]. 生態(tài)環(huán)境學報, 2015, 24(8): 1375-1380. JIAN Minfei, GAO Kaifang, YU Houping, et al. Comparison of surface characteristics and cadmium solution adsorption capacity of un-acidified or acidified bio-chars prepared from rice straw under different temperature [J]. Ecology and Environmnet, 2015, 24(8): 1375-1380.
[16]WANG Gang, DOU Baojuan, ZHANG Zhongshen, et al. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon [J]. Journal of Environmental Sciences, 2015, 30: 65-73.
[17]DRAGAN E S, APOPEI D F. Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes [J]. Chemical Engineering Journal, 2011, 178(1): 252-263.
[18]ARSHADI M, FARAJI A R, AMIRI M J. Modification of aluminum-silicate nanoparticles by melamine-based dendrimer L-cysteine methyl esters for adsorptive characteristic of Hg(II) ions from the synthetic and Persian Gulf water [J]. Chemical Engineering Journal, 2015, 266: 345-355.
[19]JUANG R S, CHEN M L. Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins [J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 813-820.
[21]SONG Xiaolan, ZHANG Ying, YAN Chengyin, et al. The Langmuir monolayer adsorption model of organic matter into effective pores in activated carbon [J]. Journal of Colloid and Interface Science, 2013, 389(1): 213-219.
[22]PERUCHI L M, FOSTIER A H, RATH S. Sorption of norfloxacin in soils: Analytical method, kinetics and Freundlich isotherms [J]. Chemosphere, 2015, 119: 310-317.
[23]EROL A, NUMAN H. Adsorption of bentazon and propanil from aqueous solutions at the high area activated carbon-cloth [J]. Chemosphere, 2004, 57(8): 755-762.
[25]NASRI N S, HAMZA U D, ISMAIL S N, et al. Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture [J]. Journal of Cleaner Production, 2014, 71(10): 148-157.
[26]陳健康. 紫外輻射改性碳材料對水中重金屬的吸附研究[D]. 重慶: 重慶大學, 2014. CHEN Jiankang. The study of adsorption heavy metals from aqueous solution using ultraviolet radiation modified carbon materials [D]. Chongqing:Chongqing University, 2014 .
[27]WIBOWO N, SETYADHI L, WIBOWO D, et al. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption [J]. Journal of Hazardous Materials, 2007, 146(1/2): 237-242.
[28]SU F, LU C, HU S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353(1): 83-91.
[29]MOHAMMED J, NASRI N S, ZAINI M A A, et al. Optimization of microwave irradiated-coconut shell activated carbon using response surface methodology for adsorption of benzene and toluene [J]. Desalination and Water Treatment, 2015, 57(17): 1-17.
[30]WU F C, TSENG R L, JUANG R S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics [J]. Chemical Engineering Journal, 2009, 153(1/2/3): 1-8.
[31]近藤精一,石川達雄,安部郁夫. 吸附科學[M]. 北京: 化學工業(yè)出版社, 2006: 57-105. KONDO S, ISHIKAWA T, ABE I. Science of adsorption [M]. Beijing: Chemical Industry Press, 2006:57-105.
[32]YU Yang, WEI Zhongbo, ZHANG Xiaolong, et al. Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently [J]. Bioresource Technology, 2014, 171(1): 227-232.
Adsorption performance and mechanism of biochars for gaseous VOCs
LI Qiao1,2, DING Wenchuan1, YONG Yi3, JIANG Wei4, ZENG Xiaolan1, GAO Yutao3, HOU Jiang3
(1.Key Laboratory of Three Gorges Reservoir Area’s Ecology and Environment(Chongqing University), Ministry of Education,Chongqing 400045,China; 2.Power China Chengdu Engineer Corporation, Chengdu 610072, China;3.Sichuan Academy of Environmental Sciences,Chengdu 610041,China;4.Design and Research Institute, Harbin University of Science and Technology, Harbin 150080,China)
Biochars converted from pyrolysis of walnut shell and coconut shell were used as an alternative adsorbent for adsorbing volatile organic compounds (VOCs). Biochars were characterized by Elemental analysis, Fourier transform infrared spectra, Boehm titration and specific surface area and porosity analyzer. And the adsorption behaviors of benzene and toluene on biochar were investigated by column experiments. The results suggested that the adsorption performance of coconut shell biochar was better than walnut shell biochar under the same preparation conditions. The adsorption capacity of biochar was increased with the increasing pyrolytic temperature within the temperature range (400 ℃ to 700 ℃). The adsorption process of low pyrolytic temperature biochar (400 ℃) and high pyrolytic temperature biochar (700 ℃) were described with the pseudo-second-order model and the pseudo-first-order model, respectively. At the adsorption temperature of 30 ℃, the isothermal adsorption process could be fitted by Toth model, and the maximal adsorption amounts of benzene and toluene calculated by Toth were 18.98 and 61.73 mg/g. The surface acidic groups and porous structure of biochar played an important role on adsorption capacity, affecting the surface adsorption and intraparticle diffusion process.
volatile organic compounds (VOCs);biochar;adsorption;benzene;toluene
10.11918/j.issn.0367-6234.2017.02.013
2016-03-02
國家水體污染控制與治理科技重大專項(2012ZX07102-001/004)
李 橋(1985—),男,博士研究生; 丁文川(1969—),男,教授,博士生導師
丁文川,dingwenchuan@cqu.edu.cn
X701.7
A
0367-6234(2017)02-0077-08