邢旭光,張 盼,馬孝義
?
摻混菜籽油渣減少土壤入滲改善持水特性
邢旭光,張 盼,馬孝義※
(1. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100;2. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)
針對(duì)目前植物油渣較少應(yīng)用于農(nóng)業(yè)生產(chǎn)的現(xiàn)狀,為探明植物油渣對(duì)土壤水分運(yùn)動(dòng)和土壤持水特性的影響,采用室內(nèi)一維土柱入滲試驗(yàn),以耕作層土壤為研究對(duì)象,定量摻混植物油渣,對(duì)比研究3種不同摻混深度(14、24和34 cm)條件下的土壤水分入滲特性,并對(duì)摻混油渣土壤的持水能力進(jìn)行分析。結(jié)果表明:1)Philip和Kostiakov入滲模型均可用于描述摻混油渣條件的土壤水分入滲特性及參數(shù)擬合(2>0.99);2)與純土相比,摻混植物油渣可有效減小累積入滲量和入滲速率,根層摻混油渣(34 cm土層)最大可分別減少累積入滲量和入滲速率約11.0%和41.7%;3)入滲結(jié)束時(shí)基于土壤剖面水分分布特征,土壤摻混植物油渣有利于提高土壤飽和含水率和根層土壤含水率,與純土相比分別提高約14.3%和11.3%,有效增強(qiáng)了土壤持水能力;4)土壤摻混植物油渣可增加黏粒和粉粒、降低砂粒含量。該研究可為農(nóng)田生產(chǎn)中植物油渣推廣奠定理論基礎(chǔ),同時(shí)為植物油渣的田間土壤改良及應(yīng)用提供參考。
土壤;水分;入滲;持水能力;菜籽油渣
土壤水分是重要的土壤物理參數(shù),明晰土壤水分在土體內(nèi)的分布及運(yùn)動(dòng)特性對(duì)于指導(dǎo)灌溉、提高水分利用率和高效利用土壤儲(chǔ)水量具有重要意義[1]。土壤耕作層水分是否充足直接關(guān)系到作物能否正常出苗和生長(zhǎng),土壤中混摻添加物是提高耕作層土壤持水能力和儲(chǔ)水量的最便捷且常被采用的方法[2-6]。在水資源相對(duì)匱乏和土壤沙化較為嚴(yán)重的西北地區(qū),發(fā)展節(jié)水農(nóng)業(yè)和水土資源保護(hù)已成為重要議題。土壤水分入滲和土壤剖面水分分布特征決定著土壤中灌溉水的利用效率、地表徑流和土壤侵蝕程度,進(jìn)一步影響作物根層水分利用效率,最終影響作物產(chǎn)量[7];降低根層土壤水分入滲速率有利于減小養(yǎng)分流失和深層滲漏,從而降低地下水污染風(fēng)險(xiǎn)。因此,研究含添加物的土壤水分入滲問題具有現(xiàn)實(shí)意義。
譚帥等[8]研究表明,摻混納米碳對(duì)土壤入滲能力具有顯著影響,且入滲過程可以用Kostiakov和Philip模型進(jìn)行描述;丁奠元等[9]和余坤等[10-11]均指出小麥秸稈經(jīng)氨化處理可以改善農(nóng)田土壤結(jié)構(gòu)、提高土壤質(zhì)量,進(jìn)一步改善土壤耕性;張春強(qiáng)等[12]研究表明,聚丙烯酰胺(polyacrylamide,PAM)和尿素均可降低土壤入滲能力,其中PAM的作用效果更強(qiáng),而Lentz[13]指出土壤入滲能力同時(shí)受PAM種類、劑量影響;Tarui等[14]和Doran等[15]研究顯示,-聚谷氨酸(poly--glutamic acid,-PGA)可以調(diào)節(jié)土壤酸堿性、促進(jìn)土壤團(tuán)粒結(jié)構(gòu)形成,對(duì)防止土壤板結(jié)具有較好效果,亦可防止土壤侵蝕??v觀目前關(guān)于土壤添加物對(duì)土壤入滲以及持水能力影響的研究,在一定程度上忽略了對(duì)作物根層的集中探索,較多是基于不同施用量而展開[2,5,16-19],施用量過多不僅造成資源浪費(fèi)、成本增加,同時(shí)也存在破壞土壤結(jié)構(gòu)等風(fēng)險(xiǎn)。
植物油渣是一種有機(jī)肥料,可為作物提供充足的養(yǎng)分,且極易獲取、價(jià)格低廉;施用植物油渣可改善土壤物理性狀,有利于增強(qiáng)土壤的保肥保墑能力,具有很強(qiáng)的推廣潛力和很高的應(yīng)用價(jià)值。然而植物油渣并未被廣泛應(yīng)用到田間作業(yè)中,關(guān)于植物油渣對(duì)土壤持水性能影響的研究更是鮮有報(bào)道。為推廣植物油渣、降低農(nóng)業(yè)生產(chǎn)成本,本研究擬采用一種可自制的菜籽油渣作為一種改善土壤物理性質(zhì)的土壤耕層添加物,分析不同油渣摻混深度對(duì)土壤水分入滲特性及土壤持水能力的影響,以期為植物油渣在農(nóng)業(yè)生產(chǎn)和土壤改良等領(lǐng)域的廣泛應(yīng)用提供參考。
1.1 供試材料
試驗(yàn)土壤取自當(dāng)?shù)赜衩?小麥輪作試驗(yàn)田(34°17′28″N、108°04′30″E),采集深度為30 cm耕作層;土樣經(jīng)風(fēng)干、過2 mm篩后,采用激光粒度儀(英國(guó)馬爾文儀器有限公司)測(cè)定供試土壤顆粒組成,粒徑<0.002、0.002~<0.02和0.02~<2 mm的土壤顆粒體積分?jǐn)?shù)分別為3.75%、21.73%和74.52%,土壤質(zhì)地為砂壤土(國(guó)際制)。土壤摻混物選用易于獲取的菜籽油渣,即菜籽壓榨出油后的殘?jiān)ㄎ唇?jīng)發(fā)酵處理),將其風(fēng)干后粉碎成粉末狀備用。
1.2 試驗(yàn)設(shè)計(jì)與方法
在室內(nèi)進(jìn)行恒定水頭一維土柱入滲試驗(yàn),有機(jī)玻璃土柱高40 cm,直徑15 cm;裝土高度為34 cm,以更好的模擬田間耕作層,裝土過程中,層間刮毛使得裝填土更加均勻,初始含水率為2.47%;采用直徑15 cm的馬氏瓶盛放入滲水源,與土柱相連并保證持續(xù)供水,入滲積水深度控制在1.5 cm左右,試驗(yàn)裝置如圖1所示。依據(jù)不同油渣摻混深度設(shè)置3種處理,即油渣摻混深度(從土表算起)分別為14、24和34 cm(分別記作T1、T2和T3),并以純土無摻混作為對(duì)照(CK),各摻混處理中油渣均按2%(質(zhì)量分?jǐn)?shù))比例與各層土壤均勻混合。在填裝土柱過程前將供試土壤與油渣粉末按比例混合后,根據(jù)實(shí)測(cè)容重并按干容重1.45 g/cm3、每5 cm均勻進(jìn)行裝填,以盡量避免由于油渣摻入引起土壤容重變化。
油渣摻混深度不同可導(dǎo)致各處理入滲時(shí)間不同,試驗(yàn)設(shè)定入滲過程介于30~38 h(1 800~2 280 min)之間,入滲過程采用秒表計(jì)時(shí),并定時(shí)記錄馬氏瓶中水位變化以及土柱內(nèi)濕潤(rùn)鋒下移距離,從而進(jìn)一步計(jì)算累積入滲量以及入滲速率。記錄時(shí)間間隔(Δ)依據(jù)入滲歷時(shí)()而定,即≤10 min時(shí)Δ=1 min,>10~30 min時(shí)Δ=2 min,>30~60 min時(shí)Δ=3 min,>60~120 min時(shí)Δ=5 min,>120~240 min時(shí)Δ=10 min,>240~420 min時(shí)Δ=20 min,>420~600 min時(shí)Δ=30 min,>600 min時(shí)Δ=1 h;當(dāng)濕潤(rùn)鋒到達(dá)34 cm處時(shí)視為入滲結(jié)束,此時(shí)停止供水并吸干土壤表層積水,采用土鉆對(duì)0~34 cm土層進(jìn)行取土(間隔2 cm),烘干法測(cè)定不同深度土壤含水率。
1.3 測(cè)定項(xiàng)目
1.3.1 土壤水分入滲
1)Philip模型[20]
對(duì)入滲歷時(shí)求導(dǎo)
式中()為累積入滲量,cm;()為入滲率,cm/min;為吸滲率,cm/min0.5。
2)Kostiakov模型[20]
對(duì)入滲歷時(shí)求導(dǎo)
式中、均為經(jīng)驗(yàn)常數(shù),其中值根據(jù)土壤性質(zhì)和初始含水率而定,變化介于0.3~0.8之間。
1.3.2 土壤水分特征曲線及飽和導(dǎo)水率
分別采用離心機(jī)法和定水頭法測(cè)定原始土壤和油渣摻混土壤的水分特征曲線及飽和導(dǎo)水率;并采用van Genuchten模型對(duì)2種土壤水分特征曲線進(jìn)行擬合,獲取土壤水力參數(shù)。
式中為體積含水量,cm3/cm3;θ為飽和體積含水量,cm3/cm3;θ為殘余體積含水量,cm3/cm3;為吸力,cm;為進(jìn)氣吸力的倒數(shù),cm-1;和均為形狀系數(shù)。
式中K為土壤飽和導(dǎo)水率,cm/min;為時(shí)間內(nèi)的出水量,cm3;為土柱截面積,cm2;為裝土高度,cm;為進(jìn)水端至土面的水頭,cm。
2.1 油渣摻混深度對(duì)土壤入滲特性的影響
2.1.1 油渣對(duì)累積入滲量及入滲速率的影響
采用實(shí)測(cè)的累積入滲量對(duì)土壤水分入滲能力進(jìn)行評(píng)價(jià),如圖2a所示??梢钥闯觯谙嗤霛B歷時(shí)情況下,摻混油渣處理的土壤水分累積入滲量均小于CK,且隨著油渣摻混深度增加而減小。各處理的累積入滲量在入滲初期差異不大,其中T1、T2和T3處理約400 min內(nèi)0~14 cm土層土壤入滲特征相似,隨后T1處理累積入滲量增加幅度較T2和T3大;T2和T3處理約1 500 min內(nèi)0~28 cm土層土壤入滲特征相似,隨后T2處理累積入滲量增加幅度較T3大,原因在于在土壤中添加植物油渣具有減滲作用,故當(dāng)濕潤(rùn)鋒穿過油渣摻混深度時(shí),累積入滲量逐漸拉開差距,最終導(dǎo)致各處理入滲結(jié)束時(shí)的入滲歷時(shí)不同。以CK為標(biāo)準(zhǔn),當(dāng)其入滲結(jié)束時(shí),T1、T2和T3處理累積入滲量分別較CK減小了3.9%、7.8%和11.0%,可見摻混植物油渣深度越大則越有利于減小土壤水分入滲,可以有效防止農(nóng)田發(fā)生深層滲漏。
a. 累積入滲量
a. Cumulative infiltration
b.入滲率
b. Infiltration rate
注:CK為純土;T1~T3摻混深度分別為14、24、34 cm,下同。
Note: CK is pure soil; T1-T3 refers to depth of dreg mixed with soil of 14, 24 and 34 cm, respectively, the same as below.
圖2 油渣摻混深度對(duì)土壤累積入滲量和入滲率的影響
Fig.2 Impacts of depth of dreg mixed with soil on soil cumulative infiltration and infiltration rate
入滲率是指單位時(shí)間通過地表單位面積入滲到土壤中的水量,油渣摻混深度對(duì)土壤水分入滲速率的影響如圖2b所示。油渣摻混深度對(duì)土壤水分入滲速率的影響表現(xiàn)為入滲速率隨油渣摻混深度增加而減小,且均小于CK處理,穩(wěn)滲率也呈現(xiàn)減小趨勢(shì)。T1、T2和T3處理的入滲速率在入滲初期差異較小,表現(xiàn)出與累積入滲量較為相同的變化趨勢(shì),在油渣摻混和純土層交界面的入滲特征發(fā)生明顯變化,原因在于植物油渣與土壤混合可增加入滲水的黏滯性,起到阻滲效果,從而使得土壤水分在摻混土層入滲速率較慢。入滲結(jié)束時(shí),CK處理穩(wěn)滲率為0.0036 cm/min,T1、T2和T3處理穩(wěn)滲率分別較CK減小了25.0%、33.3%和41.7%,可見摻混植物油渣的深度越大則越有利于減緩水分流動(dòng),降低土壤水分發(fā)生無效滲漏風(fēng)險(xiǎn)。
2.1.2 油渣對(duì)入滲參數(shù)的影響
基于MATLAB、采用最為常用的Philip和Kostiakov入滲模型對(duì)實(shí)測(cè)入滲數(shù)據(jù)進(jìn)行擬合,獲取摻混油渣條件下的土壤水分入滲參數(shù)(表1),從而進(jìn)一步分析油渣摻混深度對(duì)土壤水分入滲的影響。基于均方根誤差(root mean square of error,RMSE)和誤差平方和(sum of square error,SSE)誤差分析及2指標(biāo)可知,Philip和Kostiakov入滲模型均適用于描述摻混植物油渣條件下的土壤水分入滲特征(2>0.99)。對(duì)于Philip入滲模型,土壤吸滲率指土壤依靠毛管力吸收或釋放液體的能力[21];表1表明,隨著油渣摻混深度增加,呈現(xiàn)減小趨勢(shì),表明毛管力對(duì)土壤水分的吸收能力減弱[2]。對(duì)于Kostiakov入滲模型,隨著油渣摻混深度增加,經(jīng)驗(yàn)系數(shù)和分別呈現(xiàn)減小和增大趨勢(shì)。土壤水分入滲參數(shù)的大小主要取決于入滲時(shí)土壤的結(jié)構(gòu)和孔隙分布狀況[22]。土壤中添加植物油渣在一定程度上可增加土壤顆粒的持水容量,導(dǎo)致土壤顆粒膨脹,這可能改變了土壤結(jié)構(gòu)和孔隙分布特征,進(jìn)而對(duì)入滲參數(shù)產(chǎn)生影響。
表1 Philip和Kostiakov入滲模型參數(shù)擬合及誤差分析
2.2 油渣摻混深度對(duì)土壤持水特性的影響
2.2.1 油渣對(duì)土壤水分分布的影響
筆者曾研究證實(shí),向土壤中添加植物油渣可有效提高土壤含水率8.06%~13.60%[23]。在此,為進(jìn)一步分析添加植物油渣對(duì)土壤水分運(yùn)動(dòng)及分布特征的影響,在入滲結(jié)束時(shí)(濕潤(rùn)鋒到達(dá)34 cm處時(shí)視為入滲結(jié)束)對(duì)不同摻混深度條件下的土壤剖面水分分布特性進(jìn)行研究,見圖3。
從圖3可以看出,各處理土壤含水量隨土層深度增加而減小,減小速率也逐漸減小。T1、T2和T3處理0~14 cm土層土壤含水量接近,T2和T3處理0~24 cm土層土壤含水率接近;當(dāng)濕潤(rùn)鋒穿過油渣摻混層時(shí),土壤水分運(yùn)動(dòng)特征發(fā)生變化,各處理土壤含水量差異明顯,T1處理14~34 cm土層和T2處理24~34 cm土層土壤含水量分布逐漸向CK靠近。與CK相比,摻混油渣條件下,土壤飽和含水率和各土層的土壤含水率均得到顯著提升(表2),本研究表明,添加油渣使得土壤飽和含水率提高約14.3%,土壤含水量提高約11.3%,有效增強(qiáng)了土壤持水能力。
表2 摻混土壤與純土的水力參數(shù)值
2.2.2 油渣對(duì)土壤顆粒分布的影響
油渣摻混土壤顆粒分布見表3。摻混油渣后,土壤中<0.02 mm的顆粒占比明顯增加,0.02~2 mm的土壤顆粒含量顯著降低,其中黏粒質(zhì)量分?jǐn)?shù)由3.75%增加到9.97%,粉粒質(zhì)量分?jǐn)?shù)由21.73%增加到55.15%,砂粒質(zhì)量分?jǐn)?shù)由74.52%減少到34.88%,經(jīng)測(cè)定摻混土壤質(zhì)地由砂壤土變?yōu)榉廴劳?。由此可知,在入滲過程中向土壤中添加植物油渣可增加黏粒和粉粒含量、降低砂粒含量,即中小粒徑土壤顆粒比例升高、大粒徑土壤顆粒比例降低,這可能正是土壤持水能力增強(qiáng)的主要原因;另一方面,摻混植物油渣會(huì)使土壤質(zhì)地發(fā)生變化。
表3 植物油渣對(duì)土壤顆粒分布的影響
本研究以土壤耕作層作為研究對(duì)象,與純土相比,菜籽油渣可以減小土壤水分累積入滲量和入滲速率,這對(duì)于提高根層土壤含水率和儲(chǔ)水能力具有重要意義。土壤水分入滲速度慢一方面可以減少水分滲漏損失,有利于提高水分利用效率;另一方面也有利于減少N、P、K等營(yíng)養(yǎng)元素流失,降低了地下水污染風(fēng)險(xiǎn)。因此,在農(nóng)田播種前耕地時(shí)施用植物油渣是具有現(xiàn)實(shí)意義的。
研究表明,摻混油渣處理土壤剖面含水率高于純土處理,這是由于向土壤輸入油渣粉末可以提高土壤飽和含水率(表2),從而使得土壤含有更多的水分。植物油渣的減滲作用可以從以下2個(gè)方面解釋:1)入滲過程中,淺層土壤中的大孔隙和部分小孔隙逐漸被油渣粉末填充堵塞,在一定程度上切斷了土壤水分入滲斷面,導(dǎo)致導(dǎo)水能力降低(表2);較深層的土壤中,油渣粉末使得土壤水分入滲通道減少[24],形成致密結(jié)構(gòu),導(dǎo)致入滲土壤表層形成水分控制層,起到阻滲效果[25-26],故摻混油渣深度越大,土壤水分累積入滲量和入滲速率越?。▓D2);2)菜籽油渣是一種有機(jī)物,與土壤混合會(huì)增加有機(jī)質(zhì)含量,而土壤有機(jī)質(zhì)是誘發(fā)土壤發(fā)生斥水性的主要原因之一[27-28],從而導(dǎo)致水分較難濕潤(rùn)土壤,降低了土壤的滲透性[29]。土壤斥水具有多方面的直接和潛在的負(fù)面影響[30],故斥水土壤改良問題則需予以關(guān)注。菜籽油渣的作用機(jī)理可能與聚谷氨酸、羧甲基纖維素、聚丙烯酰胺等有機(jī)物類似[22, 31-33],與土壤混合、吸水飽和后可能會(huì)形成水凝膠,因而實(shí)現(xiàn)了減緩水分入滲的目的,還需要對(duì)菜籽油渣主要成分的分子結(jié)構(gòu)做進(jìn)一步測(cè)試,以便分析其作用機(jī)理。
本研究表明,向土壤中輸入植物油渣粉末可以有效減小水分入滲速率和累積入滲量,同時(shí)在一定程度上增強(qiáng)了土壤持水能力,可有效緩解土壤水分滲漏流失。一方面,對(duì)于墑情較好的土壤,降低土壤入滲能力有利于提高根區(qū)土壤儲(chǔ)水量,并有利于植物根系吸水,從而提高土壤水利用效率;對(duì)于墑情較差的土壤,則需增強(qiáng)土壤入滲能力,從而實(shí)現(xiàn)加速灌溉水入滲的目的,進(jìn)而提高灌溉水利用率。另一方面,添加油渣降低了土壤入滲能力,這在一定程度上會(huì)導(dǎo)致降雨聚集在土壤表面而較難進(jìn)入耕層,可能會(huì)導(dǎo)致土表徑流量增加,故在降雨強(qiáng)度較大的地區(qū)施用油渣對(duì)降雨的高效利用會(huì)產(chǎn)生不利影響。綜上,本文選用的油渣適用于土壤墑情較好、降雨強(qiáng)度不大的地區(qū);同時(shí)還需對(duì)合理施用量做進(jìn)一步研究。
土壤沙化可導(dǎo)致大面積土壤失去農(nóng)、林、牧生產(chǎn)能力,使有限的土壤資源面臨更為嚴(yán)重的挑戰(zhàn);對(duì)于砂質(zhì)土壤改良問題,通??刹捎脫饺腽ね痢⒎賶荷昂褪┯酶煊袡C(jī)肥等手段。本研究中,初始供試土壤類型為砂壤土,在施用油渣入滲結(jié)束后,不同粒徑的土壤顆粒含量發(fā)生較大變化,且其類型變?yōu)榉廴劳粒ū?)。由此看出向土壤中摻混菜籽油渣可用于改良沙化土壤,在一定程度上調(diào)節(jié)了耕作層的質(zhì)地,實(shí)現(xiàn)了控制荒漠化、保護(hù)水土資源的目的。同時(shí)需指出,選用的植物油渣作為一種有機(jī)物可提高土壤保水能力,是一種有效的土壤肥料。土壤改良劑是指可改良土壤的物理、化學(xué)和生物性質(zhì),使其更適宜植物生長(zhǎng),而不是主要提供植物養(yǎng)分的物料;本研究證實(shí),摻混油渣粉末在一定程度上改變了土壤質(zhì)地,并提高了土壤飽和含水率,可知植物油渣粉末在某種意義上可以作為土壤改良劑,進(jìn)而實(shí)現(xiàn)改良土壤結(jié)構(gòu)的目的;然而還需對(duì)土壤物理、化學(xué)和生物等方面的性質(zhì)進(jìn)行擴(kuò)展研究,進(jìn)一步評(píng)價(jià)植物油渣是否可以作為土壤改良劑施用于農(nóng)田。
降低農(nóng)田作業(yè)的投入產(chǎn)出比對(duì)于農(nóng)民而言是重中之重。菜籽油渣是菜籽經(jīng)過壓榨植物油之后剩余的殘?jiān)?,極易獲??;生產(chǎn)過程操作簡(jiǎn)單,不需要特殊機(jī)械裝備,而且生產(chǎn)成本低,可被廣泛接受;另一方面,與秸稈還田類似,施用油渣亦是“取之農(nóng)田,用之農(nóng)田”,很大程度上提高了利用效率,并有效降低了田間化肥用量,有利于提高土壤質(zhì)量以及減少環(huán)境污染。由此看出,植物油渣在農(nóng)業(yè)生產(chǎn)方面具有較強(qiáng)的應(yīng)用價(jià)值和推廣潛力,同時(shí)可以考慮應(yīng)用植物油渣防止土壤深層滲漏和改善土壤結(jié)構(gòu)。
1)摻混植物油渣可減小土壤累積入滲量和入滲速率,且二者均呈現(xiàn)出隨油渣摻混深度增加而減小的趨勢(shì),根層摻混油渣(34 cm)較純土最多可有效減少累積入滲量和入滲速率約11.0%和41.7%。
2)Philip和Kostiakov入滲模型適用于摻混油渣條件的土壤水分入滲擬合。
3)土壤中摻混植物油渣有利于提高土壤飽和含水率和根層土壤含水率,提升幅度分別約為14.3%和11.3%,有效增強(qiáng)土壤根層持水能力。
4)摻混植物油渣有利于增加土壤黏粒和粉粒含量、降低砂粒含量,在一定程度上對(duì)沙化土壤具有改善作用。
[1] 邢旭光,趙文剛,柳燁,等. 獼猴桃果園不同采樣密度下土壤含水率空間變異性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(8):138-145.
Xing Xuguang, Zhao Wengang, Liu Ye, et al. Spatial variability of soil moisture in kiwi field under different sampling density conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 138-145. (in Chinese with English abstract)
[2] 吳軍虎,陶汪海,王海洋,等. 羧甲基纖維素鈉對(duì)土壤團(tuán)粒結(jié)構(gòu)及水分運(yùn)動(dòng)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):117-123.
Wu Junhu, Tao Wanghai, Wang Haiyang, et al. Influence of sodium carboxyl methyl cellulose on soil aggregate structure and soil water movement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 117-123. (in Chinese with English abstract)
[3] 鄭健,王燕,蔡煥杰,等. 植物混摻土壤水分特征曲線及擬合模型分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):107-112.
Zheng Jian, Wang Yan, Cai Huanjie, et al. Soil-water characteristic curves of soil with plant additive and analyses of the fitting models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 107-112. (in Chinese with English abstract)
[4] 岑睿,屈忠義,于健,等.保水劑對(duì)半干旱區(qū)砂壤土水分運(yùn)動(dòng)的影響試驗(yàn)研究[J].干旱區(qū)資源與環(huán)境,2016,30(2):122-127.
Cen Rui, Qu Zhongyi, Yu Jian, et al. Experimental research on sandy soil infiltration and evaporation effects of adding super absorbent polymers in semi-arid region[J]. Journal of Arid Land Resources and Environment, 2016, 30(2): 122-127. (in Chinese with English abstract)
[5] 徐繼紅,趙素梅,譚德新,等.羧甲基纖維素--2-丙烯酰胺基-2-甲基丙磺酸高吸水樹脂的吸水與保水性能[J]. 石油化工,2012,41(11):1307-1311.
Xu Jihong, Zhao Sumei, Tan Dexin, et al. Water absorption and water retention of carboxymethylcellulose--2- acrylamido-2-methylpropane-sulfonic acid superabsorbent resin[J]. Petrochemical Technology, 2012, 41(11): 1307-1311. (in Chinese with English abstract)
[6] 王紅蘭,唐翔宇,張維,等. 施用生物炭對(duì)紫色土坡耕地耕層土壤水力學(xué)性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):107-112.
Wang Honglan, Tang Xiangyu, Zhang Wei, et al. Effects of biochar application on tilth soil hydraulic properties of slope cropland of purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 107-112. (in Chinese with English abstract)
[7] 王艷陽,魏永霞,孫繼鵬,等. 不同生物炭施加量的土壤水分入滲及其分布特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):113-119.
Wang Yanyang, Wei Yongxia, Sun Jipeng, et al. Soil water infiltration and distribution characteristics under different biochar addition amount[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 113-119. (in Chinese with English abstract)
[8] 譚帥,周蓓蓓,王全九. 納米碳對(duì)擾動(dòng)黃綿土水分入滲過程的影響究[J]. 土壤學(xué)報(bào),2014,51(2):263-269.
Tan Shuai, Zhou Beibei, Wang Quanjiu. Effect of nano-carbon on water infiltration process in disturbed loessal soil[J]. Acta Pedologica Sinica, 2014, 51(2): 263-269. (in Chinese with English abstract)
[9] 丁奠元,馮浩,趙英,等. 氨化秸稈還田對(duì)土壤孔隙結(jié)構(gòu)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(3):650-658.
Ding Dianyuan, Feng Hao, Zhao Ying, et al. Effect of ammoniated straw returning on soil pore structure[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 650-658. (in Chinese with English abstract)
[10] 余坤,馮浩,王增麗,等. 氨化秸稈還田改善土壤結(jié)構(gòu)增加冬小麥產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(15):165-173.
Yu Kun, Feng Hao, Wang Zengli, et al. Ammoniated straw improving soil structure and winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 165-173. (in Chinese with English abstract)
[11] 余坤,馮浩,趙英,等. 氨化秸稈還田加快秸稈分解提高冬小麥產(chǎn)量和水分利用效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):103-111.
Yu Kun, Feng Hao, Zhao Ying, et al. Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 103-111. (in Chinese with English abstract)
[12] 張春強(qiáng),馮浩. PAM和尿素混施對(duì)土壤入滲特性的影響[J].水土保持學(xué)報(bào),2013,27(4):109-113,135.
Zhang Chunqiang, Feng Hao. Effects of PAM mixed with urea on soil infiltration[J]. Journal of Soil and Water Conservation, 2013, 27(4): 109-113, 135. (in Chinese with English abstract)
[13] Lentz R D. Inhibiting water infiltration with polyacrylamide and surfactants: Applications for irrigated agriculture[J]. Journal of Soil and Water Conservation, 2003, 58(5): 290-300.
[14] Tarui Y, Iida H, Ono E. Biosynthesis of poly--glutamic acid in plants: transient expression of poly--glutamic synthetase complex in tobacco leaves[J]. Journal of Bioscience & Bioengineering, 2005, 100(4): 443-448.
[15] Doran J W, Zeiss M R. Soil health and sustainability: Managing the biotic component of soil quality[J]. Applied Soil Ecology, 2000, 15(1): 3-11.
[16] 張春強(qiáng),馮浩. PAM和尿素混施對(duì)土壤入滲特性的影響[J].水土保持學(xué)報(bào),2013,27(4):109-113.
Zhang Chunqiang, Feng Hao. Effects of PAM mixed with urea on soil infiltration[J]. Journal of Soil and Water Conservation, 2013, 27(4): 109-113. (in Chinese with English abstract)
[17] 冉艷玲,王益權(quán),張潤(rùn)霞,等. 保水劑對(duì)土壤持水特性的作用機(jī)理研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2015,33(5):101-107.
Ran Yanling, Wang Yiquan, Zhang Runxia, et al. Research on the mechanism of super absorbent polymer to soil water-holding characteristic[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 101-107. (in Chinese with English abstract)
[18] 王升. 膜下滴灌棉田化學(xué)與生物改良技術(shù)研究[D]. 西安:西安理工大學(xué),2013.
Wang Sheng. Research on Chemical and Biological Amelioration Technology to Cotton Field Soil with Drip Irrigation under Film[D]. Xi’an: Xi’an University of Technology, 2013. (in Chinese with English abstract)
[19] 呂金榜,周蓓蓓,王全九,等. 納米TiO2對(duì)土壤水分運(yùn)動(dòng)及離子遷移過程影響的試驗(yàn)研究[J]. 水土保持研究,2015,22(5):58-61,66. Lü Jinbang, Zhou Beibei, Wang Quanjiu, et al. Experimental study on effects of nano TiO2on water movement, solute transport in soil columns[J]. Research of Soil and Water Conservation, 2015, 22(5): 58-61, 66. (in Chinese with English abstract)
[20] 邵明安,王全九,黃明斌.土壤物理學(xué)[M]. 北京:高等教育出版社,2006.
[21] 李帥霖,王霞,王朔,等.生物炭施用方式及用量對(duì)土壤水分入滲與蒸發(fā)的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):135-144.
Li Shuailin, Wang Xia, Wang Shuo, et al. Effects of application patterns and amount of biochar on water infiltration and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 135-144. (in Chinese with English abstract)
[22] 史文娟,梁嘉平,陶汪海,等. 添加-聚谷氨酸減少土壤水分深層滲漏提高持水能力[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):94-100.
Shi Wenjuan, Liang Jiaping, Tao Wanghai, et al.-PGA additive decreasing soil water infiltration and improving water holding capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 94-100. (in Chinese with English abstract)
[23] 邢旭光,柳燁,馬孝義. 土壤添加物對(duì)土-水曲線和土體收縮的影響[J]. 水科學(xué)進(jìn)展,2016,27(1):40-48.
Xing Xuguang, Liu Ye, Ma Xiaoyi. Effects of soil additive on soil-water characteristic curve and soil shrinkage[J]. Advances in Water Science, 2016, 27(1): 40-48. (in Chinese with English abstract)
[24] 何利昌,樊貴盛,吉晉蘭. 細(xì)顆粒物質(zhì)潛入土壤對(duì)入滲的影響研究[J]. 灌溉排水學(xué)報(bào),2015,34(2):102-104.
He Lichang, Fan Guisheng, Ji Jinlan. Influence of fine particulate matter sneaking into soil on infiltration capacity[J]. Journal of Irrigation and Drainage, 2015, 34(2): 102-104. (in Chinese with English abstract)
[25] Martin W D, Kaye N B, Putman B J. Effects of aggregate masking on soil infiltration under an aggregate bed[J]. Journal of Irrigation and Drainage Engineering, 2015, 141(9): 879-884.
[26] Ferro S. Electrokinetic barriers for preventing groundwater pollution[J]. Encyclopedia of Applied Electrochemistry, 2014, 9: 719-723.
[27] 陳俊英,張智韜,Leionid Gillerman,等. 影響土壤斥水性的污灌水質(zhì)主成分分析[J]. 排灌機(jī)械工程學(xué)報(bào),2013,
31(5):434-439.
Chen Junying, Zhang Zhitao, Leionid Gillerman, et al. Analysis of principal components of wastewater affecting soil water repellency[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(5): 434-439. (in Chinese with English abstract)
[28] 劉立超,楊昊天,李新榮,等. 土壤斥水性及其生態(tài)水文效應(yīng)研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2011,26(9):926-932. Liu Lichao, Yang Haotian, Li Xinrong, et al. The advances in soil water repellency and its eco-hydorological effects[J]. Advances in Earth Science, 2011, 26(9): 926-932. (in Chinese with English abstract)
[29] 陳俊英,吳普特,張智韜,等. 翻耕法對(duì)土壤斥水性改良效果[J]. 排灌機(jī)械工程學(xué)報(bào),2012,30(4):479-484.
Chen Junying, Wu Pute, Zhang Zhitao, et al. Amelioration effect of water repellency by tillage[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(4): 479-484. (in Chinese with English abstract)
[30] 李毅,商艷玲,李振華,等.土壤斥水性研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(1):68-75.
Li Yi, Shang Yanling, Li Zhenhua, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery (Transactions of the CSAM), 2012, 43(1): 68-75. (in Chinese with English abstract)
[31] Gonzales D, Fan K, Sevoian M. Synthesis and swelling characteristics of a poly--glutamic acid hydrogel[J]. Journal of Polymer Science Part A Poly Chemistry, 1996, 34(10): 2019-2027.
[32] Tang Juntao, Fan Chuanjie, Lin Qunfang, et al. Smooth, stable and optically transparent microcapsules prepared by one-step method using sodium carboxymethyl cellulose as protective colloid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459: 65-73.
[33] Busscher W J, Bjorneberg D L, Sojka R E. Field application of PAM as an amendment in deep-tilled US southeastern coastal plain soils[J]. Soil and Tillage Research, 2009, 104(2): 215-220.
Rapeseed dreg additive reducing soil infiltration and improving water retention
Xing Xuguang, Zhang Pan, Ma Xiaoyi※
(1.,,712100,;2.,,712100,)
Plant dreg is a type of organic matter and a byproduct of vegetable oil extraction. Plant dreg as a fertilizer can be added to soils and it may also improve soil physical properties. An experiment based on the indoor vertical one-dimensional infiltration soil column was conducted to investigate the impact of rapeseed dreg additive on soil-water infiltration, movement, re-distribution and water retention. The soil in the experiment was collected from the 30-cm depth in a cultivated field in the district of Yangling in Shaanxi Province on the Loess Plateau of China (34°17′28″ N, 108°04′30″ E). The particle size of selected soil was measured by Mastersizer-2000 (made in Malvern Instrument Co. Ltd., Britain), and the soil was sandy loam with a particle size distribution of 3.75% for 0-0.002 mm, 21.73% for 0.002-0.02 mm and 74.52% for 0.02-2 mm. Samples were air dried, sieved through a 2 mm mesh, and compacted into plexiglass soil columns with a height and inner-diameter of 40 and 15 cm, respectively. The total soil depth in the column was 34 cm and soil bulk density was 1.45 g/cm3. The rapeseed dreg was air dried, pulverized, and uniformly mixed with soil samples. The plant dreg accounted for 2% of soil weight. The depth of mixed layer was set at 14, 24, and 34 cm. Pure soil samples without additives were used as a control (CK) treatment. A Mariotte bottle was used to provide a free water supply with about 1.5 cm in depth on the surface. The experiment started when the Mariotte bottle opened. The filter paper was laid at the soil surface to make the water head stable. The characteristics of soil water infiltration, distribution and water holding capacity were comparatively analyzed. The results showed that both Philip and Kostiakov models could well describe the relationship between cumulative infiltration and infiltration duration (2>0.99). Compared with the CK, the soils mixed with plant dreg helped to decrease cumulative infiltration and infiltration rate, both of which decreased as the depth of mixed layer increased. The cumulative infiltration for the soils mixed with 14, 24, and 34 cm was 3.9%, 7.8%, and 11.0% lower than the CK, respectively. The infiltration rate for the soils mixed with 14, 24, and 34 cm was 25.0%, 33.3%, and 41.7% lower than the CK, respectively. From the final water distribution in soil profiles, the soils mixed with plant dreg helped to increase saturated soil moisture and soil water content in soil layers, which were increased by 14.3% and 11.3%, respectively, compared with the CK. This indicated that plant dreg additive could increase soil water retention and water storage in root zone. Plant dreg could increase clay and silt contents from 3.75% to 9.97% and from 21.73% to 55.15%, respectively, and reduce sand content from 74.52% to 34.88%, and the experimental soil changed to silt loam. This indicated that the ratio of medium and small particle-size increased, and the ratio of large particle-size decreased, demonstrating that plant dreg had the potential in improving desertification soils. From the above, mixing plant dreg powder with soils is of significant practical meaning for cultivated soils because of the enhancement of water retention and water storage. This study may provide valuable information for the promotion of plant dreg to cropland and the application and popularity of plant dreg in soil improvement and water-saving agriculture.
soils; moisture; infiltration; water retention; rapeseed dreg
10.11975/j.issn.1002-6819.2017.02.014
S152.7; S156.2
A
1002-6819(2017)-02-0102-07
2016-04-20
2016-12-10
國(guó)家自然科學(xué)基金資助項(xiàng)目(51279167, 51379173);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503124);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20120204110023)。
邢旭光,男,博士生,遼寧沈陽人,主要從事農(nóng)業(yè)節(jié)水理論研究。楊凌西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。 Email:xingxg86@163.com
馬孝義,男,陜西鳳翔人,教授,主要從事農(nóng)業(yè)水土及電氣化研究。楊凌西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。 Email:xiaoyima@vip.sina.com
邢旭光,張 盼,馬孝義. 摻混菜籽油渣減少土壤入滲改善持水特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):102-108. doi:10.11975/j.issn.1002-6819.2017.02.014 http://www.tcsae.org
Xing Xuguang, Zhang Pan, Ma Xiaoyi. Rapeseed dreg additive reducing soil infiltration and improving water retention[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 102-108. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.014 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2017年2期