雷明月,許為鋼,李小博,張慶琛1,,王會(huì)偉,張 磊,方宇輝,李 艷,李春鑫
(1.河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,河南鄭州 450002; 2.河南省農(nóng)業(yè)科學(xué)院小麥研究所/小麥國(guó)家工程實(shí)驗(yàn)室/農(nóng)業(yè)部黃淮中部小麥生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,河南鄭州 450002 )
玉米C4光合酶基因?qū)雽?duì)擬南芥光合特性及抗旱性的影響
雷明月1,2,許為鋼2,李小博2,張慶琛1,2,王會(huì)偉2,
張 磊2,方宇輝2,李 艷2,李春鑫2
(1.河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,河南鄭州 450002; 2.河南省農(nóng)業(yè)科學(xué)院小麥研究所/小麥國(guó)家工程實(shí)驗(yàn)室/農(nóng)業(yè)部黃淮中部小麥生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,河南鄭州 450002 )
為了解玉米C4型光合酶基因?qū)3植物擬南芥光合特性的影響及其對(duì)干旱脅迫的響應(yīng),分別以過(guò)表達(dá)ZmPEPC(磷酸烯醇式丙酮酸羧化酶)、ZmPPDK(丙酮酸磷酸二激酶)和ZmNADP-ME(依賴于NADP的蘋(píng)果酸酶)單個(gè)酶基因的擬南芥株系(分別簡(jiǎn)寫(xiě)為PC、PK、ME),以及過(guò)表達(dá)PEPC+PPDK和PPDK+NADP-ME兩個(gè)酶基因的擬南芥株系(分別簡(jiǎn)寫(xiě)為PCK、PKM)為供試材料,在開(kāi)花期停止?jié)菜?,并分別于干旱脅迫處理前1天、第5天、第10天和結(jié)束干旱脅迫復(fù)水處理5 d時(shí)測(cè)定轉(zhuǎn)基因擬南芥中目標(biāo)基因的表達(dá)量、光合速率、水分利用效率和酶活性。結(jié)果表明,在正常生長(zhǎng)條件下,PCK類型株系的PEPC酶活性、PPDK酶活性、凈光合速率(Pn)以及水分利用效率(WUE)較野生型擬南芥分別高52%、20%、24%和55%,除PPDK酶活性外,PCK類型株系各指標(biāo)測(cè)定值的增幅均高于其他轉(zhuǎn)基因類型株系,綜合表現(xiàn)最優(yōu)。不同類型株系的上述測(cè)定指標(biāo)總體表現(xiàn)為PCK>PC>PK、PKM>ME。干旱脅迫處理5 d時(shí),各類型株系中目標(biāo)基因的表達(dá)量、光合酶活性、Pn和WUE均有所上升。干旱脅迫處理10 d時(shí),擬南芥受到嚴(yán)重?fù)p傷,上述指標(biāo)的測(cè)定值均下降。復(fù)水5 d時(shí)上述指標(biāo)得到不同程度的恢復(fù),不同類型轉(zhuǎn)基因株系的各項(xiàng)測(cè)定指標(biāo)在不同干旱脅迫處理中總體仍表現(xiàn)為PCK最優(yōu),PC次之。各轉(zhuǎn)基因株系均優(yōu)于受體非轉(zhuǎn)基因擬南芥。
擬南芥;干旱脅迫;轉(zhuǎn)基因;C4光合途徑關(guān)鍵酶基因;玉米
大量研究證實(shí),與C3植物相比,C4植物具有更好的光合性能,對(duì)高溫、強(qiáng)光及干旱環(huán)境也具有更好的適應(yīng)能力[1],因此通過(guò)基因工程將C4植物的C4光合途徑關(guān)鍵酶基因轉(zhuǎn)入C3植物,以增強(qiáng)C3植物光合性能和耐脅迫能力已成為國(guó)內(nèi)外作物遺傳改良研究的熱點(diǎn)之一。目前人們已成功將C4植物的若干C4型光合酶基因?qū)隒3植物,在水稻[2]、小麥[3-5]、擬南芥[6]等植物中獲得了高效表達(dá)C4型光合酶基因PEPC、PPDK和NADP-ME的轉(zhuǎn)基因植株。關(guān)于C4光合酶基因?qū)隒3植物能否提高C3植物的光合效率,目前的試驗(yàn)結(jié)果仍存在一些分歧[7-10]。已有許多研究表明,過(guò)表達(dá)C4-PEPC、C4-PPDK基因可顯著提高水稻、小麥等C3植物的光合性能,并增強(qiáng)其抗逆性[11-14]。還有報(bào)道表明,過(guò)表達(dá)PEPC+PPDK雙基因的擬南芥[9]和水稻[15]的光合速率高于單轉(zhuǎn)PEPC基因,而過(guò)表達(dá)單個(gè)NADP-ME基因的轉(zhuǎn)基因C3植株光合速率無(wú)明顯變化或降低[16-17]。因此,研究C4光合酶基因在C3植物中的表達(dá)與功能,比較不同C4光合酶基因及基因組合導(dǎo)入C3植物中的功能差異,對(duì)改良C3植物的光合性能和抗逆性具有重要意義。
擬南芥是模式植物,生長(zhǎng)周期短、基因組小、易于轉(zhuǎn)化和人工雜交,利于遺傳研究。本研究利用本課題組已獲得的5類過(guò)表達(dá)玉米C4光合酶基因的擬南芥株系為材料[6],比較不同轉(zhuǎn)基因株系在不同水分處理?xiàng)l件下的光合特性,旨在深入了解C4型光合酶基因及其基因組合對(duì)C3植物光合特性及抗旱性的影響,為小麥高光效基因工程研究提供依據(jù)。
1.1 試驗(yàn)材料
供試的轉(zhuǎn)基因擬南芥材料分別為轉(zhuǎn)玉米C4光合酶基因ZmPEPC的3個(gè)株系(簡(jiǎn)寫(xiě)為PC73、PC65、PC90),轉(zhuǎn)ZmPPDK基因的3個(gè)株系(簡(jiǎn)寫(xiě)為PK16、PK26、PK36),轉(zhuǎn)ZmNADP-ME基因的3個(gè)株系(簡(jiǎn)寫(xiě)為ME4、ME5、ME9),轉(zhuǎn)ZmPEPC+ZmPPDK基因的3個(gè)株系(簡(jiǎn)寫(xiě)為PCK5、PCK7、PCK110)和轉(zhuǎn)ZmPPDK+ZmNADP-ME基因的3個(gè)株系(簡(jiǎn)寫(xiě)為PKM2、PKM4、PKM5)。以轉(zhuǎn)基因受體擬南芥GLI(哥倫比亞型擬南芥)為對(duì)照。以上試驗(yàn)材料均由河南省農(nóng)業(yè)科學(xué)院小麥研究所分子育種研究室提供。
1.2 試驗(yàn)方法
1.2.1 試驗(yàn)材料的種植與水分脅迫處理
所有供試材料種植于人工氣候室,氣候室環(huán)境為溫度22~24 ℃,濕度60%;每天光照10 h/黑暗14 h,光照強(qiáng)度為200 μmol·m-2·s-1。所有供試的轉(zhuǎn)基因擬南芥在開(kāi)花期前正常供水,開(kāi)花期停止?jié)菜?,干旱脅迫處理10 d,分別于水分脅迫處理前1天、第5天和第10天測(cè)定光合有關(guān)參數(shù),水分脅迫處理10 d后恢復(fù)澆水一次,復(fù)水5 d后再測(cè)定光合有關(guān)參數(shù)。每個(gè)株系測(cè)定4個(gè)單株,每個(gè)單株重復(fù)測(cè)定3次。
1.2.2 轉(zhuǎn)基因擬南芥的PCR驗(yàn)證
待幼苗長(zhǎng)出6~8片真葉后,取葉片提取DNA進(jìn)行PCR驗(yàn)證。引物分別為PC1:5′-GCAGATCTGCTCCAACCATCTCGCTTCCGT G-3′和PC2:5′-GGCACGTGGCCGCCTAGCC AGTGTTCTGCAT-3′;ME1:5-GTCCATGGT CCGAAGAGGGAGGAGGACGAC-3′和ME2:5′-AACACGTGTCCAGCAGCACCAGCAACA AGG-3′;PK1:5′-GCAGATCTTCGGCTCCCT CTCCCCTTGCTCCAT-3′和PK2:5′-GGTTAT AACACATCCACCAGCAGCAGGCAATCC-3′。
1.2.3 轉(zhuǎn)基因擬南芥的qRT-PCR分析
取開(kāi)花期水分脅迫處理不同時(shí)間的參試材料葉片100 mg,利用超純RNA提取試劑盒提取葉片總RNA,利用反轉(zhuǎn)錄試劑盒將其反轉(zhuǎn)為cDNA,采用SYBR Green染料法進(jìn)行PCR擴(kuò)增。用 Bio-Rad 的IQ5熒光定量PCR儀分析目標(biāo)基因表達(dá)量[17]。PEPC、PPDK引物參照Wang等[9],NADP-ME引物為ME9:5′-CGTGGAGT ACGAAGGAAAGACT-3′和ME10:5′-GAGAT CTTTCTGATGC TGGTGA-3′。
1.2.4 轉(zhuǎn)基因擬南芥的光合酶活性測(cè)定
取開(kāi)花期不同時(shí)間水分脅迫處理的參試材料葉片提取總蛋白,蛋白提取參照Ku等[8]的方法。用BCA蛋白定量試劑盒進(jìn)行蛋白定量,樣品稀釋到2 mg·mL-1。PEPC、PPDK和NADP-ME酶活性測(cè)定參照Sayre等的方法[18]稍作修改,將測(cè)定單位改為每毫克蛋白中PEPC、PPDK和NADP-ME的酶活性。
1.2.5 轉(zhuǎn)基因擬南芥的光合速率和水分利用效率測(cè)定
在擬南芥開(kāi)花期,于日間9:00-14:00之間,利用便攜式光合儀(CIRAS-3,UK)測(cè)定轉(zhuǎn)基因株系和野生型擬南芥不同水分脅迫處理時(shí)間下蓮座葉的凈光合速率(Pn)和水分利用效率(WUE),測(cè)定時(shí)系統(tǒng)光強(qiáng)設(shè)置為800 μmol·m-2·s-1,葉室溫度設(shè)置為30 ℃,每個(gè)株系測(cè)定4個(gè)單株,按植株序號(hào)往返重復(fù)測(cè)定3次,測(cè)定對(duì)象為無(wú)病、受光均勻且長(zhǎng)勢(shì)相當(dāng)?shù)闹仓晟徸~。
1.2.6 數(shù)據(jù)分析
用Excel 2003對(duì)數(shù)據(jù)進(jìn)行平均值和標(biāo)準(zhǔn)差分析,用SPSS 20.0軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行方差分析。
2.1 供試材料的PCR驗(yàn)證結(jié)果
對(duì)供試的各轉(zhuǎn)基因株系進(jìn)行PCR擴(kuò)增。由圖1可知,含ZmPEPC、ZmNADP-ME、ZmPPDK基因的轉(zhuǎn)基因株系均擴(kuò)增出預(yù)期的目標(biāo)片段(3 kb、2.2 kb、3 kb),非轉(zhuǎn)基因植株中未擴(kuò)增出目標(biāo)片段,表明擬南芥轉(zhuǎn)基因株系中存在目標(biāo)基因。
2.2 非水分脅迫條件下不同轉(zhuǎn)基因擬南芥的比較
2.2.1 目標(biāo)基因表達(dá)量的比較
由圖2可知,野生型均無(wú)擴(kuò)增產(chǎn)物。ZmPEPC、ZmNADP-ME、ZmPPDK在轉(zhuǎn)基因擬南芥葉片中均可正常轉(zhuǎn)錄,但不同株系間目標(biāo)基因的相對(duì)表達(dá)量存在顯著差異。例如:PC65、PC73、PCK7株系中PEPC基因的表達(dá)量分別為PCK110株系的5.35、14.22和7.07倍;ME4、ME9、PKM2、PKM4、PKM5株系中NADP-ME基因的表達(dá)量分別為ME5株系的25.88、3.53、16.36、5.67、2.60倍;PK16、PK26、PK36、PCK5、PCK110、PKM2、PKM4、PKM5株系中PPDK基因的表達(dá)量分別為PCK7株系的27.87、20.90、13.55、7.76、4.21、17.64、8.57、4.59倍。
A:ZmPEPC;M:1 kb DNA ladder;1:p3301-PEPC;2.Negative control;3-5:PC65,PC73,PC90; 6-8:PCK5,PCK7,PCK110.
B:ZmNADP-ME;M:1 kb DNA ladder;1:p3301-NADP-ME;2.Negative control;3-5:ME4,ME5,ME9; 6-8:PKM2,PKM4,PKM5.
C:ZmPPDK;M:1 kb DNA ladder;1:p3301-PPDK;2:Negative control;3-5:PK16,PK26,PK36; 6-8:PCK5,PCK7,PCK110; 9-11:PKM2,PKM4,PKM5.
圖1 轉(zhuǎn)基因植株的PCR檢測(cè)結(jié)果
Fig.1 PCR assay of transgenic plants
*:P<0.05;**:P<0.01.
2.2.2 C4光合酶活性的比較
開(kāi)花期轉(zhuǎn)基因擬南芥PC、ME、PK類型株系葉片中相應(yīng)的PEPC、NADP-ME、PPDK酶的活性較野生型分別提高36%、67%和40%;PCK類型株系葉片中相應(yīng)的PEPC和PPDK酶的活性較野生型分別提高52%和20%;PKM類型株系葉片中相應(yīng)的PPDK和NADP-ME酶的活性較野生型分別提高19%和97%,增幅均達(dá)到顯著水平(表1)。表明ZmPEPC、ZmNADP-ME、ZmPPDK基因的導(dǎo)入可顯著提高擬南芥植株相應(yīng)的PEPC、NADP-ME和PPDK酶的活性。
2.2.3 凈光合速率的比較
開(kāi)花期轉(zhuǎn)基因擬南芥PC、PK、PCK和PKM類型株系葉片的Pn較野生型分別提高19%、21%、24%和17%,增幅達(dá)到顯著水平(表1)。表明ZmPEPC、ZmPPDK基因的導(dǎo)入能顯著提高擬南芥的凈光合速率。其中PCK類型株系的Pn高于PC類型株系,而PC類型株系的Pn高于本試驗(yàn)其他基因的轉(zhuǎn)基因材料。
2.2.4 水分利用效率的比較
花期轉(zhuǎn)基因擬南芥PC、ME、PK、PCK和PKM類型株系的WUE較野生型分別提高39%、31%、39%、55%和33%,增幅達(dá)到顯著水平(表1)。表明ZmPEPC、ZmPPDK基因的導(dǎo)入能顯著提高擬南芥的水分利用效率,其中PCK類型株系的WUE高于PC類型株系,而PC類型株系的WUE高于其他基因的轉(zhuǎn)基因株系。
表1 非水分脅迫處理?xiàng)l件下轉(zhuǎn)基因擬南芥幾種生理指標(biāo)的測(cè)定結(jié)果Table 1 Physiological traits of transgenic plants under non-water stress conditions
表中數(shù)值為轉(zhuǎn)同一基因的三個(gè)株系的平均值±標(biāo)準(zhǔn)差。*:P<0.05;**:P<0.01。
The date presented here are the means of three replicates(±SD).*:P<0.05;**:P<0.01.
2.3 不同轉(zhuǎn)基因擬南芥對(duì)干旱脅迫的響應(yīng)
2.3.1 干旱脅迫處理第5天時(shí)轉(zhuǎn)基因擬南芥對(duì)干旱脅迫的響應(yīng)
與脅迫前相比,干旱脅迫處理第5天時(shí),轉(zhuǎn)基因株系上述指標(biāo)測(cè)定值均有所上升(圖3、表2和表3),不同基因型轉(zhuǎn)基因擬南芥株系的上述指標(biāo)測(cè)定值的總體趨勢(shì)與脅迫前基本一致,且均高于脅迫后的野生型。其中PCK類型株系的PEPC和PPDK基因的表達(dá)量較脅迫前分別增加1.50、2.81倍,PEPC酶活性、PPDK酶活性、凈光合速率以及水分利用效率較野生型分別提高75%、45%、41%和74%,綜合表現(xiàn)最優(yōu)。PC類型株系的上述測(cè)定指標(biāo)的表現(xiàn)次于PCK類型株系,但優(yōu)于其他轉(zhuǎn)基因類型株系。
2.3.2 干旱脅迫處理第10天時(shí)轉(zhuǎn)基因擬南芥對(duì)干旱脅迫的響應(yīng)
與脅迫前相比,干旱脅迫處理第10天時(shí),轉(zhuǎn)基因株系的上述指標(biāo)測(cè)定值均下降(圖3、表2和表3),不同類型轉(zhuǎn)基因擬南芥株系各指標(biāo)測(cè)定值大小的總體趨勢(shì)與脅迫前基本一致,且均高于脅迫后的野生型,表明轉(zhuǎn)基因材料較野生型更耐干旱脅迫。其中PCK類型株系的PEPC和PPDK基因表達(dá)量下降幅度較小,PEPC酶活性、PPDK酶活性、凈光合速率以及水分利用效率較野生型分別高48%、46%、149%和70%,綜合表現(xiàn)最優(yōu),其次是PC類型株系。脅迫處理10 d時(shí),擬南芥已受到嚴(yán)重傷害,體內(nèi)正常代謝活動(dòng)受到影響,因此植株光合速率下降。
2.3.3 干旱脅迫復(fù)水后第5天轉(zhuǎn)基因擬南芥對(duì)干旱脅迫的響應(yīng)
干旱脅迫處理10 d后再?gòu)?fù)水第5天時(shí),轉(zhuǎn)基因材料上述測(cè)定指標(biāo)逐漸接近脅迫前的表現(xiàn)(圖3、表2和表3),不同類型轉(zhuǎn)基因擬南芥上述指標(biāo)測(cè)定值大小的總體趨勢(shì)與脅迫前基本一致,均高于復(fù)水后的野生型,表明轉(zhuǎn)基因材料遭受脅迫后恢復(fù)較快,其中PCK和PC類型株系綜合表現(xiàn)較優(yōu)。
NC:Normal condition;DAD:days after drough;DAR:days after re-watering.*:P<0.05;**:P<0.01.
圖3 干旱脅迫處理?xiàng)l件下轉(zhuǎn)基因擬南芥的基因表達(dá)量
Fig.3 Relative expression level of transgene qPT-PCR in transgenic plants under drought stress conditions
遲 偉等[19]研究發(fā)現(xiàn),轉(zhuǎn)PEPC基因水稻的凈光合速率提高55%,轉(zhuǎn)PEPC+PPDK基因水稻的凈光合速率高于轉(zhuǎn)PEPC基因水稻,而轉(zhuǎn)PPDK和NADP-ME基因水稻的凈光合速率無(wú)明顯變化。李 霞等[20]研究認(rèn)為在C3水稻中要加強(qiáng)C4循環(huán),PEPC是限速酶。本研究結(jié)果表明,在同一水分處理?xiàng)l件下,所有轉(zhuǎn)玉米C4光合酶基因擬南芥株系的凈光合速率均高于野生型,并以PC和PCK類型株系最好,表明將玉米C4光合酶基因?qū)隒3植物擬南芥中可以提高其光合性能和耐旱性,尤其是ZmPEPC基因的作用十分顯著。
表2 干旱脅迫處理?xiàng)l件下轉(zhuǎn)基因擬南芥的光合酶活性Table 2 Enzyme activity of transgenic plants under drought stress conditions
表中數(shù)值為轉(zhuǎn)同一基因型三個(gè)株系的平均值±標(biāo)準(zhǔn)差。*:P<0.05;**:P<0.01。表3同。
The date presented here are the means of three replicates(±SD).*:P<0.05;**:P<0.01.DAD:days after drought;DAR:days after re-watering.The same in table 3.
表3 干旱脅迫處理下轉(zhuǎn)基因擬南芥的凈光合速率和水分利用效率Table 3 Pn and WUE of transgenic plants under drought stress conditions
PC和PCK類型株系光合速率提高可能有以下主要原因:(1)ZmPEPC基因過(guò)表達(dá)可增加葉片中蘋(píng)果酸的濃度,促進(jìn)葉片氣孔開(kāi)放[21],而植物光合速率與氣孔導(dǎo)度呈正相關(guān)[15,22],因此轉(zhuǎn)基因擬南芥能保持較高的光合效率。(2)在本研究中,PC和PCK類型株系的PEPC酶活性顯著提高,而植株的光合速率與PEPC酶活性呈正相關(guān)[23]。此外轉(zhuǎn)基因擬南芥的其他C4光合酶也可被誘導(dǎo)表達(dá)[24],這是生化反應(yīng)鏈中前饋激活和后饋激活作用的表現(xiàn),促進(jìn)了擬南芥的C4循環(huán)[25],從而光合速率增加。(3)魏愛(ài)麗等[26]認(rèn)為,在干旱條件下C4途徑酶活性可被誘導(dǎo)表達(dá)是C3植物對(duì)干旱環(huán)境的一種生態(tài)適應(yīng)機(jī)制。在本試驗(yàn)中,PC和PCK類型株系在嚴(yán)重干旱脅迫下的光合優(yōu)勢(shì)可能與PEPC基因參與擬南芥對(duì)干旱脅迫反應(yīng)的調(diào)節(jié)有關(guān)[27]。目前多數(shù)研究結(jié)果表明,C4-PEPC基因?qū)3植物光合作用的改善較C4-PPDK和C4-NADP-ME明顯[16,24]。PEPC酶在整個(gè)C4循環(huán)中起著至關(guān)重要的作用。
本研究還發(fā)現(xiàn)PCK類型株系的凈光合速率高于PC類型株系的,這可能是由于ZmPEPC和ZmPPDK基因過(guò)表達(dá)后植株體內(nèi)PEPC和PPDK的酶活性均顯著增加,對(duì)擬南芥體內(nèi)的C4循環(huán)促進(jìn)效果更明顯,因此光合速率提高幅度較大。此外,PK類型株系的光合速率高于PKM類型株系的,可能是由于ZmNADP-ME基因過(guò)表達(dá)后NADP-ME酶活性升高導(dǎo)致葉片中蘋(píng)果酸含量下降,保衛(wèi)細(xì)胞滲透壓下降,最終導(dǎo)致氣孔關(guān)閉[28-29],進(jìn)而影響PKM類型株系的光合速率。
目前大量研究表明,干旱脅迫較輕時(shí),植物光合速率降低是由于氣孔關(guān)閉所致;而在重度干旱脅迫時(shí),則是非氣孔限制因素在起作用[30],如干旱脅迫影響到葉肉細(xì)胞內(nèi)的有關(guān)代謝[31,32]。在本研究中,干旱脅迫處理5 d時(shí),由于ZmPEPC基因的導(dǎo)入促進(jìn)了植株氣孔開(kāi)放,而且短期干旱脅迫處理后,植物會(huì)啟動(dòng)脅迫應(yīng)激機(jī)制來(lái)抵御外來(lái)影響[33],轉(zhuǎn)基因擬南芥的光合速率上升。繼續(xù)干旱脅迫處理,則擬南芥株系的正常生長(zhǎng)和代謝受到影響,因此轉(zhuǎn)基因擬南芥的光合速率下降。
綜合本研究結(jié)果,不同類型轉(zhuǎn)基因材料的上述測(cè)定指標(biāo)總體表現(xiàn)為PCK>PC>PK、PKM>ME。PC和PCK類型株系在非水分脅迫和水分脅迫條件下均表現(xiàn)較優(yōu),在進(jìn)行小麥等C3作物轉(zhuǎn)基因高光效育種時(shí)可著重考慮這兩種基因型的利用。
[1] HATCH M D.C4photosynthesis:a unique elend of modified biochemistry,anatomy and ultrastructure[J].BiochimicaetBiophysicaActa(BBA) -ReviewsonBioenergetics,1987,895(2):81.
[2] SUZUKI S,MURAI N,BURNELL J N,etal.Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloapanicoides [J].PlantPhysiology,2000,124(1):163.
[3] 張慶琛,許為鋼,胡琳,等.玉米C4型全長(zhǎng)PEPC基因?qū)肫胀ㄐ←湹难芯縖J].麥類作物學(xué)報(bào),2010,30(2):194.
ZHANG Q C,XU W G,HU L,etal.Development of transgenic wheat plants with maize C4-specificPEPCgene by particle bombardment[J].JournalofTriticeaeCrops,2010,30(2):194.
[4] OLGA I.KERSHANSKAYA·J A T D S J.Photosynthetic basis for wheat crop improvement:genetic modification of photosynthesis [J].TheAsianandAustralasianJournalofPlantScienceandBiotechnology,2010,4:27.
[5] HU L,LI Y,XU W G,etal.Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4phosphoenolpyruvate carboxylase gene [J].PlantBreeding,2012,131(3):385.
[6] 杜西河,許為鋼,胡 琳,等.轉(zhuǎn)ZmPEPC與ZmPPDK基因擬南芥對(duì)干旱脅迫的反應(yīng)[J].分子植物育種,2013,11(4):477.
DU X H,XU W G,HU L,etal.Response of maize C4-type PEPC and PPDK transgenicArabidopsisplants to drought stress [J].MolecularPlantBreeding,2013,11(4):477.
[7] ISHIMARU K,ICHIKAWA H,MATSUOKA M,etal.Analysis of a C4maize pyruvate,orthophosphate dikinase expressed in C3transgenicArabidopsisplants [J].PlantScience,1997,129(1):57.
[8] KU M S,AGARIE S,NOMURA M,etal.High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plant [J].NatureBiotechnology,1999,17(1):76.
[9] WANG Y M,XU W G,HU L,etal.Expression of maize gene encoding C4-pyruvate orthophosphate dikinase(PPDK) and C4-phosphoenolpyruvate carboxylase(PEPC) in transgenicArabidopsis[J].PlantMolecularBiologyReporter,2012,30(6):1367.
[10] FUKAYAMA H,MIYAO M.Significant accumulation of C4-specific pyruvate,orthophosphate dikinase in a C3plant,rice [J].PlantPhysiology,1977,127(3):1136.
[11] NA Q,XU W,LIN H,etal.Drought tolerance and proteomics studies of transgenic wheat containing the maize C4phosphoenolpyruvate carboxylase (PEPC) gene [J].Protoplasma,2015:1.
[12] 方立鋒,丁在松,趙明.轉(zhuǎn)ppc基因水稻苗期抗旱特性研究[J].作物學(xué)報(bào),2008,34(7):1220.
FANG L F,DING Z S,ZHAO M.Characteristics of drought tolerance inppcoverexpressed rice seedings [J].ActcAgronomicaSinica,2008,34(7):1220.
[13] GU J F,QIU M,YANG J C.Enhanced tolerance to drought in transgenic rice plants overexpressing C4photosynthesis enzymes [J].ActcAgronomicaSinica,2013,1(2):105.
[14] WANG J,LI R.Integration of C4-specificppdkgene of chinochloa to C3upland rice and its photosynthesis characteristics analysis [J].AfricanJournalofBiotechnology,2008,7(6):783.
[15] KU M S B,RANADE U,HSU T P,etal.Photosynthetic performance of transgenic rice plants overexpressing maize C4photosynthesis enzymes [J].StudiesinPlantScience,2000,7(00):193.
[16] 黃雪清,焦德茂,遲偉,等.轉(zhuǎn)C4光合酶基因水稻的CO2交換和熒光特性[J].植物學(xué)報(bào),2002,44(4):405.
HUANG X Q,JIAO D M,CHI W,etal.Characteristics of CO2exchange and chlorophyll fluorescence of transgenic rice with C4genes[J].ActaBotanicaSinica,2002,44(4):405.
[17] 王永霞,杜新華,許為鋼,等.導(dǎo)入外源玉米C4型NADP-ME基因?qū)π←湽夂闲艿挠绊慬J].作物學(xué)報(bào),2016,42(4):600.
WANG Y X,DU X H,XU W G,etal.Photosynthetic charateristics of transgenic wheat expressing maize C4-typeNADP-MEgene [J].ActcAgronomicaSinica,2016,42(4):600.
[18] SAYRE R T,KENNEDY R A.Photosynthetic enzyme activities and Localization in Mollugo verticillata populations differing in the levels of C3and C4cycle operation [J].PlantPhysiology,1979,64(2):293.
[19] 遲 偉,焦德茂,黃雪清,等.轉(zhuǎn)PEPC基因水稻的光合生理特性[J].植物學(xué)報(bào),2001,43(6):657.
CHI W,JIAO D M,HUANG X Q,etal.Photosynthetic characteristics of transgenic rice plants overexpressing maize phosphoenopyruvatecarboxylase[J].ChineseBulletinofBotany,2001,43(6):657.
[20] 李 霞,焦德茂.轉(zhuǎn)C4光合基因水稻及其在育種中的應(yīng)用[J].分子植物育種,2005,3(4):550.
LI X,JIAO D M.Transgenic rice overexpressing C4photosynthetic genes and their application in breeding [J].MolecularPlantBreeding,2005,3(4):550.
[21] DING Z S,HUANG S H,ZHOU B Y,etal.Overexpression of phosphoenolpyruvate carboxylase cDNA from C4millet(Seteriaitalica) increase rice photosynthesis and yield under upland condition but not in wetland fields [J].PlantBiotechnologyReports,2013,7(7):155.
[22] 焦德茂,匡廷云,李 霞,等.轉(zhuǎn)PEPC基因水稻具有初級(jí)CO2濃縮機(jī)制的生理特點(diǎn)[J].中國(guó)科學(xué),2003,33(1):33.
JIAO D M,KUANG T Y,LI X,etal.Physiological characteristics of the primitive CO2concentrating mechanism inPEPCtransgenic rice[J].ScienceinChina,2003,46(4):438.
[23] 李 霞,焦德茂,戴傳超,等.轉(zhuǎn)育PEPC基因的雜交水稻的光合生理特性[J].作物學(xué)報(bào),2001,27(2):137.
LI X,JIAO D M,DAI C C,etal.Photosynthetic characteristics for rice hybrids with transgenicPEPCparent HPTER-01 [J].ActcAgronomicaSinica,2001,27(2):137.
[24] 焦德茂,李 霞,黃雪清,等.轉(zhuǎn)PEPC基因水稻的光合CO2同化和葉綠素?zé)晒馓匦訹J].科學(xué)通報(bào),2001,46(5):414.
JIAO D M,LI X,HUANG X Q,etal.The characteristics of CO2assimilation of photosynthesis and chlorophyll fluorescence in transgenicPEPCrice [J].ChineseScienceBulletin,2001,46(13):1080.
[25] 季本華,朱素琴,焦德茂.轉(zhuǎn)玉米C4光合酶基因水稻株系中的光合C4微循環(huán)[J].作物學(xué)報(bào),2004(6):536.
JI B H,ZHU S Q,JIAO D M.Photosynthetic C4-microcycle in transgenic rice plant lines expressing the maize C4-photosynthetic enzymes[J].ActcAgronomicaSinica,2004(6):536.
[26] 魏愛(ài)麗,王志敏,翟志席,等.土壤干旱對(duì)小麥旗葉和穗器官C4光合酶活性的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2003,36(5):508.
WEI A L,WANG Z M,ZHAI Z X.etal.Effect of soil drought on C4photosynthesis enzyme activities of flag leaf and ear in wheat[J].ScientiaAgriculturaSinica,2003,36(5):508.
[27] 周寶元,丁在松,趙 明.PEPC過(guò)表達(dá)可以減輕干旱脅迫對(duì)水稻光合的抑制作用[J].作物學(xué)報(bào),2011,37(1):112.
ZHOU B Y,DING Z S,ZHAO M.Alleviation of drought stress inhibition on photosynthesis by overexpression ofPEPCgene in rice[J].ActcAgronomicaSinica,2011,37(1):112.
[28] LAPORTE M M,SHEN B,TARCZYNSKI M C.Engineering for drought avoidance:expression of maize NADP-malic enzyme in tobacco results in altered stomatal function[J].JournalofExperimentalBotany,2002,53(369):699.
[29] OUTLAW W H,MANCHESTER J,BROWN P H.High levels of malic enzyme activities inViciafabaL. epidermal tissue [J].PlantPhysiology,1981,68(5):1047.
[30] 張紅萍,??×x,軒春香,等.干旱脅迫及復(fù)水對(duì)豌豆葉片脯氨酸和丙二醛含量的影響[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,43(5):50.
ZHANG H P,NIU J Y,XUAN C X,etal.Effect of drought stress and re-watering on content of proline and malondiadehyde in pea leaves [J].JournalofGansuAgriculturalUniversity,2008,43(5):50.
[31] LAWLOR D W.Limitation to photosynthesis in water-stressed leaves:stomata vs metabolism and the role of ATP [J].AnnalsofBotany,2002,89(7):871.
[32] CORNIC G,FRESNEAU C.Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought [J].AnnalsofBotany,2002,89(6):887.
[33] 季艷林,賴惠玲,鄭茹萍,等.植物澇漬脅迫應(yīng)激機(jī)制研究進(jìn)展[J].生物技術(shù)進(jìn)展,2016,6(1):1.
JI Y L,LAI H L,ZHENG R P,etal.Progress on plant resistance mechanism to waterlogging stress [J].CurrentBiotechnology,2016,6(1):1.
Effect of Maize C4-specific Photosynthesis Genes on Photosynthesis and Drought Resistance ofArabidopsisthaliana
LEI Mingyue1,2,XU Weigang2,LI Xiaobo2,Zhang Qingchen1,2,WANG Huiwei2,ZHANG Lei2,F(xiàn)ANG Yuhui1,2,LI Yan2,LI Chunxin2
(1.College of Agronomy, Hennan Agricultural University,Zhengzhou,Henan 450002,China; 2.Wheat Research Insitute,Henan Academy of Agricultural Sciences/National Laboratory of Wheat Engineering/Key Laboratory of Wheat Biology and Genetic Breeding in central Huang Huai Hai Region,Ministry of Agriculture,Zhengzhou,Henan 450002,China)
The three key C4-specific photosynthesis genes of maize,ZmPEPC,ZmPPDKandZmNADP-ME,hold great promise for increasing photosynthetic rate of C3type plants. To investigate the effects of overexpression of those C4-specific photosynthesis genes on photosynthetic rate and drought tolerance of C3plants,we obtainedArabidopsisthalianaplants overexpressingZmPEPC(phosphoenopyruvate carboxylase),ZmPPDK(pyruratedikinase),ZmNADP-ME(NADP-malic enzyme),ZmPEPC+ZmPPDK,andZmPPDK+ZmNADP-ME,respectively,using agrobacterium mediated transformation. Wild type and transgenicArabidopsisplants were firstly grown under well-water conditions and then under drought stress at flowering stage by stopping watering. Samples were collected at 1 d before water stress,5 d and 10 d after water stress,and 5 d after rewatering to analyze the relative expressions of transgenes,the enzymic activities of PEPC,NADP-ME and PPDK,net Photosynthetic rate(Pn) and water use efficiency(WUE). The results showed that the activities of PEPC and PPDK,Pnand WUE of theZmPEPC+ZmPPDKtransgenic plants were 52%,20%,24% and 55% higher than those of wild-type under normal water condition,respectively. TheZmPEPC+ZmPPDKtransgenic plants had the largest increase in these parameters,except PPDK activity,compared to the plants with other transgenes. Based on the above measured parameters,the performances of the different transgenes can be ranked asZmPEPC+ZmPPDK>ZmPEPC>ZmPPDK,ZmPPDK+ZmNADP-ME>ZmNADP-ME. All the measured parameters in the transgenicArabidopsisleaves increased compared with their non-stressed controls at 5 d of drought stress,and decreased at 10 d of drought stress due to severe damage by drought,but were recovered in various degrees at 5 d after watering restored. Overall,ZmPEPC+ZmPPDKtransgenic plants had the highest increase in these measured parameters under different drought stress conditions,andZmPEPCtransgenic plants were as the second. All transgenicArabidopsisplants with different transgenes showed better drought tolerance than the wild type control.
Arabidopsisthaliana; Drought stress; Transgene; C4-specific photosynthesis gene; Maize
時(shí)間:2017-01-03
2016-05-29
2016-07-12
國(guó)家自然科學(xué)基金項(xiàng)目(31371707); 國(guó)家轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2016ZX08002003);河南省基礎(chǔ)與前沿技術(shù)研究計(jì)劃項(xiàng)目(132300410005);河南省重大科技專項(xiàng)(151100111400);河南省基礎(chǔ)研究項(xiàng)目(132300410005,132300410283)
E-mail:leimingyue18@163.com
許為鋼(E-mail:xuwg1958@163.com)
S58;S311
A
1009-1041(2017)01-0108-08
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20170103.1629.030.html