李立偉,戴啟立,畢曉輝*,郜計(jì)欣,楊佳美,洪盛茂,馮銀廠
1.國家環(huán)境保護(hù)城市空氣顆粒物污染防治重點(diǎn)實(shí)驗(yàn)室,南開大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津 300071
2.杭州市環(huán)境監(jiān)測中心站,浙江杭州 310007
杭州市冬季環(huán)境空氣PM2.5中碳組分污染特征及來源
李立偉1,戴啟立1,畢曉輝1*,郜計(jì)欣1,楊佳美1,洪盛茂2,馮銀廠1
1.國家環(huán)境保護(hù)城市空氣顆粒物污染防治重點(diǎn)實(shí)驗(yàn)室,南開大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津 300071
2.杭州市環(huán)境監(jiān)測中心站,浙江杭州 310007
為研究杭州市PM2.5中碳組分特征,于2013年12月—2014年2月在7個(gè)常規(guī)點(diǎn)位和2個(gè)對(duì)照點(diǎn)同步采集PM2.5樣品,分析其污染特征及來源.結(jié)果表明:杭州市冬季有機(jī)碳(OC)、元素碳(EC)、二次有機(jī)碳(SOC)的平均質(zhì)量濃度分別為(23.7±7.5) (5.0±2.4)和(9.2±4.5)μg m3,OC EC〔ρ(OC) ρ(EC)〕和SOC OC〔ρ(SOC) ρ(OC)〕的平均值分別為5.3±1.9和0.4±0.2.對(duì)照點(diǎn)ρ(OC)、ρ(EC)、ρ(SOC)和OC EC、SOC OC分別為常規(guī)點(diǎn)位的0.8、0.6、1.2、1.2和1.3倍.采樣期間,常規(guī)點(diǎn)位和對(duì)照點(diǎn)ρ(OC)和ρ(EC)的日均值具有相同的時(shí)間變化趨勢.對(duì)照點(diǎn)ρ(OC)和ρ(EC)的相關(guān)性(0.49)低于常規(guī)點(diǎn)位(0.61),對(duì)照點(diǎn)PM2.5中OC和EC的來源差異性更明顯.8個(gè)碳組分的豐度分析表明,常規(guī)點(diǎn)位和對(duì)照點(diǎn)PM2.5中碳組分的來源基本一致,主要來源于道路塵、燃煤、機(jī)動(dòng)車和生物質(zhì)燃燒.絕對(duì)主因子分析法源解析結(jié)果表明,杭州市冬季PM2.5中總碳(TC)的主要來源中,燃煤 汽油車排放 道路塵、柴油車排放和生物質(zhì)燃燒的分擔(dān)率為79.1%、13.1%和3.5%.
PM2.5;有機(jī)碳;元素碳;二次有機(jī)碳;來源分析
碳質(zhì)組分是環(huán)境空氣顆粒物的重要組成部分,一般占PM10質(zhì)量濃度的25%~35%,占PM2.5質(zhì)量濃度的20%~50%[1].含碳組分主要包括有機(jī)碳(organic carbon,OC)、元素碳(elemental carbon,EC)和碳酸鹽碳(carbonate carbon,CC).其中OC的來源較復(fù)雜,一般由工業(yè)生產(chǎn)、燃料燃燒、自然源等一次排放,也可由氣態(tài)前體物經(jīng)大氣光化學(xué)反應(yīng)二次生成[2];EC主要來自化石燃料和生物質(zhì)的不完全燃燒過程,由污染源直接排放,在大氣中很穩(wěn)定[3];CC的含量通常很小(<5%),一般可以忽略.研究顯示,OC是一種有效的光驅(qū)散物質(zhì),部分OC可溶于水,通過影響云滴核化從而間接影響氣候,而EC具有強(qiáng)吸光能力,會(huì)對(duì)氣溶膠的輻射強(qiáng)迫產(chǎn)生重要影響,甚至引起地氣系統(tǒng)增溫[4-5].另外,OC中富含致癌物質(zhì)和基因毒性誘變物,而EC具有較強(qiáng)的吸附能力,容易成為富集中心和化學(xué)反應(yīng)床,會(huì)對(duì)人類的健康產(chǎn)生很大的威脅[6-7].因此,研究環(huán)境空氣顆粒物中OC與EC濃度水平、污染特征以及來源,對(duì)于改善環(huán)境空氣質(zhì)量和保護(hù)人類健康具有重要意義.
近年來,國內(nèi)外學(xué)者開展了大量有關(guān)顆粒物中碳組分的研究,這些研究主要集中在分析OC和EC濃度特征[8-15]、對(duì)能見度的影響[16-17]、二次有機(jī)碳(secondary organic carbon,SOC)濃度估算[18-19]以及水溶有機(jī)碳濃度特征[20-21]等.這些研究多數(shù)是基于單一監(jiān)測點(diǎn)位,針對(duì)多監(jiān)測點(diǎn)位大氣PM2.5中OC、EC、SOC等含碳物質(zhì)的污染特征及其來源的研究相對(duì)較少.當(dāng)前我國城市大氣中碳?xì)馊苣z的污染形勢嚴(yán)峻,該研究觀測并分析了杭州市冬季多空間點(diǎn)位PM2.5中的碳組分濃度,基于較高的空間代表性探討了城市大氣中OC、EC、SOC等含碳物質(zhì)的污染特征,并對(duì)城市常規(guī)點(diǎn)位和對(duì)照點(diǎn)的碳組分來源進(jìn)行了解析和對(duì)比,以期為碳質(zhì)氣溶膠的精細(xì)化防控提供依據(jù).
1.1 采樣地點(diǎn)
在杭州市城區(qū)共設(shè)置9個(gè)采樣點(diǎn)位,包括7個(gè)城市常規(guī)點(diǎn)位,分別是半山、濱江、朝暉、下沙、蕭山、上城、余杭,均位于商住區(qū)和工業(yè)區(qū),和2個(gè)城市對(duì)照點(diǎn),西溪、云棲,分別位于西溪國家濕地公園內(nèi)和西湖區(qū)山區(qū),周圍均沒有明顯大氣污染源.具體監(jiān)測點(diǎn)位分布見圖1.
1.2 樣品采集
在2013年12月—2014年2月采集PM2.5樣品,每月連續(xù)采集7~8 d,PM2.5采樣器為便攜式MiniVol空氣采樣器(frmOmni BGI,美國),流量為5.0 L min,采樣濾膜為石英濾膜(47 mm,Whatman QMA,英國).每張濾膜連續(xù)采樣22 h(即09∶00—翌日07∶00),共采集到有效樣品190個(gè).采樣前,石英濾膜用防靜電鋁膜包裹于馬弗爐中600℃烘烤4 h,冷卻至室溫后取出,放入恒溫〔(25±1)℃〕、恒濕箱(40%±5%)平衡48 h后,用精度為0.01 mg的電子天平(METTLER TOLEDO XA105,瑞士)進(jìn)行稱量.每片濾膜稱量2次取均值,保證誤差小于±0.02 mg.采樣結(jié)束后,用鋁箔紙包裝濾膜,置于冰柜中-4℃保存待進(jìn)行碳組分分析.
1.3 分析方法
1.3.1 ρ(OC)和ρ(EC)分析
ρ(OC)和 ρ(EC)采用熱 光碳分析儀(Model 2001A,DRI,美國)進(jìn)行分析.應(yīng)用 IMPEOVE_A (Interagency Monitoring of Protected Visual Environment A)和TOR(Thermal Optical Reflectance)的方法[22],在純氦環(huán)境中,于140℃(OC1)、280℃(OC2)、480℃(OC3)和580℃(OC4)下熱解有機(jī)碳,然后在含2%氧氣的氦氣環(huán)境中,于 580℃(EC1)、740℃(EC2)和840℃(EC3)下逐步加熱氧化元素碳.不同環(huán)境溫度下產(chǎn)生的CO2在還原爐中被還原成CH4,由火焰離子化檢測器定量檢測.EC測定過程中反射率回到初值時(shí)的部分被認(rèn)為是OC炭化過程中形成的裂解碳(OP).OC定義為(OC1+OC2+ OC3+OC4+OP),EC定義為(EC1+EC2+EC3-OP)[23].
1.3.2 ρ(SOC)的估算
OC可分為一次有機(jī)碳(primary organic carbon,POC)和二次有機(jī)碳(SOC),通常采用OC EC最小比值法將二者區(qū)分.計(jì)算方法如下[18]:
SOC=TOC-EC×(OC EC)min(1)式中:SOC指估算的ρ(SOC);TOC和EC分別是樣品中測得的ρ(OC)和ρ(EC);(OC EC)min為觀測期間環(huán)境OC與EC最小觀測比值,即利用統(tǒng)計(jì)學(xué)方法,對(duì)觀測所得的OC EC〔ρ(OC) ρ(EC)〕的比值做頻率分布,選擇一定置信區(qū)間(一般為5%或10%)的最小比值作為一次源排放的 OC EC比值[24],EC× (OC EC)min是估算的ρ(POC).
2.1 OC、EC污染特征分析
采樣期間,杭州市各監(jiān)測點(diǎn)位PM2.5中ρ(OC)和ρ(EC)范圍分別為9.1~44.8和1.0~12.3 μg m3.ρ(OC)和ρ(EC)的平均值分別為(23.7±7.5)和 (5.0±2.4)μg m3.杭州市冬季各監(jiān)測點(diǎn)位PM2.5中ρ(OC)和ρ(EC)如圖2所示.ρ(OC)最大的為濱江〔(26.0±6.9)μg m3〕,最低的為西溪〔(19.7±5.5) μg m3〕,從大到小依次為濱江>下沙>余杭>上城>半山>朝暉>蕭山>云棲>西溪.ρ(EC)最大的為半山(工業(yè)區(qū)),為(6.2±2.6)μg m3;最低的為云棲(對(duì)照點(diǎn)),為(3.3±1.4)μg m3;從大到小依次為半山>蕭山>下沙>余杭>濱江>朝暉>上城>西溪>云棲.各點(diǎn)位間ρ(OC)和ρ(EC)大小排序并不一致,這可能與各監(jiān)測點(diǎn)位OC和EC的來源不完全相同有關(guān).7個(gè)常規(guī)點(diǎn)位中,下沙、濱江和上城點(diǎn)位與其他監(jiān)測點(diǎn)位相比更靠近城市干道,受移動(dòng)源影響較大,因此ρ(OC)較高.此外,下沙點(diǎn)位由于距離國道較近,還受到柴油車的影響,其ρ(EC)也較高.兩個(gè)對(duì)照點(diǎn)ρ(OC)和ρ(EC)均小于常規(guī)點(diǎn)位,其均值約為常規(guī)點(diǎn)位均值的0.8倍和0.6倍.
杭州市常規(guī)點(diǎn)位和對(duì)照點(diǎn)ρ(OC)和ρ(EC)日均值如圖3所示.采樣期間,常規(guī)點(diǎn)位PM2.5中ρ(OC) 和ρ(EC)均高于對(duì)照點(diǎn),常規(guī)點(diǎn)位和對(duì)照點(diǎn)ρ(OC) 和ρ(EC)的變化趨勢基本一致,這說明常規(guī)點(diǎn)位和對(duì)照點(diǎn)ρ(OC)和ρ(EC)可能具有相同的一次來源.不同采樣日期常規(guī)點(diǎn)位和對(duì)照點(diǎn)ρ(EC)波動(dòng)幅度低于ρ(OC),這說明EC的來源較穩(wěn)定,而OC的來源則較為復(fù)雜.常規(guī)點(diǎn)位3個(gè)月ρ(OC)和ρ(EC)分別為(26.9±6.8)(28.0±7.2)(19.2±5.2)μg m3和(6.4±2.1)(6.7±2.4)(3.5±1.5)μg m3,對(duì)照點(diǎn)3個(gè)月ρ(OC)和ρ(EC)分別為(22.7±5.1)(24.9± 5.7)(14.9±4.2)μg m3和(4.1±1.0)(4.0±1.2)(2.6±0.7)μg m3.除對(duì)照點(diǎn)ρ(EC)外,常規(guī)點(diǎn)位和對(duì)照點(diǎn)ρ(OC)和ρ(EC)均遵循1月>12月>2月的趨勢,12月和1月ρ(OC)和ρ(EC)較接近,2月則明顯較低,這可能與春節(jié)期間,部分工地停工,工廠放假,機(jī)動(dòng)車出行減少,污染物排放總量減少有關(guān)[25-26].此外,2月雖然同屬冬季,但由于2月天氣逐漸轉(zhuǎn)變降水增多,影響顆粒物擴(kuò)散的不利條件減弱,也會(huì)導(dǎo)致2月顆粒物中碳組分的濃度明顯降低.常規(guī)點(diǎn)位ρ(OC)和ρ(EC)在1月19日達(dá)到最大值,而對(duì)照點(diǎn)ρ(OC)在1月17日達(dá)到最大值,ρ(EC)在1月18日達(dá)到最大值,這可能與常規(guī)點(diǎn)位和對(duì)照點(diǎn)地理位置、氣象要素及污染源特征不同有關(guān).
為了解杭州市2013年冬季OC、EC的污染水平,將其與采用相同分析方法的國內(nèi)主要城市冬季PM2.5中碳組分質(zhì)量濃度進(jìn)行對(duì)比,結(jié)果見表1.由表1可見,杭州市2013年冬季PM2.5中ρ(OC)高于上海、廣州、三亞和南京,低于太原、北京和天津;ρ(EC)高于廣州和三亞,低于南京、太原、上海、北京和天津.與杭州市2003年相比,ρ(OC)和ρ(EC)都有一定程度降低,這可能與各采樣點(diǎn)的地理位置、采樣時(shí)間及污染源特征不同有關(guān).與ρ(OC)相比,杭州市從2003年到2013年ρ(EC)下降的幅度更大,這可能與近年來杭州市二次反應(yīng)較強(qiáng)烈產(chǎn)生了較多的SOC有關(guān),SOC的大量生成減緩了因污染源一次排放減少導(dǎo)致的ρ(OC)下降的幅度.較強(qiáng)烈的二次反應(yīng)也導(dǎo)致杭州市OC EC比值較高.杭州市OC EC比值明顯高于上海、廣州、三亞、太原、南京、北京和天津等城市,因此,需加強(qiáng)對(duì)碳組分二次反應(yīng)前體物的控制.
2.2 ρ(OC)和ρ(EC)相關(guān)性分析
ρ(OC)和ρ(EC)的相關(guān)性可以從一定程度上反映其來源是否相同,強(qiáng)的相關(guān)性表示二者可能具有相同的來源[19].因此,很多研究使用ρ(OC)和ρ(EC)的相關(guān)性來分析OC、EC是否同源[30].如圖4所示,杭州市冬季常規(guī)點(diǎn)位PM2.5中ρ(OC)和ρ(EC)的相關(guān)系數(shù)為0.61,對(duì)照點(diǎn)PM2.5中ρ(OC)和ρ(EC)的相關(guān)系數(shù)為0.49,這說明杭州市常規(guī)點(diǎn)位冬季PM2.5中ρ(OC)和ρ(EC)的來源基本一致,而對(duì)照點(diǎn)ρ(OC) 和ρ(EC)的來源則有所不同,對(duì)照點(diǎn)SOC的貢獻(xiàn)可能更為突出.
OC EC比值常用來分析碳質(zhì)氣溶膠的排放及轉(zhuǎn)化特征.根據(jù)文獻(xiàn)報(bào)道,當(dāng)OC EC比值為1.0~4.2表明有柴油和汽油車的尾氣排放[31-32];16.8~40.0表明生物質(zhì)燃燒排放[33];2.5~10.5表明燃煤排放[34]; 32.9~81.6表明烹調(diào)排放[35].杭州市冬季PM2.5中 OC EC平均值為5.3±1.9,表明受到燃煤、生物質(zhì)燃燒、機(jī)動(dòng)車排放的共同影響.OC EC比值也可用來表征大氣中二次污染的程度,比值越高表明二次污染程度越高[36].一般認(rèn)為,OC EC比值>2表明二次有機(jī)碳的存在[37].杭州市冬季PM2.5中OC EC比值遠(yuǎn)大于2,表明杭州市冬季大氣中二次污染較嚴(yán)重.但也有學(xué)者指出,只用OC EC值來評(píng)價(jià)二次污染是不充分的,應(yīng)結(jié)合該地區(qū)的污染源以及采樣時(shí)的天氣狀況等因素[38-39].OC EC比值一般受排放源、OC在空氣中的轉(zhuǎn)化及OC和EC粒子清除等的共同影響[40].
杭州市冬季各監(jiān)測點(diǎn)位PM2.5中OC EC見表2,最高的是云棲,為6.8±2.1,半山最低,為4.2±1.2,從大到小依次為云棲>上城>西溪>余杭>濱江>下沙>朝暉>蕭山>半山.除上城點(diǎn)位外,兩個(gè)對(duì)照點(diǎn)OC EC高于常規(guī)點(diǎn)位,其均值約為常規(guī)點(diǎn)位均值的1.2倍,這可能與兩個(gè)對(duì)照點(diǎn)周圍植被豐富,植被排放的萜烯化合物以及含氧有機(jī)物,包括醇、酮、有機(jī)酸、酯等,是二次有機(jī)碳的重要天然前體物[41].
ρ(SOC)可通過OC EC最小比值法估算,將觀測期間的OC EC比值做頻率分布,取10%置信區(qū)間OC EC最小比值為3.3.杭州市冬季PM2.5中ρ(SOC)平均值為(9.2±4.5)μg m3,各監(jiān)測點(diǎn)位ρ(SOC)最高的是云棲,為(11.4±4.8)μg m3,半山最低,為(6.5±3.8) μg m3,從大到小依次為云棲>濱江>上城>西溪>余杭>朝暉>下沙>蕭山>半山.ρ(SOC)占ρ(OC)的40.0%,云棲明顯高于其他點(diǎn)位,而半山明顯低于其他點(diǎn)位,對(duì)照點(diǎn)的均值約為常規(guī)點(diǎn)位均值的1.3倍.云棲點(diǎn)位位于西湖區(qū),周圍是山脈和茶園,植被覆蓋率高,植被排放的萜烯化合物和含氧有機(jī)物經(jīng)光化學(xué)反應(yīng)生成SOC,并且因?yàn)槠渲車鷽]有明顯的大氣污染源,EC的排放相對(duì)較少,所以其 OC EC和 SOC OC 〔ρ(SOC) ρ(OC)〕較高.半山點(diǎn)位位于工業(yè)區(qū),工廠燃煤和生產(chǎn)過程排放的碳組分中可能包含更多的EC,再加上其二次轉(zhuǎn)化的有機(jī)碳較低,OC EC和SOC OC較低.
2.3 碳質(zhì)氣溶膠來源分析
顆粒物樣品中8個(gè)碳組分的豐度可以表現(xiàn)出一定的源譜特征,研究表明,OC1是生物質(zhì)燃燒樣品中豐富的碳組分[42],OC2是燃煤樣品中最豐富的碳組分[43],OC3、OC4是道路塵中豐富的碳組分[42],而EC1是汽車尾氣中豐富的碳組分[44],EC2和EC3是柴油車尾氣中豐富的碳組分[45],OP是大氣中水溶性極性化合物的主要成分[46].可據(jù)此初步判斷PM2.5中OC、EC的潛在來源.
由圖5可見,杭州市常規(guī)點(diǎn)位冬季PM2.5中OC3的豐度最高,為27.1%,其次是OC2和OC4,均為20.3%,EC1的豐度也較高.而對(duì)于對(duì)照點(diǎn),豐度最高的同樣為OC3,為26.5%,其次是OC2,OC4和EC1的豐度也較高.常規(guī)點(diǎn)位和對(duì)照點(diǎn)豐度較高的碳組分一致,但二者之間EC1和OP的豐度有明顯差異,常規(guī)點(diǎn)位EC1的豐度較高,而對(duì)照點(diǎn)OP的豐度較高,說明杭州市常規(guī)點(diǎn)位和對(duì)照點(diǎn)碳組分的來源存在一定差異.總體來說,杭州市冬季PM2.5中碳組分主要受道路塵、燃煤、機(jī)動(dòng)車和生物質(zhì)燃燒的影響.
為了進(jìn)一步了解杭州市冬季PM2.5中碳組分可能的來源,利用主成分分析法對(duì)OC1~OC4、EC1~EC3 和OP等8種碳組分的來源進(jìn)行解析.提取特征值大于1的因子,并采用正交旋轉(zhuǎn)使不同組分的因子載荷差異化便于因子識(shí)別,該研究將因子載荷值大于0.6的碳組分作為特征組分,分析結(jié)果見圖6.因子1中OC2、OC3、OC4和EC1的載荷值較高,其主要代表了燃煤、汽油車排放和道路塵[42-44];因子2中EC2和EC3的載荷值高,與柴油車輛排放的特征相似[45];因子3中OC1的載荷值較高,推斷為生物質(zhì)燃燒的影響[42].3個(gè)因子的特征值分別為3.47、1.51、1.29,解釋方差合計(jì)達(dá)78.47%,其中因子1的解釋方差最大,為43.39%,因子3的解釋方差最小,為16.18%,表明杭州市冬季PM2.5中碳組分主要來源于燃煤、道路塵、生物質(zhì)燃燒和機(jī)動(dòng)車排放.
通過主成分分析法識(shí)別主因子后,進(jìn)一步引入絕對(duì)主因子得分 APCS(absolute principal component scores),來估算各因子對(duì)總碳(total carbon,TC)的貢獻(xiàn)率[47-50].由于主因子得分是經(jīng)過標(biāo)準(zhǔn)化的,因此,引入一個(gè)所有碳組分為零的樣品,其標(biāo)準(zhǔn)化結(jié)果為:
式中,Ci為i組分的均值,σi為所有樣品中i組分的標(biāo)準(zhǔn)偏差.各實(shí)測樣品的主因子得分減去上述引入的零樣本的因子得分即為絕對(duì)主因子得分.將TC作為因變量,絕對(duì)主因子得分作為自變量進(jìn)行回歸,得出每個(gè)樣品各主因子的相對(duì)貢獻(xiàn)率;以樣品中各碳組分濃度作為因變量,每個(gè)樣品中各主因子的相對(duì)貢獻(xiàn)率作為自變量,得出各主因子中每個(gè)碳組分的貢獻(xiàn)如下:
式中,(b0)i為常數(shù),bpi為回歸系數(shù),APCSp為樣品的絕對(duì)主因子得分,APCSp×bpi表示污染源p對(duì)碳組分Ci的貢獻(xiàn).所有樣品的APCSp×bpi均值即為污染源p的平均貢獻(xiàn)率.
杭州市冬季PM2.5中TC的實(shí)際監(jiān)測值為28.7 μg m3,絕對(duì)主因子法解析所有污染源的貢獻(xiàn)值之和為27.5 μg m3,可見絕對(duì)主因子法已經(jīng)基本解析了杭州市冬季PM2.5中TC的各種源,即杭州市PM2.5中TC主要來源是燃煤 汽油車排放 道路塵、柴油車排放、生物質(zhì)燃燒3類污染源.其中,燃煤 汽油車排放 道路塵是杭州市冬季PM2.5中TC的首要污染源,對(duì)TC的分擔(dān)率達(dá)79.1%,柴油車排放和生物質(zhì)燃燒的貢獻(xiàn)率分別為13.1%和3.5%,其他的貢獻(xiàn)率為4.3%.
圖7為190個(gè)PM2.5樣品中ρ(TC)實(shí)測值和計(jì)算值比較,二者相關(guān)系數(shù)為0.995 5.其中對(duì)角線表示實(shí)測值與計(jì)算值完全吻合的理想狀態(tài),各數(shù)據(jù)點(diǎn)越接近此條線,表明實(shí)測值與計(jì)算值的擬合效果越好,由此可以幫助判斷污染源解析結(jié)果的準(zhǔn)確性.圖7表明,ρ(TC)實(shí)測值和計(jì)算值具有明顯的一致性,解析結(jié)果的吻合度較高.此結(jié)果進(jìn)一步證實(shí),絕對(duì)主因子分析法較好地解析了杭州市冬季PM2.5中TC的主要來源.
a)杭州市冬季ρ(OC)、ρ(EC)的平均值分別為(23.7±7.5)(5.0±2.4)μg m3,對(duì)照點(diǎn) ρ(OC)和ρ(EC)低于常規(guī)點(diǎn)位,其均值約為常規(guī)點(diǎn)位的0.8和0.6倍.杭州市冬季常規(guī)點(diǎn)位和對(duì)照點(diǎn)ρ(OC)和ρ(EC)變化趨勢一致,EC的日均質(zhì)量濃度波動(dòng)較低,OC的日均質(zhì)量濃度波動(dòng)較高.杭州市冬季PM2.5中ρ(OC)和ρ(EC)在1月最高.
b)ρ(OC)和ρ(EC)的相關(guān)性在常規(guī)點(diǎn)位和對(duì)照點(diǎn)有明顯差異,對(duì)照點(diǎn)ρ(OC)和ρ(EC)的相關(guān)性(0.489 0)低于常規(guī)點(diǎn)位(0.613 7),對(duì)照點(diǎn)PM2.5中OC 和EC的來源差異性更明顯.杭州市冬季PM2.5中 OC EC和SOC OC分別為5.3±1.9和0.4±0.2,對(duì)照點(diǎn)OC EC和SOC OC高于常規(guī)點(diǎn)位,其均值約為常規(guī)點(diǎn)位的1.2和1.3倍.這可能與對(duì)照點(diǎn)植被較多排放的萜烯化合物經(jīng)光化學(xué)反應(yīng)生成更多的SOC有關(guān).
c)PM2.5中各碳組分的豐度分析表明,城市常規(guī)點(diǎn)位和對(duì)照點(diǎn)PM2.5中碳組分的來源基本一致,但構(gòu)成存在一定差異,杭州市冬季PM2.5中的碳組分可能來源有道路塵、燃煤、機(jī)動(dòng)車和生物質(zhì)燃燒.絕對(duì)主因子分析法源解析結(jié)果表明,燃煤 汽油車排放 道路塵是杭州市冬季PM2.5中TC的主要來源,其分擔(dān)率為79.1%,柴油車排放和生物質(zhì)燃燒的分擔(dān)率為13.1%和3.5%.
[1] NUNES T V,PIO C A.Carbonaceous aerosols in industrial and coastal atmospheres[J].Atmospheric Environment Part A General Topics,1993,27(8):1339-1346.
[2] BLANCHARD C L,HIDY G M,TANENBAUM S,et al.Carbon in southeastern U.S.a(chǎn)erosolparticles:Empiricalestimates of secondary organic aerosol formation[J].Atmospheric Environment,2008,42:6710-6720.
[3] YE Di,ZHAO Qi,JIANG Changtan,et al.Characteristics of elemental carbon and organic carbon in PM10during spring and autumn in Chongqing,China[J].China Particuology,2007,5:255-260.
[4] 伍燕珍,張金良,趙秀閣,等.我國大氣污染與兒童呼吸系統(tǒng)疾病和癥狀的關(guān)系[J].環(huán)境與健康雜志,2009,26(6):471-477.WU Yanzhen,ZHANG Jinliang,ZHAO Xiuge,et al.Relationship between ambient air pollution and children's respiratory health in China[J].Journal of Environment and Health,2009,26(6):471-477.
[5] 楊衛(wèi)芬,程鐘,沈琰.常州城區(qū)秋冬季黑炭氣溶膠的濃度變化特征[J].環(huán)境監(jiān)測管理與技術(shù),2013(5):11-14.YANG Weifen,CHENG Zhong,SHEN Yan.The concentration variation characteristics of black carbon aerosols in Changzhou in autumn and winter[J].The Administration and Technique of Environmental Monitoring,2013(5):11-14.
[6] DOCKERY D W,XU X,SPENGLER J D,et al.An association between air pollution and mortality in six U.S.cities[J].New England Journal of Medicine,1993,329(24):1753-1759.
[7] SAMET J M,DOMINICI F,CURRIERO F C,et al.Fine particulate air pollution and mortality in 20 U.S.cities,1987-1994[J].New England Journal of Medicine,2000,343(24):1742-1749.
[8] 王楊君,董亞萍,馮加良,等.上海市PM2.5中含碳物質(zhì)的特征和影響因素分析[J].環(huán)境科學(xué),2010,31(8):1755-1761.WANG Yangjun,DONG Yaping,F(xiàn)ENG Jialiang,etal.Characteristics and influencing factors of carbonaceous aerosols in PM2.5in Shanghai,China[J].Environmental Science,2010,31 (8):1755-1761.
[9] 黃眾思,修光利,朱夢雅,等.上海市夏冬兩季PM2.5中碳組分污染特征及來源解析[J].環(huán)境科學(xué)與技術(shù),2014(4):124-129.HUANG Zhongsi,XIU Guangli,ZHU Mengya,et al.Characteristics and sources of carbonaceous species in PM2.5in summer and winter in Shanghai[J].Environmental Science and Technology,2014 (4):124-129.
[10] 黃虹,曹軍驥,曾寶強(qiáng),等.廣州大氣細(xì)粒子中有機(jī)碳、元素碳和水溶性有機(jī)碳的分布特征[J].分析科學(xué)學(xué)報(bào),2010,26(3): 255-260.
[11] 程萌田,金鑫,溫天雪,等.天津市典型城區(qū)大氣碳質(zhì)顆粒物的粒徑分布特征和來源[J].環(huán)境科學(xué)研究,2013,26(2):115-121.CHENG Mengtian,JIN Xin,WEN Tianxue,et al.Size distribution characteristics and sources of carbonaceous aerosols in typical Tianjin City,China[J].Research of Environmental Sciences,2013,26(2):115-121.
[12] 方冬青,魏永杰,黃偉,等.北京市2014年10月重霾污染特征及有機(jī)碳來源解析[J].環(huán)境科學(xué)研究,2016,29(1):12-19.FANG Dongqing,WEI Yongjie,HUANG Wei,et al.Characterization and source apportionment of organic carbon during a heavy haze episode in Beijing in October 2014[J].Research of Environmental Sciences,2016,29(1):12-19.
[13] WANG Jingzhi,SSH H,CAO Junji,et al.Characteristics and major sources of carbonaceous aerosols in PM2.5,from Sanya,China[J].Science of the Total Environment,2015,S530 531:110-119.
[14] PARK S S,KIM Y J,F(xiàn)UNG K.PM2.5carbon measurements in two urban areas:seoul and Kwangju,Korea[J].Atmospheric Environment,2002,36:1287-1297.
[15] CHOW J C,WATSON J G,F(xiàn)UJITA E M,et al.Temporal and spatial variations of PM2.5and PM10aerosol in the Southern California air quality study[J].Atmospheric Environment,1994,28:3773-3785.
[16] ANDREAE M O,SCHMID O,YANG Hong,et al.Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou,China[J].Atmospheric Environment,2008,42(25): 6335-6350.
[17] 陶俊,張仁健,許振成,等.廣州冬季大氣消光系數(shù)的貢獻(xiàn)因子研究[J].氣候與環(huán)境研究,2009,14(5):484-490.TAO Jun,ZHANG Renjian,XU Zhencheng,et al.Contribution factors of ambient light extinction coefficient in the winter of Guangzhou[J].Climatic and Environmental Research,2009,14 (5):484-490.
[18] NA K,SAWANT A A,SONG Chen,et al.Primary and secondary carbonaceous species in the atmosphere of Western Riverside County,California[J].Atmospheric Environment,2004,38(9): 1345-1355.
[19] TURPIN B J,HUNTZICKER J J.Identification of secondary organic aerosol episodes and quantitation of primary andsecondary organic aerosol concentrations during SCAQS[J].Atmospheric Environment,1995,29(23):3527-3544.
[20] 陶俊,柴發(fā)合,朱李華,等.2009年春季成都城區(qū)碳?xì)馊苣z污染特征及其來源初探[J].環(huán)境科學(xué)學(xué)報(bào),2011,31(12):2756-2761.TAO Jun,CHAI Fahe,ZHU Lihua,et al.Characteristics and sources of carbonaceous aerosol in the urban Chengdu during spring of 2009[J].Acta Scientiae Circumstantiae,2011,31(12):2756-2761.
[21] ZAPPOLI S,ANDRACCHIO A,F(xiàn)UZZI S,et al.Inorganic,organic and macromolecular components of fine aerosol in different areas of Europe in relation to theirwatersolubility[J].Atmospheric Environment,1999,33(17):2733-2743.
[22] CHOW J C,WATSON J G,CHEN L W A,et al.The IMPROVE_A temperature protocol for thermal optical carbon analysis: maintaining consistency with a long-term database[J].Journal of the Air&Waste Management Association,2007,57(9):1014-1023.
[23] HAN Y M,LEE S C,CAO J J,et al.Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China[J].Atmospheric Environment,2009,43(38):6066-6073.
[24] LIN P,HU M,DENG Z,et al.Seasonal and diurnal variations of organic carbon in PM2.5in Beijing and the estimation of secondary organic carbon[J].Journal of Geophysical Research-Atmospheres,2009,114(D2):1013-1033.
[25] 李杏茹,郭雪清,劉欣然,等.2007年春節(jié)期間北京大氣顆粒物中多環(huán)芳烴的污染特征[J].環(huán)境科學(xué),2008,29(8):2099-2104.LI Xingru,GUO Xueqing,LIU Xinran,et al.Pollution characteristic of PAHs in atmospheric particles during the spring festival of 2007 in Beijing[J].Environmental Science,2008,29(8):2099-2104.
[26] FENG Jialiang,SUN Peng,HU Xiaoling,et al.The chemical composition and sources of PM2.5,during the 2009 Chinese New Year's holiday in Shanghai[J].Atmospheric Research,2012,118: 435-444.
[27] CAO J J,LEE S C,CHOW J C,et al.Spatial and seasonal distributions of carbonaceous aerosols over China[J].Journal of Geophysical Research Atmospheres,2007,112(D22):22-11.
[28] HE Qiusheng,GUO Wendi,ZHANG Guixiang,et al.Characteristics and seasonal variations of carbonaceous species in PM2.5in Taiyuan,China[J].Atmosphere,2015,6(6):850-862.
[29] LI Bing,ZHANG Jie,ZHAO Yu,et al.Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta,China[J].Atmospheric Environment,2015,106:223-231.
[30] TURPIN B J,HUNTZICKER J J.Secondary formation of organic aerosol in the Los Angeles Basin:a descriptive analysis of organic and elemental carbon concentrations[J].Atmospheric Environment: Part A.General Topics,1991,25(2):207-215.
[31] SCHAUER J J,KLEEMAN M J,CASS G R,et al.Measurement of emissions from air pollution sources.2.C1 through C30 organic compounds from medium duty diesel trucks[J].Environmental Science and Technology,1999,33(10):1578-1587.
[32] SCHAUER J J,KLEEMAN M J,CASS G R,et al.Measurement of emissions from air pollution sources.5.C1-C32 organic compounds from gasoline-powered motor vehicles[J].Environmental Scienceand Technology,2002,36:1169-1180.
[33] SCHAUER J J,KLEEMAN M J,CASS G R,et al.Measurement of emissions from air pollution sources:3.C1-C29 organic compounds from fireplace combustion of wood[J].Environmental Science and Technology,2001,35:1716-1728.
[34] CHEN Yingjun,ZHI Guorui,F(xiàn)ENG Yanli,et al.Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China[J].Geophysical Research Letters,2006,332(20):382-385.
[35] HE Lingyan,HU Min,HUANG Xiaofeng,et al.Measurement of emissions of fine particulate organic matter from Chinese cooking [J].Atmospheric Environment,2004,38:6557-6564.
[36] CHOW J C,WATSON J G,PRITCHETT L C,et al.The DRI thermal optical reflectance carbon analysis system:description,evaluation and applications in U.S.a(chǎn)ir quality studies[J].Atmospheric Environment,1993,27A(8):1185-1201.
[37] CHOW J C,WATSON J G,LU Zhiqiang,et al.Descriptive analysis of PM2.5and PM10at regionally representative locations during Sjvaqs Auspex[J].Atmospheric Environment,1996,30(12): 2079-2112.
[38] 唐小玲,畢新慧,陳穎軍,等.不同粒徑大氣顆粒物中有機(jī)碳(OC)和元素碳(EC)的分布[J].環(huán)境科學(xué)研究,2006,19(1): 104-108.TANG Xiaoling,BI Xinhui,CHEN Yingjun,et al.Study on the size distribution of organic carbon(OC)and elemental carbon(EC)in the aerosol[J].Research of Environmental Sciences,2006,19(1): 104-108.
[39] 劉新民,邵敏,曾立民,等.珠江三角洲地區(qū)氣溶膠中含碳物質(zhì)的研究[J].環(huán)境科學(xué),2002,23:54-59.LIU Xinmin,SHAO Min,ZENG Limin,et al.Study on EC and OC compositions of ambient particles in Pearl River Delta Region[J].Environmental Science,2002,23:54-59.
[40] 包貞,焦荔,洪盛茂.杭州市大氣PM2.5中碳分布特征及來源分析[J].環(huán)境化學(xué),2009,28(2):304-305.
[41] 白志鵬,李偉芳.二次有機(jī)氣溶膠的特征和形成機(jī)制[J].過程工程學(xué)報(bào),2008,8(1):202-208.
[42] CHOW J C,WATSON J G,KUHNS H,et al.Source profiles for industrial,mobile,and area sources in the Big Bend Regional Aerosol Visibility and Observationalstudy[J].Chemosphere,2004,54(2):185-208.
[43] CAO J J,WU F,CHOW J C,et al.Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an,China[J].Atmospheric Chemistry &Physics,2005,5(11):3127-3137.
[44] ZHU Chongshu,CHEN Chengchieh,CAO Junji,etal.Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel[J].Atmospheric Environment,2010,44(23):2668-2673.
[45] WATSON J G,CHOW J C,LOWENTHAL D H,et al.Differences in the carbon composition of source profiles for diesel-and gasolinepowered vehicles[J].Atmospheric Environment,1994,28(15): 2493-2505.
[46] LI Weifang,BAI Zhipeng.Characteristics of organic and elemental carbon in atmospheric fine particlesin Tianjin,China[J].Particuology,2009,7(6):432-437.
[47] THURSTON G D,SPENGLER J D.A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston[J].Atmospheric Environment,1985,19(1): 9-25.
[48] MAENHAUT W,CAFMEYER J.Long-term atmospheric aerosol study at urban and rural sites in belgium using multi-elemental analysis by particle-induced X-Ray emission spectrometry and short-irradiation instrumental neutron activation analysis[J].X-Ray Spectrometry,1998,27(4):236-246.
[49] 李玉武,劉咸德,李冰,等.絕對(duì)主因子分析法解析北京大氣顆粒物中鉛來源[J].環(huán)境科學(xué),2008,29(12):3310-3319.LI Yuwu,LIU Xiande,LI Bing,et al.Source apportionment of aerosol lead in Beijing using absolute principal component analysis [J].Environmental Science,2008,29(12):3310-3319.
[50] 邱立民,劉淼,王菊,等.絕對(duì)主因子分析法解析龍巖市大氣中的可吸入顆粒物來源[J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2012,50 (2):371-376.QIU Limin,LIU Miao,WANG Ju,et al.Sources apportionment of atmospheric particles PM10in Longyan with absolute principal component analysis[J].Journal of Jilin University(Science Edition),2012,50(2):371-376.
Characteristics and Sources of Carbonaceous Species in Atmospheric PM2.5during Winter in Hangzhou City
LI Liwei1,DAI Qili1,BI Xiaohui1*,GAO Jixin1,YANG Jiamei1,HONG Shengmao2,F(xiàn)ENG Yinchang1
1.State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control,College of Environmental Science and Engineering,Nankai University,Tianjin 300071,China
2.Hangzhou Environmental Monitoring Central Station,Hangzhou 310007,China
Aiming at investigating the characteristics and sources of carbonaceous species in PM2.5,samples were collected in seven routine urban sites and two background sites simultaneously from December 2013 to February 2014 in Hangzhou,China.The results showed that the average mass concentrations of organic carbon(OC),elemental carbon(EC)and secondary organic carbon(SOC)were(23.7±7.5),(5.0±2.4)and(9.2±4.5)μg m3,respectively,and the average values of OC EC and SOC OC were(5.3±1.9)and(0.4±0.2) respectively.Spatially,the average mass concentrations of OC and EC at background sites were 0.8 and 0.6 times of those at routine urban sites,while the average mass concentration of SOC and the average value of OC EC and SOC OC at background sites were 1.2,1.2 and 1.3 times of those at routine urban sites,respectively.During the whole sampling time,the daily average mass concentrations of PM2.5at routine urban sites and background sites showed similar variation trends.Moreover,the average correlation coefficient between OC and EC (0.49)at background sites was lower than that at routine urban sites(0.61).The percentages of eight carbon fractions in PM2.5indicated that the primary sources of carbon were road dust,coal combustion,vehicle exhaust and biomass burning both at the routine urban sites and background sites.The result of absolute principal component analysis(APCA)showed that coal combustion gasoline vehicle exhaust road dust(79.1%),diesel vehicle exhaust(13.1%)and biomass burning(3.5%)were the three main sources of total carbon(TC) in PM2.5during winter in Hangzhou.
PM2.5;organic carbon(OC);element carbon(EC); secondary organic carbon(SOC);background sites; source analysis
X513
1001-6929(2017)03-0340-09
A
10.13198 j.issn.1001-6929.2017.01.57
李立偉,戴啟立,畢曉輝,等.杭州市冬季環(huán)境空氣PM2.5中碳組分污染特征及來源[J].環(huán)境科學(xué)研究,2017,30(3):340-348.
LI Liwei,DAI Qili,BI Xiaohui,et al.Characteristics and sources of carbonaceous species in atmospheric PM2.5during winter in Hangzhou City[J].Research of Environmental Sciences,2017,30(3):340-348.
2016-07-05
2016-11-11
國家自然科學(xué)基金項(xiàng)目(21407081,31370700)
李立偉(1990-),男,河北遵化人,llwabc2010@163.com.
*責(zé)任作者,畢曉輝(1980-),男,山東商河人,副教授,博士,主要從事顆粒物來源解析及空氣污染防治研究,bixh@nankai.edu.cn