韓衍欣,蒙繼華,徐 晉
?
基于NDVI與物候修正的大豆長(zhǎng)勢(shì)評(píng)價(jià)方法
韓衍欣,蒙繼華※,徐 晉
(中國(guó)科學(xué)院遙感與數(shù)字地球研究所,數(shù)字地球重點(diǎn)實(shí)驗(yàn)室,北京 100101)
及時(shí)、準(zhǔn)確的作物長(zhǎng)勢(shì)監(jiān)測(cè)可以為宏觀決策和農(nóng)田生產(chǎn)提供作物生長(zhǎng)信息,便于及時(shí)采取各種田間管理措施,達(dá)到科學(xué)管理和作物增產(chǎn)的目的。歸一化植被指數(shù)(normalized difference vegetation index,NDVI)與植被的葉面積指數(shù)(leaf area index, LAI)和葉片葉綠素含量關(guān)系極為密切,可以用來(lái)評(píng)價(jià)作物的生長(zhǎng)狀況。為了降低主觀因素及物候差異對(duì)大豆長(zhǎng)勢(shì)監(jiān)測(cè)的影響,該研究以黑龍江紅星農(nóng)場(chǎng)主要農(nóng)作物大豆為例,基于歷史NDVI數(shù)據(jù)建立了該區(qū)域大豆長(zhǎng)勢(shì)評(píng)價(jià)的標(biāo)準(zhǔn)。利用NDVI時(shí)間序列擬合法提取大豆關(guān)鍵物候期,結(jié)合物候監(jiān)測(cè)結(jié)果對(duì)大豆長(zhǎng)勢(shì)進(jìn)行修正,最后利用41個(gè)地塊的單產(chǎn)數(shù)據(jù)對(duì)長(zhǎng)勢(shì)評(píng)價(jià)結(jié)果進(jìn)行了驗(yàn)證。物候修正前后長(zhǎng)勢(shì)與單產(chǎn)的一致性分別為58.5%、75.6%,容差為1個(gè)等級(jí)時(shí)分別為87.8%、95.1%,表明歷史NDVI對(duì)大豆長(zhǎng)勢(shì)評(píng)價(jià)有一定參考意義,但簡(jiǎn)單同期對(duì)比不能完全反映大豆長(zhǎng)勢(shì)真實(shí)情況,物候修正可以進(jìn)一步改善長(zhǎng)勢(shì)評(píng)價(jià)效果。研究可以為利用遙感進(jìn)行大豆長(zhǎng)勢(shì)評(píng)價(jià)提供參考依據(jù)。
遙感;作物;時(shí)間序列分析;物候;長(zhǎng)勢(shì);NDVI;大豆
作物長(zhǎng)勢(shì)監(jiān)測(cè)能夠?yàn)樘镩g管理提供信息,同時(shí)為早期估產(chǎn)提供依據(jù),已經(jīng)成為精準(zhǔn)農(nóng)業(yè)研究中的重要內(nèi)容[1-2]。傳統(tǒng)的長(zhǎng)勢(shì)監(jiān)測(cè)方法多為實(shí)地調(diào)查,不僅耗費(fèi)大量人力、物力、財(cái)力,且很難及時(shí)獲得大面積的作物長(zhǎng)勢(shì)信息。遙感技術(shù)能夠獲取大面積地表信息,且具有實(shí)時(shí)性動(dòng)態(tài)性,越來(lái)越多地應(yīng)用于農(nóng)業(yè)生產(chǎn)與管理,在作物識(shí)別、面積提取、長(zhǎng)勢(shì)監(jiān)測(cè)、產(chǎn)量估算、災(zāi)害評(píng)估等領(lǐng)域取得了較大進(jìn)展[3-6]。通過(guò)遙感進(jìn)行作物長(zhǎng)勢(shì)監(jiān)測(cè)已經(jīng)成為國(guó)內(nèi)外農(nóng)業(yè)遙感研究的熱點(diǎn)[7]。
植被指數(shù)能夠綜合植被在不同遙感波段的反射特性,與作物葉面積指數(shù)、生物量等存在極強(qiáng)的相關(guān)關(guān)系[8-9],因此前期研究常使用植被指數(shù)評(píng)價(jià)作物長(zhǎng)勢(shì)[10-13]。在應(yīng)用于農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)的植被指數(shù)中,歸一化植被指數(shù)(normalized difference vegetation index,NDVI)是最為常用的評(píng)價(jià)指標(biāo)[14]。將特定時(shí)期的NDVI等遙感數(shù)據(jù)與過(guò)去(上年或多年平均)進(jìn)行同期對(duì)比,是農(nóng)作物長(zhǎng)勢(shì)遙感監(jiān)測(cè)中較為常用的方法[15-17]。
由于作物長(zhǎng)勢(shì)沒(méi)有明確的評(píng)價(jià)標(biāo)準(zhǔn),進(jìn)行長(zhǎng)勢(shì)分級(jí)時(shí)往往需要根據(jù)先驗(yàn)知識(shí)人為調(diào)整,主觀因素的影響難以避免。同期對(duì)比法只能監(jiān)測(cè)到作物長(zhǎng)勢(shì)的相對(duì)好壞,而且物候差異也增加了監(jiān)測(cè)結(jié)果的不確定性。物候是指作物生長(zhǎng)期受氣候和其他環(huán)境因子的影響而出現(xiàn)發(fā)芽、展葉、開花、結(jié)果、落葉等現(xiàn)象,與之對(duì)應(yīng)的作物器官動(dòng)態(tài)時(shí)期稱為物候期[18-19]。同時(shí)期不同區(qū)域作物所處物候階段有所不同,這種物候差異導(dǎo)致遙感參數(shù)同期對(duì)比并不能很好地反映長(zhǎng)勢(shì)真實(shí)情況[20-21]。
為解決上述問(wèn)題,文章以黑龍江紅星農(nóng)場(chǎng)主要農(nóng)作物大豆為例,整理了2010?2014年的環(huán)境減災(zāi)衛(wèi)星CCD(charge coupled device)多光譜數(shù)據(jù)和地面觀測(cè)數(shù)據(jù),對(duì)紅星農(nóng)場(chǎng)大豆生育期內(nèi)NDVI變化特點(diǎn)及年際變化進(jìn)行分析,以NDVI為監(jiān)測(cè)指標(biāo)初步建立了大豆長(zhǎng)勢(shì)評(píng)價(jià)的標(biāo)準(zhǔn)。采用NDVI時(shí)間序列分析的方法提取了大豆關(guān)鍵生育期,結(jié)合遙感監(jiān)測(cè)結(jié)果對(duì)大豆長(zhǎng)勢(shì)進(jìn)行物候修正,最后使用單產(chǎn)數(shù)據(jù)驗(yàn)證長(zhǎng)勢(shì)評(píng)價(jià)精度。以期降低主觀因素及物候差異給長(zhǎng)勢(shì)評(píng)價(jià)帶來(lái)的不確定性,實(shí)現(xiàn)客觀、準(zhǔn)確的大豆長(zhǎng)勢(shì)評(píng)價(jià)。
紅星農(nóng)場(chǎng)位于黑龍江省北安市境內(nèi),隸屬黑龍江農(nóng)墾總局北安管理局,是一個(gè)以旱作農(nóng)業(yè)為主的現(xiàn)代機(jī)械化國(guó)有農(nóng)場(chǎng)。該區(qū)域中心位置為48°09′N,127°03′E,屬寒溫帶大陸性氣候,四季分明,年平均降水量555.3 mm,活動(dòng)積溫2 250.1 ℃;土地面積390 km2,耕地273 km2,土地肥沃,易于耕作,主要種植作物包括大豆、玉米、小麥等。
2.1 數(shù)據(jù)來(lái)源及預(yù)處理
本研究所使用的數(shù)據(jù)為國(guó)產(chǎn)環(huán)境減災(zāi)衛(wèi)星A、B星(HJ-1A/1B)的CCD多光譜數(shù)據(jù),該數(shù)據(jù)具有分辨率較高、重訪周期短等特點(diǎn),適合農(nóng)田尺度的作物長(zhǎng)勢(shì)監(jiān)測(cè)。研究所用CCD數(shù)據(jù)時(shí)間為2010年5月-2014年10月,基本參數(shù)如表1所示。
表1 HJ-1A/1B CCD傳感器參數(shù)
研究使用的環(huán)境減災(zāi)衛(wèi)星數(shù)據(jù)由中國(guó)資源衛(wèi)星應(yīng)用中心網(wǎng)站下載,為2A級(jí)數(shù)據(jù),需要對(duì)數(shù)據(jù)進(jìn)行進(jìn)一步處理,數(shù)據(jù)預(yù)處理主要包括幾何精糾正、輻射定標(biāo)、大氣糾正、地表反射率計(jì)算、重投影和裁剪等關(guān)鍵步驟。
除選取2010-2014年研究區(qū)域質(zhì)量較高的CCD遙感數(shù)據(jù)外,研究也使用了其他數(shù)據(jù)輔助分析。首先繪制了紅星農(nóng)場(chǎng)矢量邊界和地塊邊界,用于提取研究區(qū)影像;另外由于研究區(qū)每年的作物種植計(jì)劃不同,使用NDVI閾值法進(jìn)行作物分類并結(jié)合實(shí)地調(diào)查制作研究區(qū)作物分布圖,用于提取大豆種植區(qū)。
2.2 大豆長(zhǎng)勢(shì)評(píng)價(jià)標(biāo)準(zhǔn)建立
2.2.1 NDVI計(jì)算與提取
歸一化植被指數(shù)NDVI能夠較好地反映作物生長(zhǎng)狀況,因而被廣泛地應(yīng)用于農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)[14],其計(jì)算公式為
NDVI=(NIR?R)/(NIR+R) (1)
式中NIR為傳感器近紅外波段反射率,R為傳感器紅波段反射率,分別對(duì)應(yīng)HJ-1A/1B CCD數(shù)據(jù)的4波段和3波段。
按照2.1節(jié)預(yù)處理流程對(duì)遙感影像進(jìn)行處理,采用波段運(yùn)算方法計(jì)算得到NDVI數(shù)據(jù),之后利用大豆種植區(qū)矢量數(shù)據(jù)掩膜提取所有大豆地塊的NDVI柵格數(shù)據(jù)。
2.2.2 NDVI統(tǒng)計(jì)分析
以2010年至2014年大豆種植區(qū)NDVI數(shù)據(jù)為基礎(chǔ),按年份提取不同時(shí)期大豆像元的NDVI值,根據(jù)數(shù)值大小對(duì)NDVI數(shù)據(jù)排序,統(tǒng)計(jì)分析NDVI分位數(shù)作為大豆長(zhǎng)勢(shì)分級(jí)節(jié)點(diǎn),用于后期建立大豆長(zhǎng)勢(shì)的評(píng)價(jià)標(biāo)準(zhǔn)。
以時(shí)間為橫坐標(biāo),NDVI值為縱坐標(biāo),建立大豆生長(zhǎng)過(guò)程線,以直觀的形式反映作物從播種、出苗、開花、成熟和收獲等物理過(guò)程,可用于跟蹤作物的季節(jié)性動(dòng)態(tài)變化。但是由于遙感影像時(shí)間分辨率限制和云噪聲的影響,大豆生育期內(nèi)高質(zhì)量的CCD影像數(shù)量有限,不能得到連續(xù)的時(shí)序植被指數(shù),因此采用線性插值的方法得到每日NDVI數(shù)據(jù)集。受不同年份大豆播種期的影響,不同年份、相同儒略日大豆所處的物候階段不同,因此需要根據(jù)物候推移(提前或滯后)影響對(duì)NDVI過(guò)程線進(jìn)行調(diào)整。
2.2.3 評(píng)價(jià)標(biāo)準(zhǔn)建立
針對(duì)大豆長(zhǎng)勢(shì)的監(jiān)測(cè),選用NDVI為評(píng)價(jià)指標(biāo),將大豆長(zhǎng)勢(shì)分為5個(gè)等級(jí):很差、差、中、好、很好。過(guò)去5 a對(duì)研究區(qū)大豆苗情、產(chǎn)量的實(shí)地調(diào)查結(jié)果表明,大豆長(zhǎng)勢(shì)由很差到很好5個(gè)等級(jí)分別對(duì)應(yīng)的面積比例大體為3%、7%、20%、50%、20%,因此按照2.2.2節(jié)的方法對(duì)某期NDVI數(shù)據(jù)升序排列,將NDVI分位數(shù)N3%、N10%、N30%、N80%定義為大豆長(zhǎng)勢(shì)分級(jí)節(jié)點(diǎn)。將NDVI處于 NMin~N3%、>N3%~N10%、>N10%~N30%、>N30%~N80%、>N80%~NMax的大豆像元分別歸類到很差、差、中、好、很好5個(gè)長(zhǎng)勢(shì)等級(jí)。依據(jù)線性插值獲得每日NDVI分級(jí)節(jié)點(diǎn),建立各年份大豆長(zhǎng)勢(shì)分級(jí)曲線,將該曲線分為差、中、好、很好4個(gè)系列,根據(jù)某日對(duì)應(yīng)的4個(gè)NDVI分級(jí)節(jié)點(diǎn)可將大豆地塊分為上述5個(gè)長(zhǎng)勢(shì)等級(jí)。
基于每年NDVI數(shù)據(jù)建立對(duì)應(yīng)年份大豆長(zhǎng)勢(shì)的分級(jí)標(biāo)準(zhǔn),將歷史5 a的NDVI數(shù)據(jù)統(tǒng)一到儒略日坐標(biāo)下進(jìn)行處理,采用5 a平均的方法計(jì)算新的長(zhǎng)勢(shì)分級(jí)節(jié)點(diǎn)。以儒略日為橫坐標(biāo),大豆長(zhǎng)勢(shì)分級(jí)節(jié)點(diǎn)值(NDVI)為縱坐標(biāo),建立最終的大豆長(zhǎng)勢(shì)分級(jí)曲線。
2.3 大豆物候遙感監(jiān)測(cè)方法
目前利用遙感監(jiān)測(cè)作物物候的方法已經(jīng)相對(duì)成熟[22-25],作物的一些生長(zhǎng)階段可以通過(guò)分析NDVI曲線增長(zhǎng)速率、峰值等特點(diǎn)直接監(jiān)測(cè)[26],本研究基于獲取的HJ-1A/1B CCD影像,對(duì)NDVI時(shí)間序列進(jìn)行去噪重建,分析大豆全生育期的NDVI生長(zhǎng)曲線特征,進(jìn)行大豆關(guān)鍵物候期的遙感監(jiān)測(cè)。
由于受云、氣溶膠等的影響,遙感時(shí)間序列數(shù)據(jù)存在很多噪聲,給研究帶來(lái)不便[21]。作物生長(zhǎng)是一個(gè)緩慢的過(guò)程,NDVI不可能出現(xiàn)驟升驟降,因此作者首先根據(jù)相鄰點(diǎn)進(jìn)行線性插值替代這些噪聲,然后使用Savitzky-Golay(SG)迭代濾波方法進(jìn)一步降低噪聲影響[27],最后對(duì)大豆生育期的NDVI時(shí)間序列進(jìn)行Gaussian擬合,使用擬合的NDVI時(shí)間序列數(shù)據(jù)對(duì)大豆關(guān)鍵物候期進(jìn)行監(jiān)測(cè)。
2.4 大豆長(zhǎng)勢(shì)物候修正
對(duì)比分析物候監(jiān)測(cè)結(jié)果和物候修正前的大豆長(zhǎng)勢(shì)分布圖,選擇物候影響的典型地塊作為建模地塊,建立田塊尺度長(zhǎng)勢(shì)(NDVI)和物候的關(guān)系。選取受物候影響的典型地塊作為建模地塊,提取相應(yīng)的“NDVI-物候”數(shù)據(jù)對(duì),建立大豆長(zhǎng)勢(shì)的歸一化公式,將長(zhǎng)勢(shì)監(jiān)測(cè)結(jié)果歸一化到大豆關(guān)鍵物候期,從而降低物候差異對(duì)長(zhǎng)勢(shì)評(píng)價(jià)的影響。
3.1 長(zhǎng)勢(shì)評(píng)價(jià)標(biāo)準(zhǔn)
根據(jù)2.2節(jié)介紹的方法,基于歷史NDVI時(shí)間序列數(shù)據(jù)建立了大豆長(zhǎng)勢(shì)分級(jí)曲線(圖2),作為大豆長(zhǎng)勢(shì)監(jiān)測(cè)與評(píng)價(jià)的標(biāo)準(zhǔn)。該分級(jí)曲線以儒略日為橫坐標(biāo),NDVI為縱坐標(biāo),分很好、好、中、差4個(gè)系列。如圖2所示,若對(duì)200日的大豆長(zhǎng)勢(shì)進(jìn)行評(píng)價(jià),可以獲得當(dāng)日各等級(jí)的分級(jí)節(jié)點(diǎn)N1、N2、N3、N4,根據(jù)大豆像元NDVI值的大小將NDVI>N1、N1≥NDVI>N2、N2≥NDVI>N3、N3≥NDVI>N4、NDVI≤N4的像元分別歸為長(zhǎng)勢(shì)很好、好、中、差、很差5類。
3.2 物候期遙感監(jiān)測(cè)結(jié)果
在東北大豆生長(zhǎng)過(guò)程中,結(jié)莢期是大豆進(jìn)入生殖生長(zhǎng)的重要階段,對(duì)應(yīng)大豆NDVI生長(zhǎng)曲線出現(xiàn)最大值的日期[28]。圖3是研究區(qū)大豆進(jìn)入結(jié)莢期的時(shí)間分布情況。監(jiān)測(cè)結(jié)果顯示,研究區(qū)內(nèi)大豆進(jìn)入結(jié)莢期的日期以201~215儒略日為最多,在這期間進(jìn)入結(jié)莢期的像元占總像元的89.2%。由圖3可以看出,紅星農(nóng)場(chǎng)大豆結(jié)莢期在地塊內(nèi)部比較一致,而地塊間物候差異比較明顯。但是由于研究區(qū)范圍較小,沒(méi)有明顯的南北氣候差異,大豆結(jié)莢期并沒(méi)有呈現(xiàn)明顯的空間分異規(guī)律。
3.3 物候歸一化結(jié)果
如圖3選擇了65個(gè)建模地塊,結(jié)合2014年7月中旬NDVI數(shù)據(jù)和物候監(jiān)測(cè)結(jié)果,分析了結(jié)莢期前后長(zhǎng)勢(shì)與物候的關(guān)系。由于田塊內(nèi)部長(zhǎng)勢(shì)及物候較為一致,以地塊為單位取平均得到各地塊的“NDVI-物候”數(shù)據(jù)對(duì),通過(guò)線性回歸建立了田塊尺度長(zhǎng)勢(shì)和物候的關(guān)系。從圖4可以看出,大豆長(zhǎng)勢(shì)和物候高度相關(guān),2達(dá)到了0.721 2,物候早的大豆地塊長(zhǎng)勢(shì)明顯好于物候晚的大豆地塊。
研究認(rèn)為,大豆進(jìn)入結(jié)莢期前后長(zhǎng)勢(shì)和物候線性相關(guān),如果某大豆像元對(duì)應(yīng)物候不在結(jié)莢期,則通過(guò)該線性關(guān)系將NDVI歸一到結(jié)莢期。
通過(guò)上述關(guān)系,可以對(duì)大豆長(zhǎng)勢(shì)進(jìn)行歸一化處理,達(dá)到同一物候期評(píng)價(jià)長(zhǎng)勢(shì)的目的。
3.4 長(zhǎng)勢(shì)評(píng)價(jià)結(jié)果與分析
根據(jù)3.1節(jié)建立的大豆長(zhǎng)勢(shì)評(píng)價(jià)標(biāo)準(zhǔn),開展了2014年結(jié)莢期大豆長(zhǎng)勢(shì)遙感監(jiān)測(cè),結(jié)果如圖5所示。圖5a、5b分別為物候修正前和物候修正后的大豆長(zhǎng)勢(shì)。通過(guò)對(duì)比可以發(fā)現(xiàn)物候修正前后大豆長(zhǎng)勢(shì)發(fā)生了明顯改變,物候晚的地塊長(zhǎng)勢(shì)有所改善。如圖5中黑色邊線所示的一個(gè)典型地塊,該地塊在物候修正前長(zhǎng)勢(shì)很差,但這主要是由于該地塊物候期較晚,經(jīng)過(guò)物候修正后該地塊長(zhǎng)勢(shì)等級(jí)多為中、好。通過(guò)實(shí)地調(diào)查,該大豆地塊產(chǎn)量為0.93 kg/hm2,在該農(nóng)場(chǎng)處于中等偏上水平,與物候修正后的長(zhǎng)勢(shì)等級(jí)相吻合。
研究采集了41個(gè)大豆地塊(圖5中驗(yàn)證地塊)的單產(chǎn)數(shù)據(jù),以地塊尺度長(zhǎng)勢(shì)與單產(chǎn)的一致性為指標(biāo)驗(yàn)證該方法的準(zhǔn)確性。為了合理地描述長(zhǎng)勢(shì)和單產(chǎn)的一致性,首先對(duì)研究區(qū)過(guò)去5 a大豆實(shí)際單產(chǎn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,依據(jù)與長(zhǎng)勢(shì)分級(jí)相同的標(biāo)準(zhǔn),將產(chǎn)量分位數(shù)Y3%、Y10%、Y30%、Y80%定義為大豆產(chǎn)量分級(jí)節(jié)點(diǎn),將單產(chǎn)處于≤Y3%、>Y3%~Y10%、>Y10%~Y30%、>Y30%~Y80%、>Y80%的地塊歸為很差、差、中、好、很好5個(gè)等級(jí)。將單產(chǎn)等級(jí)作為長(zhǎng)勢(shì)等級(jí)的真值,結(jié)合地塊尺度的長(zhǎng)勢(shì)等級(jí)評(píng)價(jià)該方法的準(zhǔn)確性。如表2建立長(zhǎng)勢(shì)分級(jí)結(jié)果的混淆矩陣,計(jì)算物候修正前后長(zhǎng)勢(shì)與單產(chǎn)的一致性。
表2 41個(gè)地塊大豆長(zhǎng)勢(shì)分級(jí)結(jié)果混淆矩陣
根據(jù)基于歷史數(shù)據(jù)建立的長(zhǎng)勢(shì)評(píng)價(jià)標(biāo)準(zhǔn)進(jìn)行長(zhǎng)勢(shì)分級(jí)時(shí),大豆長(zhǎng)勢(shì)等級(jí)與單產(chǎn)等級(jí)的一致性為58.5%,說(shuō)明同期對(duì)比不能完全反映作物長(zhǎng)勢(shì)的真實(shí)情況,需要進(jìn)一步考慮物候?qū)﹂L(zhǎng)勢(shì)的影響。結(jié)合物候遙感監(jiān)測(cè)結(jié)果對(duì)大豆長(zhǎng)勢(shì)進(jìn)行修正后,長(zhǎng)勢(shì)與單產(chǎn)的一致性提高到75.6%,降低了物候差異給長(zhǎng)勢(shì)評(píng)價(jià)帶來(lái)的不確定性。在容差為1個(gè)等級(jí)時(shí),物候修正前大豆長(zhǎng)勢(shì)與單產(chǎn)等級(jí)的一致性達(dá)到87.8%,表明歷史長(zhǎng)勢(shì)數(shù)據(jù)在長(zhǎng)勢(shì)評(píng)價(jià)中有一定的參考意義;物候修正后的一致性提高到95.1%,同樣說(shuō)明物候信息的加入能夠提高長(zhǎng)勢(shì)遙感監(jiān)測(cè)的準(zhǔn)確性。
研究以黑龍江紅星農(nóng)場(chǎng)主要農(nóng)作物大豆為研究對(duì)象,以2010-2014年環(huán)境減災(zāi)衛(wèi)星CCD影像為主要數(shù)據(jù),提出了一種基于NDVI與物候修正的大豆長(zhǎng)勢(shì)評(píng)價(jià)方法?;跉v史5 a的大豆生育期NDVI時(shí)間序列數(shù)據(jù),建立了研究區(qū)大豆長(zhǎng)勢(shì)評(píng)價(jià)的標(biāo)準(zhǔn)。針對(duì)物候的空間差異,對(duì)大豆結(jié)莢期進(jìn)行遙感監(jiān)測(cè),結(jié)合物候信息修正了大豆長(zhǎng)勢(shì),最后比較分析了物候修正前后的大豆長(zhǎng)勢(shì)評(píng)價(jià)結(jié)果。研究得到以下結(jié)論
1)經(jīng)檢驗(yàn),物候修正前長(zhǎng)勢(shì)與單產(chǎn)的一致性為58.5%,說(shuō)明同期對(duì)比未考慮物候?qū)е碌拈L(zhǎng)勢(shì)差異,不能完全反映作物長(zhǎng)勢(shì)真實(shí)狀況。但是容差為一個(gè)等級(jí)時(shí),該一致性達(dá)到87.8%,表明歷史NDVI數(shù)據(jù)對(duì)長(zhǎng)勢(shì)評(píng)價(jià)有一定的參考性,基于該數(shù)據(jù)建立評(píng)價(jià)標(biāo)準(zhǔn)能夠降低主觀因素的影響。
2)研究區(qū)大豆田塊內(nèi)部物候比較一致,而田塊間差異較大,結(jié)莢日期最大差異15 d左右,沒(méi)有呈現(xiàn)明顯的空間分異規(guī)律。分析發(fā)現(xiàn),大豆長(zhǎng)勢(shì)與物候高度相關(guān),物候的影響與作物自身長(zhǎng)勢(shì)差異混合在一起,增加了長(zhǎng)勢(shì)評(píng)價(jià)的不確定性。
3)時(shí)間序列遙感數(shù)據(jù)可以有效提取作物物候,研究采用擬合法對(duì)大豆關(guān)鍵物候期進(jìn)行了監(jiān)測(cè),結(jié)合監(jiān)測(cè)結(jié)果修正了大豆長(zhǎng)勢(shì)。經(jīng)過(guò)物候修正,長(zhǎng)勢(shì)與單產(chǎn)一致性提高到75.6%,容差為1個(gè)等級(jí)時(shí)一致性提高到95.1%,表明利用物候信息可以改善長(zhǎng)勢(shì)評(píng)價(jià)效果。
本文提出的方法能夠很大程度上降低主觀因素及物候差異對(duì)長(zhǎng)勢(shì)評(píng)價(jià)的影響,可以為其他作物的長(zhǎng)勢(shì)監(jiān)測(cè)提供重要參考。開展進(jìn)一步研究時(shí),應(yīng)將該長(zhǎng)勢(shì)評(píng)價(jià)方法應(yīng)用于其他作物,以驗(yàn)證該方法的適用性。
[1] 楊邦杰,裴志遠(yuǎn). 農(nóng)作物長(zhǎng)勢(shì)的定義與遙感監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),1999,15(3):214-218.
Yang Bangjie, Pei Zhiyuan. Definition of crop condition and crop monitoring using remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(3): 214-218. (in Chinese with English abstract)
對(duì)此,高校應(yīng)該進(jìn)一步解放思想,制定科學(xué)有效的就業(yè)指導(dǎo)工作計(jì)劃,不斷提升畢業(yè)生的就業(yè)能力和綜合素質(zhì),增加其就業(yè)優(yōu)勢(shì)。高校輔導(dǎo)員作為高校就業(yè)指導(dǎo)工作的主要組織者和承擔(dān)者,直接影響著就業(yè)指導(dǎo)工作的最終成效。因此,高校輔導(dǎo)員可以從以下幾方面做起,切實(shí)做好就業(yè)指導(dǎo)工作:
[2] 李花. HJ-1A/B遙感監(jiān)測(cè)水稻長(zhǎng)勢(shì)與產(chǎn)量的研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2011.
Li Hua. Rice Growth Monitoring and Yield Forecasting Through HJ-1A/B Images[D]. Hefei: Anhui Agricultural University, 2011. (in Chinese with English abstract)
[3] 蒙繼華,吳炳方,杜鑫,等. 遙感在精準(zhǔn)農(nóng)業(yè)中的應(yīng)用進(jìn)展及展望[J]. 國(guó)土資源遙感,2011,23(3):1-7.
Meng Jihua, Wu Bingfang, Du Xin, et al. A review and outlook of applying remote sensing to precision agriculture[J]. Remote Sensing for Land& Resources, 2011, 23(3): 1-7. (in Chinese with English abstract)
[4] 楊邦杰,裴志遠(yuǎn),周清波,等. 我國(guó)農(nóng)情遙感監(jiān)測(cè)關(guān)鍵技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(3):191-194.
Yang Bangjie, Pei Zhiyuan, Zhou Qingbo, et al. Key technologies of crop monitoring using remote sensing at a national scale: progress and problems[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 191-194. (in Chinese with English abstract)
[5] Pjjr P, Hatfield J L, Schepers J S, et al. Remote sensing for crop management[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(6): 647-664.
[6] Wu B, Meng J, Li Q, et al. Remote sensing-based global crop monitoring: experiences with China’s CropWatch system[J]. International Journal of Digital Earth, 2014, 7(2): 113-137.
Qian Yonglan, Hou Yingyun, Yan Hao, et al. Global crop growth condition monitoring and yield trend prediction with remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(13): 166-171. (in Chinese with English abstract)
[8] 劉洋,劉榮高,陳鏡明,等. 葉面積指數(shù)遙感反演研究進(jìn)展與展望[J]. 地球信息科學(xué)學(xué)報(bào),2013,15(5):734-743.
Liu Yang, Liu Ronggao, Chen Jingming, et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(5): 734-743. (in Chinese with English abstract)
[9] 樸世龍,方精云,賀金生,等. 中國(guó)草地植被生物量及其空間分布格局[J]. 植物生態(tài)學(xué)報(bào),2004,28(4):491-498.
Piao Shilong, Fang Jingyun, He Jinsheng, et al. Spatial distribution of grassland biomass in China[J]. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498. (in Chinese with English abstract)
[10] 吳炳方,張峰,劉成林,等. 農(nóng)作物長(zhǎng)勢(shì)綜合遙感監(jiān)測(cè)方法[J]. 遙感學(xué)報(bào),2004,8(6):498-514.
Wu Bingfang, Zhang Feng, Liu Chenglin, et al. An integrated method for crop condition monitoring[J]. Journal of Remote Sensing, 2004, 8(6): 498-514. (in Chinese with English abstract)
[11] Yu K, Wang Z, Sun L, et al. Crop growth condition monitoring and analyzing in county scale by time series MODIS medium-resolution data[C]//International Conference on Agro-Geoinformatics. New York: IEEE, 2013: 1-6.
[12] 趙虎,楊正偉,李霖,等. 作物長(zhǎng)勢(shì)遙感監(jiān)測(cè)指標(biāo)的改進(jìn)與比較分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):243-249.
Zhao Hu, Yang Zhengwei, Li Lin, et al. Improvement and comparative analysis of indices of crop growth condition monitoring by remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 243-249. (in Chinese with English abstract)
[13] 顧曉鶴,宋國(guó)寶,韓立建,等. 基于變化向量分析的冬小麥長(zhǎng)勢(shì)變化監(jiān)測(cè)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):159-166.
Gu Xiaohe, Song Guobao, Han Lijian, et al. Monitoring of growth changes of winter wheat based on change vector analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 159-166. (in Chinese with English abstract)
[14] Guindin-Garcia N, Gitelson A A, Arkebauer T J, et al. An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index[J]. Agricultural and Forest Meteorology, 2012, 161(3): 15-25.
[15] 武建軍,楊勤業(yè). 干旱區(qū)農(nóng)作物長(zhǎng)勢(shì)綜合監(jiān)測(cè)[J]. 地理研究,2002,21(5):593-598.
Wu Jianjun, Yang Qinye. Crop monitoring and yield estimation using synthetic methods in arid land[J]. Geographical Research, 2002, 21(5): 593-598. (in Chinese with English abstract)
[16] 黃青,王利民,滕飛. 利用MODIS-NDVI數(shù)據(jù)提取新疆棉花播種面積信息及長(zhǎng)勢(shì)監(jiān)測(cè)方法研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2011,29(2):213-217.
Huang Qing, Wang Limin, Teng Fei. MODIS- NDVI-based monitoring of cotton planting areas and growth condition in Xinjiang[J]. Agricultural Research in the Arid Areas, 2011, 29(2): 213-217. (in Chinese with English abstract)
[17] Meng J H, Wu B F. Study on the crop condition monitoring methods with remote sensing[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B8): 945-950..
[18] 王連喜,陳懷亮,李琪,等. 植物物候與氣候研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2010,30(2):447-454.
Wang Lianxi, Chen Huailiang, Li Qi, et al. Research advances in plant phenology and climate[J]. Acta Ecologica Sinica, 2010, 30(2): 447-454. (in Chinese with English abstract)
[19] 張峰,吳炳方,劉成林,等. 利用時(shí)序植被指數(shù)監(jiān)測(cè)作物物候的方法研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(1):155-159.
Zhang Feng, Wu Bingfang, Liu Chenglin, et al. Methods of monitoring crop phenological stages using time series of vegetation indicator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 155-159. (in Chinese with English abstract)
[20] Meng J H, Wu B F, Li Q Z, et al. Monitoring Crop Phenology with MERIS Data: A Case Study of Winter Wheat in North China Plain[C]// Electromagnetics Acad. Cambridge, 2009: 1225-1228.
[21] 蒙繼華,杜鑫,張淼,等. 物候信息在大范圍作物長(zhǎng)勢(shì)遙感監(jiān)測(cè)中的應(yīng)用[J]. 遙感技術(shù)與應(yīng)用,2014,29(2):278-285.
Meng Jihua, Du Xin, Zhang Miao, et al. Integrating crop phenophase information in large-area crop condition evaluation with remote sensing[J]. Remote Sensing Technology and Application, 2014, 29(2): 278-285. (in Chinese with English abstract)
[22] 鹿琳琳,郭華東. 基于SPOT/VEGETATION時(shí)間序列的冬小麥物候提取方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):174-179.
Lu Linlin, Guo Huadong. Extraction method of winter wheat phenology from time series of SPOT/VEGETATION data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 174-179. (in Chinese with English abstract)
[23] 崔凱,蒙繼華,左廷英. 遙感作物物候監(jiān)測(cè)方法研究[J]. 安徽農(nóng)業(yè)科學(xué),2012,40(10):6279-6281.
Cui Kai, Meng Jihua, Zuo Tingying. Monitoring of crop phenology with remote sensing[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 6279-6281. (in Chinese with English abstract)
[24] 夏傳福,李靜,柳欽火. 植被物候遙感監(jiān)測(cè)研究進(jìn)展[J]. 遙感學(xué)報(bào),2013,17(1):1-16.
Xia Chuanfu, Li Jing, Liu Qinhuo. Review of advances in vegetation phenology monitoring by remote sensing[J]. Journal of Remote Sensing, 2013, 17(1): 1-16. (in Chinese with English abstract)
[25] Pan Z, Huang J, Zhou Q, et al. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data[J]. International Journal of Applied Earth Observation & Geoinformation, 2015, 34(1): 188-197.
[26] Akm Saiful Islam, Sujit Kumar Bala. Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information[J]. Giscience & Remote Sensing, 2008, 45(4): 443-453.
[27] Chen J, J?nsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter[J]. Remote Sensing of Environment, 2004, 91(3/4): 332-344.
[28] Zhao H, Yang Z, Di L, et al. Crop phenology date estimation based on NDVI derived from the reconstructed MODIS daily surface reflectance data[C]// 2009 17th International Conference on Geoinformatics. New York: IEEE, 2009:1-6.
Soybean growth assessment method based on NDVI and phenological calibration
Han Yanxin, Meng Jihua※, Xu Jin
(100101)
The timely and accurate crop condition monitoring can provide government policy makers and farmers with information of crop growth, so that they can take promptly field management measures to achieve scientific management and crop yield-increasing. With the development of remote sensing technology, crop condition monitoring by remote sensing has become a research hotspot. Former studies have shown that normalized difference vegetation index (NDVI) is highly correlated with leaf area index (LAI) and leaf chlorophyll content, and can be used to indicate the growth condition of crops. However, it is hard to eliminate the influence of objective factors on crop condition monitoring due to the lack of evaluation criteria. Beside the crop growth condition difference itself, the phenophase difference between fields also has a great influence on crop condition monitoring. To address the problems above, a method of assessing soybean condition by using the historical NDVI time series was designed. In this study, the research target is soybean in Hongxing Farm, which is located in Heilongjiang province. Based on the available multi-spectral HJ-1 CCD data, the historical NDVI dataset from the year 2010 to 2014 was collected. The NDVI variation trend in soybean growth season was analyzed and an inter-annual comparison during soybean growth period was implemented which was integrated with ground data. The high-quality images can’t be acquired at day frequency due to the temporal resolution and the cloud influence. A linear interpolation was thus applied to the original data to obtain everyday NDVI dataset. Then a profile, which reflected the soybean growth process was built according to the reconstructed NDVI data from 2010 to 2014. The profile can provide four threshold values every day to categorize soybean condition into five grades which is worst, poor, fair, good and excellent respectively. On the basis of that, the criterion of soybean condition classification was established to assess the growth condition of soybean accurately. A preliminary soybean growth condition map can be produced according to the criterion. Then the critical phenological stages of soybean was extracted based on NDVI time series to reduce the phenophase impact on crop condition monitoring. First, an everyday NDVI dataset at pixel scale in the year 2014 was built using linear interpolation. A simple procedure based on Savitzky-Golay filter and Gaussian function was then implemented to remove the noise in the contaminated NDVI data and fit the growth curve. The result of soybean growth condition monitoring can be calibrated on the basis of the correlation of NDVI and the podding date which can be estimated by analyzing the characteristics of the curve. The yield investigation at field scale was carried out to validate the accuracy of the soybean growth condition assessment method. The results showed that the consistency between soybean condition level and yield level reached 58.5% and increased to 75.6% with the phenological calibration. The pre- and post-calibration consistency were 87.8% and 95.1% respectively when the tolerance was defined as one grade. The proposed method which based on the historical NDVI dataset and the result of key phenophase mapping indicates the ability of reducing the impact of objective factors and phenophase when assessing soybean growth condition.
remote sensing; crops; time series analysis; phenophase; crop condition; NDVI; soybean
10.11975/j.issn.1002-6819.2017.02.024
TP79
A
1002-6819(2017)-02-0177-06
2016-09-26
2016-10-17
中國(guó)科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(STS)項(xiàng)目“精準(zhǔn)農(nóng)業(yè)技術(shù)體系研發(fā)及先進(jìn)設(shè)備完善和升級(jí)”(KFJ-EW-STS-069);863計(jì)劃課題“典型應(yīng)用領(lǐng)域全球定量遙感產(chǎn)品生產(chǎn)體系”(2013AA12A302)
韓衍欣,男,山東菏澤人。主要從事農(nóng)作物長(zhǎng)勢(shì)遙感監(jiān)測(cè)研究。北京 中國(guó)科學(xué)院遙感與數(shù)字地球研究所,100101。Email:hanyx@radi.ac.cn
蒙繼華,男,新疆石河子人,研究員。主要從事作物遙感監(jiān)測(cè)及精準(zhǔn)農(nóng)業(yè)遙感應(yīng)用研究。北京 中國(guó)科學(xué)院遙感與數(shù)字地球研究所,100101。Email:mengjh@radi.ac.cn
韓衍欣,蒙繼華,徐 晉. 基于NDVI與物候修正的大豆長(zhǎng)勢(shì)評(píng)價(jià)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):177-182. doi:10.11975/j.issn.1002-6819.2017.02.024 http://www.tcsae.org
Han Yanxin, Meng Jihua, Xu Jin. Soybean growth assessment method based on NDVI and phenological calibration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 177-182. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.024 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2017年2期