曾誠,夏中元
(武漢大學人民醫(yī)院麻醉科,湖北 武漢 430060)
糖尿病心肌缺血調(diào)節(jié)作用受損機制及其臨床治療
曾誠,夏中元
(武漢大學人民醫(yī)院麻醉科,湖北 武漢 430060)
缺血再灌注損傷(IRI)以缺血缺氧、隨后血流恢復(fù)為特征,引起組織器官的不可逆轉(zhuǎn)的損傷。缺血再灌注損傷的發(fā)病機制復(fù)雜,且多方面因素參與,互相關(guān)聯(lián)。現(xiàn)已有大量研究重點關(guān)注通過缺血調(diào)節(jié)方法,提高器官對缺血再灌注損傷的耐受性。糖尿病通過擾亂細胞內(nèi)信號轉(zhuǎn)導(dǎo)通路,改變心肌細胞對缺血調(diào)節(jié)方式的應(yīng)答,增加了心肌細胞對缺血再灌注損傷的易感性。本文旨在歸納糖尿病狀態(tài)下心肌缺血調(diào)節(jié)作用受損的可能機制及其臨床保護措施。
糖尿?。蝗毖俟嘧p傷;心臟缺血調(diào)節(jié);臨床治療
心臟是人體內(nèi)需氧量最多的組織器官之一,依靠氧化磷酸化為心肌持續(xù)的收縮舒張?zhí)峁┐罅緼TP,而血流動力學調(diào)節(jié)紊亂引起的缺血可導(dǎo)致心臟的供氧不足。在缺血再灌注損傷(ischemia reperfusion injury,IRI)過程中,主要的再灌注損傷媒介物——細胞內(nèi)鈣離子和活性氧(reactive oxygen species,ROS)的堆積始于組織缺血階段,在組織再灌注期間放大化[1]。在活性氧ROS的產(chǎn)生和作為活性氧ROS及鈣超載的下游影響靶點,線粒體功能紊亂發(fā)揮著重要作用[2]。糖尿病及其心血管疾病并發(fā)癥的發(fā)病率逐年增加,研究表明,糖尿病通過擾亂細胞內(nèi)信號轉(zhuǎn)導(dǎo)通路,改變心肌細胞對缺血調(diào)節(jié)方式的應(yīng)答,增加了心肌細胞對缺血再灌注損傷的易感性[3-4]。另有研究表明,糖尿病狀態(tài)下的心肌細胞對缺血調(diào)節(jié)的刺激有耐受作用[5]。糖尿病心臟缺血調(diào)節(jié)功能紊亂與其保護性信號轉(zhuǎn)導(dǎo)通路的改變息息相關(guān),糖尿病會導(dǎo)致心臟保護性信號通路的起始信號、媒介物、心肌保護效應(yīng)器的成分改變,信號轉(zhuǎn)導(dǎo)通路受損,從而心臟的缺血調(diào)節(jié)保護機制未能發(fā)揮應(yīng)有作用[4,6]。
1.1 腺苷信號轉(zhuǎn)變 腺苷于細胞外液中生成,在CD39催化下ATP或ADP水解成AMP,隨后在CD73催化下AMP轉(zhuǎn)化成腺苷[7]。細胞外液中的腺苷向細胞內(nèi)轉(zhuǎn)運的過程受核苷轉(zhuǎn)運蛋白或腺苷激酶調(diào)控。腺苷在腺苷脫氧酶的作用下分解,轉(zhuǎn)化為核苷肌苷。腺苷在介導(dǎo)心肌缺血調(diào)節(jié)保護機制中起到關(guān)鍵性作用。在心肌缺血起始階段,腺苷大量釋放,啟動心肌缺血調(diào)節(jié)保護機制;在心肌缺血維持階段,腺苷再次大量釋放,介導(dǎo)心肌缺血調(diào)節(jié)保護機制的持續(xù)作用。糖尿病狀態(tài)下的心肌細胞CD73表達下調(diào),腺苷的合成釋放減少[8]。在心肌缺血維持階段,組織內(nèi)環(huán)境雖仍為弱酸性,但相對而言pH值增高,使腺苷激酶活性增強,腺苷向細胞內(nèi)轉(zhuǎn)運增多,進一步導(dǎo)致細胞外液中的腺苷含量減少[8]。腺苷的合成釋放減少、胞內(nèi)轉(zhuǎn)運攝取增多,使腺苷可利用率下降,從而使糖尿病心肌缺血保護機制功能被抑制。此外,CD73被認為是鞏固心肌保護作用的一種正反饋調(diào)節(jié)系統(tǒng),但糖尿病心肌細胞的CD73表達減少,這種保護性的正反饋調(diào)節(jié)失去作用[9]。因此,CD73表達減少、細胞外腺苷可利用率減低導(dǎo)致糖尿病心肌缺血保護機制不能啟動,且在心肌缺血維持階段心肌保護作用不能持續(xù)。
1.2 再灌注損傷補救酶(reperfusion injury salvage kinase,RISK)通路轉(zhuǎn)變 在1型或2型糖尿病模型中,調(diào)節(jié)限制心肌梗死面積的作用完全或部分失效已被歸因于RISK通路缺陷,且其發(fā)生與多種機制有關(guān)。RISK信號通路是由Williams等[10]首次將促生存激酶磷脂酰肌醇-3(phosphatidylinositol-3-OH kinase,PI3K)和細胞外信號調(diào)節(jié)蛋白激酶1/2(ex-tra-cellular signal-regulated protein kinase1/2,ERK1/2)兩者合并,再灌注早期階段通過磷酸化PI3K和ERK1/2減輕缺血再灌損傷。人第10號染色體缺失的磷酸酶及張力蛋白同源的基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)被認為是PI3K/Akt的重要負性調(diào)節(jié)因子。糖尿病的持續(xù)高血糖狀態(tài)使PTEN的表達及活性增強[11]。而且,血糖濃度、氧化應(yīng)激反應(yīng)和PTEN水平之間的正相關(guān)性已在人類糖尿病心肌細胞中得到證實[12]。此外,血液循環(huán)中高濃度的游離脂肪酸會因PTEN表達上調(diào),損傷胰島素激活PI3K/Akt活性[13],阻止PI3K/Akt磷酸化,失去對心肌缺血再灌損傷的保護作用,加重心肌梗死面積。MAPK磷酸酶、蛋白磷酸酶2C等磷酸酶也與阻止PI3K/Akt活性有關(guān)[14]。胰島素缺乏或胰島素抵抗機制也參與了RISK通路的轉(zhuǎn)變。正常情況下,胰島素通過磷酸化Thr308和Ser473激活A(yù)kt活性。被激活的Akt使糖原合酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)磷酸化,阻止非特異孔道-線粒體滲透性轉(zhuǎn)換孔(mitochondrial permeability transition pore,mPTP)解開[3]。而在胰島素缺乏或胰島素抵抗條件下,mPTP解開,使線粒體內(nèi)膜失去屏障作用,大量溶質(zhì)分子進入線粒體,導(dǎo)致線粒體氧化磷酸化脫偶聯(lián)、基質(zhì)腫脹、膜電位下降和線粒體崩解,當受累線粒體數(shù)目及程度達到一定閾值,便會發(fā)生細胞凋亡。因此,胰島素缺乏或胰島素抵抗機制也會導(dǎo)致RISK信號轉(zhuǎn)導(dǎo)通路失去心肌保護作用[15]。糖尿病引起的ERK1/2活性的損傷也已被證實[16-17]。MIKI等研究表明糖尿病心臟內(nèi)質(zhì)網(wǎng)氧化應(yīng)激增加,阻礙了ERK1/2介導(dǎo)的GSK-3β磷酸化,導(dǎo)致mPTP解開和鈣超載的易感性增加[17]。
1.3 其他信號轉(zhuǎn)變 糖尿病心肌細胞的內(nèi)皮性一氧化氮合酶(eNOS)活性顯著降低,這也是心肌缺血調(diào)節(jié)功能損傷的機制之一[16]。eNOS活性的降低可能與小窩蛋白有關(guān),小窩蛋白在糖尿病心臟中表達增多,干擾eNOS的活性[6],使eNOS不能發(fā)揮抗氧化應(yīng)激反應(yīng)作用。降鈣素基因相關(guān)肽(CGRP)的釋放也參與了心臟保護作用,CGRP水平在糖尿病心肌細胞中降低,低水平的CGRP可能在受損的心肌缺血調(diào)節(jié)應(yīng)答中起到某種作用[18]。此外,鉀離子ATP通道活性的轉(zhuǎn)變引起活性氧ROS產(chǎn)生增多、糖尿病心肌細胞中胞內(nèi)鈣離子濃縮聚集使mPTP解開趨勢增強[19],心肌易損性增加。
目前,糖尿病缺血調(diào)節(jié)功能保護的研究重點主要集中在提高器官對缺血再灌注損傷的耐受性方面。心肌缺血再灌注損傷的預(yù)處理、后處理可以減少心肌梗死面積,對遠端缺血再灌注的調(diào)控也可起到心肌保護作用[12]。
2.1 糖尿病患者的缺血預(yù)處理、后處理及遠端調(diào)節(jié) 有實驗結(jié)果表明缺血預(yù)處理在糖尿病患者中的心臟保護作用是受損的或者未起到保護作用[20]。在前瞻性臨床試驗分組中,以心肌酶作為心梗面積的衡量指標,預(yù)處理對糖尿病心肌缺血患者沒有有效的保護作用[21]。其中一個亞組的分析顯示在糖尿病條件下,后處理的心肌保護作用會受到抵抗[21-22]。目前還沒有相關(guān)的臨床試驗專門研究缺血后處理對糖尿病患者缺血再灌損傷的影響。關(guān)于遠端缺血調(diào)節(jié),Jensen等[23]探究了神經(jīng)體液和循環(huán)體液成分的作用,收集了糖尿病和非糖尿病患者的血漿,將其應(yīng)用于經(jīng)過心臟缺血再灌處理的家兔,證明了遠端缺血調(diào)節(jié)對心臟的保護作用。而伴有周圍神經(jīng)病變的糖尿病患者的血漿對家兔的心臟缺血再灌保護作用是無效的[24],說明受遠端缺血調(diào)節(jié)的組織器官必須有完整的神經(jīng)通路,才會使保護性的體液因子發(fā)揮作用。類似的結(jié)果也有報道,他們采用體外人體心房組織,使用控制組患者的體液而不是糖尿病患者的體液,發(fā)現(xiàn)控制組體液對心房組織具有保護作用[25]。這也證實體液因子可能起到重要作用。
2.2 修復(fù)糖尿病患者心肌細胞對缺血調(diào)節(jié)的易感性 由于導(dǎo)致糖尿病心肌細胞的保護作用受損機制包括多種信號轉(zhuǎn)導(dǎo)通路,因此有必要探討是否有一種治療方法可以針對一條通路獲得有效的臨床保護效果,或者阻斷其他受損的信號通路,從而阻斷受損通路的有害產(chǎn)物及其引起的不良影響。為了消除糖尿病心臟對缺血調(diào)節(jié)保護作用的抵抗,已有研究關(guān)注各種信號通路的交匯點以及心臟保護作用的最終效應(yīng)器(GSK3-β或者 mPTP)[26]。Jamwal等[27]報道稱將GSK3-β的抑制劑氯化鋅運用在缺血預(yù)處理可以修復(fù)糖尿病心臟的缺血前調(diào)節(jié)保護功能的潛能。而Najafi等[7]研究證明mPTP開放抑制劑通過后處理可以修復(fù)糖尿病心臟的缺血調(diào)節(jié)保護功能。此外,Hausenloy等[28]報道稱磺酰脲類和格列美脲的降糖治療可以修復(fù)心肌細胞對缺血預(yù)處理的敏感性,而且一周的缺血預(yù)處理代替三周的預(yù)處理,也足以限制梗死面積。糖尿病心肌處于高基礎(chǔ)水平的氧化應(yīng)激狀態(tài),且活性氧ROS與內(nèi)源性抗氧化應(yīng)激防御系統(tǒng)失衡,易發(fā)生嚴重的心肌缺血再灌注損傷,今后的心臟保護藥物治療應(yīng)集中在降低心肌氧化應(yīng)激反應(yīng)、提高抗氧化系統(tǒng)活性方面。
缺血再灌注損傷復(fù)雜的病理生理使其依然是重要的尚未攻克的臨床難題。雖然缺血調(diào)節(jié)功能是保護缺血再灌注損傷的重要心臟保護機制,但是越來越多的事實證明在糖尿病狀態(tài)下缺血調(diào)節(jié)功能所產(chǎn)生的效應(yīng)是被減弱或消除的。PI3K/Akt/GSK3-β信號通路受損,ERK1/2磷酸化過程受阻,一氧化氮和CGRP生成減少但釋放增多,鉀離子ATP通道功能紊亂以及線粒體功能紊亂所致的氧化應(yīng)激反應(yīng)增強,這些病理改變都與糖尿病心肌易損性密切相關(guān),甚至可能是糖尿病心肌缺乏缺血調(diào)節(jié)功能的原因。因此,對心臟保護調(diào)節(jié)功能機制進一步的認識有利于幫助我們找到更好的治療方案,減少不可避免的缺血再灌注損傷。
目前臨床上關(guān)于改善心肌缺血再灌注損傷的治療方案尚不完善,臨床實驗前的缺血預(yù)處理、缺血后處理及缺血遠端調(diào)節(jié)減少梗死面積的文獻為臨床階段治療心肌缺血再灌注損傷提供了堅實的理論基礎(chǔ),希望能早日運用于糖尿病患者,降低糖尿病患者心血管事件發(fā)生率,并改善其預(yù)后。
[1]Heusch G,Rassaf T.Time to give up on cardioprotection?A critical appraisal of clinical studies on ischemic Pre-,Post-,and Remote conditioning[J].Circ Res,2016,119(5):676-695.
[2]Muntean DM,Sturza A,D?nil? MD,et al.The role of mitochondrial reactive oxygen species in cardiovascular injury and protective strategies[J].Oxid Med Cell Longev,2016,2016:8254942.
[3]Hausenloy DJ,Barrabes JA,B?tker HE,et al.Ischaemic conditioning and targeting reperfusion injury:a 30-year voyage of discovery[J].Basic Res Cardiol,2016,111(6):70.
[4]Zhao MX,Zhou B,Ling L,et al.Salusin-βcontributes to oxidative stress and inflammation in diabetic cardiomyopathy[J].Cell Death Dis,2017,8(3):e2690.
[5] Przyklenk K.Reduction of myocardial infarct size with ischemic"conditioning":physiologic and technical considerations[J].Anesth Analg,2013,117(4):891-901.
[6]Zhao D,Yang J,Yang L.Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes[J].Oxid Med Cell Longev,2017,2017:6437467.
[7]Najafi M,Farajnia S,Mohammadi M,et al.Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts[J].J Diabetes Metab Disord,2014,13(1):106.
[8]Burnstock G,Pelleg A.Cardiac purinergic signalling in health and disease[J].Purinergic Signal,2015,11(1):1-46.
[9]Guzman-Flores JM,Cortez-Espinosa N,Cortés-Garcia JD,et al.Expression of CD73 and A2A receptors in cells from subjects with obesity and type 2 diabetes mellitus[J].Immunobiology,2015,220(8):976-984.
[10]Williams DL,Ozment-Skelton T,Li C.Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis,inflammation,and ischemia/reperfusion injury[J].Shock,2006,25(5):432-439.
[11]Xu BC,Long HB,Luo KQ.Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway[J].Sci Rep,2016,6:29589.
[12]Yu L,Li F,Zhao G,et al.Protective effect of berberine against myocardial ischemia reperfusion injury:role of Notch1/Hes1-PTEN/Akt signaling[J].Apoptosis,2015,20(6):796-810.
[13]Xue R,Lei S,Xia ZY,et al.Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats:role of the PI3K/Akt and JAK2/STAT3 pathways[J].Clin Sci(Lond),2016,130(5):377-392.
[14]Wider J,Przyklenk K.Ischemic conditioning:the challenge of protecting the diabetic heart[J].Cardiovasc Diagn Ther,2014,4(5):383-396.
[15]Fullmer TM,Pei S,Zhu Y,et al.Insulin suppresses ischemic preconditioning-mediated cardioprotection through Akt-dependent mechanisms[J].J Mol Cell Cardiol,2013,64:20-29.
[16]Cui YC,Pan CS,Yan L,et al.Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway[J].Sci Rep,2017,7:44579.
[17]Epps J A,Smart NA.Remote ischaemic conditioning in the context of type 2 diabetes and neuropathy:the case for repeat application as a novel therapy for lower extremity ulceration[J].Cardiovasc Diabetol,2016,15(1):130.
[18]Liu CW,Yang F,Cheng SZ,et al.Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury:The role of radical oxygen species,PI3K-Akt-GSK-3βpathway,and mitochondrial permeability transition pore[J].Cardiovasc Ther,2017,35(1):3-9.
[19]Sharma AK,Khanna D.Diabetes mellitus associated cardiovascular signalling alteration:a need for the revisit[J].Cell Signal,2013,25(5):1149-1155.
[20]Andreadou L,Lliodromitis EK,Lazou A,et al.Effect of hypercholesterolaemia on myocardial function,ischaemia-reperfusion injury and cardioprotection by preconditioning postconditiong and remote conditioning[J].Br J Pharmacol,2017,174(12):1555-1569.
[21]Yetgin T,Magro M,Manintveld OC,et al.Impact of multiple balloon inflations during primary percutaneous coronary intervention on infarct size and long-term clinical outcomes in ST-segment elevation myocardial infarction:real-world postconditioning[J].Basic Res Cardiol,2014,109(2):403.
[22]Ferdinandy P,Hausenloy DJ,Heusch G,et al.Interaction of risk factors,comorbidities,and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning,postconditioning,and remote conditioning[J].Pharmacol Rev,2014,66(4):1142-1174.
[23]Jensen RV,St?ttrup NB,Kristiansen SB,et al.Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients[J].Basic Res Cardiol,2012,107(5):285.
[24]Saxena P,Newman MA,Shehatha JS,et al.Remote ischemic conditioning:evolution of the concept,mechanisms,and clinical application[J].J Card Surg,2010,25(1):127-134.
[25]Jensen RV,Zachara NE,Nielsen PH,et al.Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients[J].Cardiovasc Res,2013,97(2):369-378.
[26]Jamwal S,Kumar K,Reddy BV.Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart[J].Perfusion,2016,31(4):334-342.
[27]Jamwal S,Kumar K,Reddy BV.Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart[J].Perfusion,2016,31(4):334-342.
[28]Hausenloy DJ,Wynne AM,Mocanu MM,et al.Glimepiride treatment facilitates ischemic preconditioning in the diabetic heart[J].J Cardiovasc Pharmacol Ther,2013,18(3):263-269.
Impaired mechanism of diabetic myocardial ischemia regulation and its clinical treatment.
ZENG Cheng,XIA Zhong-yuan.Department of Anesthesiology,Renmin Hospital of Wuhan University,Wuhan 430060,Hubei,CHINA
Ischemia-reperfusion injury(IRI)is characterized by ischemia and hypoxia,followed by blood flow recovery,causing irreversible damage of tissues and organs.The pathogenesis of ischemia-reperfusion injury is complex,and many interrelating factors involved.A large number of studies have focused on improving the tolerance of organs to ischemia-reperfusion injury through ischemic regulation.Diabetes mellitus increases the susceptibility to myocardial ischemia and reperfusion injury by disturbing intracellular signal transduction pathways and alters the response of cardiomyocytes to ischemic regulation.The aim of this study is to summarize the possible mechanisms of myocardial ischemic regulation in diabetic patients and its clinical protective measures.
Diabetes mellitus;Ischemia-reperfusion injury;Cardiac ischemia regulation;Clinical treatment
R587.1
A
1003—6350(2017)21—3521—03
10.3969/j.issn.1003-6350.2017.21.026
夏中元。E-mail:xiazhongyuan2005@aliyun.com
2017-03-23)