陳 嫚,許官學(xué)
·綜 述·
干細(xì)胞源性外泌體在心血管疾病中的研究進(jìn)展
陳 嫚,許官學(xué)
外泌體;干細(xì)胞移植;心血管疾??;綜述
近年來,干細(xì)胞源性外泌體作為非細(xì)胞體系對心肌細(xì)胞的修復(fù)作用逐漸被大家認(rèn)知。由于經(jīng)皮冠狀動脈介入治療及外科旁路移植手術(shù)的發(fā)展,急性心肌梗死(acute myocardial infarction, AMI)患者的存活率顯著提高。然而,功能性心肌細(xì)胞丟失所致的心室重塑使幸存的AMI患者最終發(fā)展為心力衰竭(心衰),遠(yuǎn)期預(yù)后不容樂觀。剩余心臟組織有限的增殖及分化能力使得心臟結(jié)構(gòu)再生面臨極大挑戰(zhàn),心臟移植仍然是難治性心衰的最佳治療手段。研究者為改善AMI及缺血性心衰患者的預(yù)后做了諸多嘗試,其中干細(xì)胞移植被認(rèn)為是治療心血管疾病最具前景的方法。目前已有大量基于動物模型的研究證實了多種干細(xì)胞移植的有效性,其中包括骨髓間充質(zhì)干細(xì)胞、心臟干細(xì)胞(cardiac progenitor cells, CPC)、胚胎干細(xì)胞等[1-6]。新近研究發(fā)現(xiàn),相比直接增殖分化為心臟譜系細(xì)胞,AMI后移植的干細(xì)胞通過旁分泌效應(yīng)對梗死后心臟的保護(hù)作用更加明顯[7]。干細(xì)胞源性外泌體作為非細(xì)胞治療策略在心血管領(lǐng)域掀起了研究熱潮[8],其對心血管疾病的發(fā)生、發(fā)展及對心臟的保護(hù)作用逐漸被人們認(rèn)知,本文復(fù)習(xí)相關(guān)文獻(xiàn)綜述如下。
1.1 概念與起源 外泌體是在研究正常細(xì)胞和腫瘤細(xì)胞脫落小體時首次提出,數(shù)年后Johnstone等[9]在研究網(wǎng)織紅細(xì)胞成熟過程中首次分離提純。隨著研究的深入,人們發(fā)現(xiàn)除了腫瘤細(xì)胞及網(wǎng)織紅細(xì)胞等細(xì)胞外,心臟譜系細(xì)胞如骨髓間充質(zhì)干細(xì)胞、CPC、胚胎干細(xì)胞、內(nèi)皮祖細(xì)胞及誘導(dǎo)多能干細(xì)胞等均可釋放外泌體。目前多認(rèn)為外泌體來源于細(xì)胞膜向內(nèi)出芽所形成的細(xì)胞核內(nèi)體,細(xì)胞核內(nèi)體進(jìn)一步包裹胞漿內(nèi)mRNA、miRNA、蛋白質(zhì)諸如此類的遺傳物質(zhì),形成包含腔內(nèi)小體的細(xì)胞核內(nèi)體(多泡體),多泡體與細(xì)胞膜融合并通過胞吐方式釋放至細(xì)胞外環(huán)境,最終形成外泌體[10]。
干細(xì)胞源性外泌體具有與其母體干細(xì)胞相似的生物功能,包含有大量與其功能相關(guān)的遺傳物質(zhì)[11-12]。其中,miRNA是近年來受到廣泛關(guān)注的一種內(nèi)源性高度保守的小分子非編碼單鏈RNA,可在mRNA水平及蛋白翻譯過程中調(diào)節(jié)多種疾病的發(fā)生發(fā)展進(jìn)程[13]。研究顯示,外泌體內(nèi)miRNA的含量明顯高于在母體干細(xì)胞中的含量,且據(jù)母體干細(xì)胞特性,外泌體內(nèi)會出現(xiàn)某種特定miRNA聚集現(xiàn)象[14]。外泌體作用于受體細(xì)胞后,可經(jīng)向受體細(xì)胞或組織傳遞特異性遺傳物質(zhì),進(jìn)而改變受體細(xì)胞或組織的生物學(xué)特征[15]。
1.2 生物學(xué)特征 外泌體是直徑介于30~100 nm的膜狀小體,并且外泌體質(zhì)膜及其內(nèi)部富含大量與其發(fā)揮生物學(xué)效應(yīng)密切相關(guān)的蛋白質(zhì),目前研究較為明確的有:①轉(zhuǎn)膜蛋白和融合蛋白(Rab GTPases、flotillin、膜聯(lián)蛋白);②細(xì)胞內(nèi)源性蛋白(Alix、TSG101);③整合素和4次跨膜蛋白(CD9、CD63、CD81、CD82),熱休克蛋白(HSP70、HSP90);④脂質(zhì)相關(guān)蛋白和磷脂酶;⑤與外泌體母細(xì)胞性質(zhì)密切相關(guān)的特異性蛋白[16]。
干細(xì)胞移植被認(rèn)為是治療心血管疾病最具前景的方法,既往研究認(rèn)為干細(xì)胞主要通過直接分化為心肌細(xì)胞而發(fā)揮效應(yīng)。然而van Berlo等[17]研究發(fā)現(xiàn),小鼠體內(nèi)心臟固有干細(xì)胞直接分化成新心肌細(xì)胞的比例為0.003%或更低,并對CPC的直接分化效應(yīng)產(chǎn)生了質(zhì)疑。此外,有實驗結(jié)果顯示,向大鼠梗死心肌內(nèi)注射CPC培養(yǎng)液亦可減少心肌瘢痕組織,主要作用機制為外源性CPC通過旁分泌HGF、IGF-1、VEGF、β-FGF、SDF-1等細(xì)胞因子,以募集固有CPC并促進(jìn)其遷移、生存、增殖、分化,發(fā)揮促進(jìn)血管新生和抗凋亡的作用,從而改善心臟功能[18]。Lai等[19]通過分子體積、電鏡觀察、超速離心、質(zhì)譜分析以及生化研究等方法,從干細(xì)胞培養(yǎng)液中提取出外泌體,并證實干細(xì)胞源性外泌體能夠有效減少小鼠AMI后的心肌梗死面積。新近研究發(fā)現(xiàn),特異性去除CPC培養(yǎng)液中的外泌體可明顯減弱其對心臟的保護(hù)效應(yīng)[20]。同樣的,去除外泌體可減少缺血預(yù)處理所調(diào)控缺血再灌注區(qū)的冠狀動脈灌流量[21]。這些研究均表明外泌體是干細(xì)胞旁分泌效應(yīng)及缺血預(yù)處理心臟細(xì)胞的活性組分。目前,外泌體作為干細(xì)胞旁分泌效應(yīng)的典型代表,在調(diào)控細(xì)胞信號傳遞、調(diào)節(jié)疾病生物學(xué)行為中的作用受到廣泛關(guān)注。
3.1 間充質(zhì)干細(xì)胞源性外泌體(mesenchymal stem cells derived exosomes, MSC-exosomes) 大量臨床前研究已證實MSC-exosomes在治療心血管疾病中的效果。Arslan等[22]研究發(fā)現(xiàn),人胚胎干細(xì)胞源性間充質(zhì)干細(xì)胞(human embryonic stem cell derived mesenchymal stem cells, ESC-MSCs)內(nèi)包含有與外泌體高度吻合的直徑為50~100 nm的微小顆粒;向缺血再灌注小鼠模型輸入外泌體可明顯減少AMI面積;進(jìn)一步將ESC-MSCs中提取的外泌體注入AMI小鼠模型中發(fā)現(xiàn)其心功能明顯改善。此外,有學(xué)者發(fā)現(xiàn)AMI后心臟組織中ATP及煙酰胺腺嘌呤二核苷酸水平顯著升高,然而用外泌體處理后其活性氧水平降低;并進(jìn)一步證明經(jīng)外泌體處理后心臟組織中磷水解磷酸化AKT及糖原合成酶激酶-3顯著升高,而c-jun氨基末端激酶顯著降低[19]。Bian等[23]證明MSC-exosomes可明顯減少AMI兔模型心肌梗死面積,促進(jìn)梗死周圍新生血管形成,改善心臟功能。Yu等[24]首先發(fā)現(xiàn)在MSCs中過表達(dá)鋅指轉(zhuǎn)錄因子-4(GATA1 binding factor-4, GATA-4),然后再把提取的外泌體作用于AMI兔模型,發(fā)現(xiàn)MSC GATA-4-exosomes可明顯減少心肌梗死面積;并進(jìn)一步發(fā)現(xiàn)MSC GATA-4-exosomes內(nèi)富含大量miRs,特別是miR-19a,其含量比在MSC-exosomes中多;并證明miR-19a可下調(diào)磷酸酶及PTEN進(jìn)而激活抗凋亡的AKT及細(xì)胞外信號調(diào)節(jié)激酶。Feng等[25]發(fā)現(xiàn),缺血預(yù)處理小鼠MSC-exosomes內(nèi)含有大量miR-22,當(dāng)AMI時富含miR-22的外泌體可經(jīng)下調(diào)甲基化CpG結(jié)合蛋白-2發(fā)揮抗心肌細(xì)胞凋亡作用。
3.2 心臟干細(xì)胞源性外泌體(cardiac progenitor cells derived exosomes, CPC-exosomes) Chen等[26]研究發(fā)現(xiàn),小鼠CPC-exosomes可顯著抑制缺血再灌注損傷小鼠模型心肌細(xì)胞的凋亡。此外Barile等[27]證明,人CPC-exosomes可明顯抑制大鼠AMI后心肌細(xì)胞凋亡,促進(jìn)梗死心肌周圍新生血管形成,改善AMI后心臟功能;進(jìn)一步研究證明,CPC-exosomes內(nèi)富含miR-210、miR-132及miR-146a-3p,其強大的抗心肌細(xì)胞凋亡和促血管生成效應(yīng),與高表達(dá)的miRNA激活下游靶蛋白ephrin A3、PTP1b及RasGaP-p120密切相關(guān)。Ibrahim等[28]在AMI小鼠模型的研究中也發(fā)現(xiàn),CPC-exosomes可抑制心肌細(xì)胞凋亡,促進(jìn)新生血管形成,改善心臟功能;并證明CPC-exosomes含有豐富的miR-146a,其主要通過miR-146a發(fā)揮心臟保護(hù)效應(yīng)。此外,研究證明CPC-exosomes可改變成纖維細(xì)胞分泌活性,可使成纖維細(xì)胞分泌更多的基質(zhì)細(xì)胞衍生因子-1及血管內(nèi)皮生長因子,明顯改變成纖維細(xì)胞內(nèi)miR的組分;向AMI大鼠模型心臟中移植CPC-exosomes預(yù)處理的成纖維細(xì)胞,可明顯改善其心臟泵血功能、增加血管生成密度及減少瘢痕組織面積[29]。新近研究發(fā)現(xiàn)缺氧可促進(jìn)小鼠CPC-exosomes的釋放并改變其內(nèi)遺傳物質(zhì)的構(gòu)成,缺氧的CPC-exosomes作用于缺血的心臟組織后可顯著降低組織生長因子、波形蛋白、I型及Ⅲ型膠原蛋白的表達(dá);進(jìn)一步研究發(fā)現(xiàn)缺氧的CPC-exosomes miR-17、miR-199a、miR-210及miR-292表達(dá)增高,并且這些miR可作用于涉及纖維化通路的靶基因發(fā)揮心功能保護(hù)作用[30]。Ong等[31]經(jīng)基因芯片分析發(fā)現(xiàn),過表達(dá)HIF-1的CPC所分泌的外泌體含有大量具有心臟保護(hù)作用的miR-126及miR-210,且通過向受體Sca1+CPC傳遞miR-126及miR-210,使Sca1+CPC內(nèi)促存活激酶激活,進(jìn)一步降低代謝能量需求,提高Sca1+CPC對缺氧的耐受能力,改善AMI后Sca1+CPC移植的效果。
3.3 胚胎干細(xì)胞源性外泌體(embryonic stem cells derived exosomes, ESC-exosomes)及誘導(dǎo)多能干細(xì)胞源性外泌體(induced pluripotent stem cells derived exosomes, iPS-exosomes) Arslan等[22]在ESC-exosomes的研究中發(fā)現(xiàn),外泌體具有促進(jìn)心臟增生反應(yīng)的特異能力。ESC-exosomes富含脂質(zhì)相關(guān)蛋白flotillin-1、多能性mRNA 轉(zhuǎn)錄本及miRNA-290;在氧化應(yīng)激狀態(tài)下可通過向受體細(xì)胞傳遞外泌體內(nèi)容物促進(jìn)細(xì)胞增殖、存活及提高血管生成能力;AMI后心肌內(nèi)注入ESC-exosomes可通過促進(jìn)血管生成進(jìn)一步增強心臟細(xì)胞增生能力,顯著改善心臟功能;進(jìn)一步發(fā)現(xiàn)向AMI小鼠模型注入ESC-exosomes后可促進(jìn)新生血管形成,提高心肌細(xì)胞存活率,減少心肌梗死面積;進(jìn)一步證實ESC-exosomes可促進(jìn)CPC存活及增殖,并發(fā)現(xiàn)ESC-exosomes含有大量miR-294、miR-294,可使CPC細(xì)胞周期向S期發(fā)展,說明ESC-exosomes主要通過向靶細(xì)胞傳遞miR-294等特異性miRs進(jìn)一步發(fā)揮促細(xì)胞增殖及存活效應(yīng)。
Wang等[32]證明,iPS-exosomes在缺血損傷狀態(tài)下可通過傳遞miR-21及miR-210促進(jìn)心肌細(xì)胞存活,體外研究進(jìn)一步發(fā)現(xiàn),iPS-exosomes可通過抑制caspase 3/7的激活從而抑制過氧化氫誘導(dǎo)的氧化應(yīng)激狀態(tài)下H9C2心肌細(xì)胞凋亡;此外,iPS-exosomes處理缺血再灌注損傷的大鼠心臟組織24 h后發(fā)現(xiàn),TUNEL+/肌鈣蛋白I+的心肌細(xì)胞數(shù)量顯著下降。提示iPS-exosomes對缺血再灌注損傷狀態(tài)下心肌細(xì)胞具有保護(hù)效應(yīng)。
外泌體作為干細(xì)胞旁分泌效應(yīng)的重要組成,可向靶細(xì)胞傳遞特異性miRNAs、mRNAs及蛋白,發(fā)揮促進(jìn)細(xì)胞存活、增殖及血管生成效應(yīng)。本文眾多文獻(xiàn)均證實了外泌體在心肌梗死后可對抗心肌缺血所致的心肌細(xì)胞凋亡及細(xì)胞增殖受限,并經(jīng)促新生血管形成、抑制心臟纖維化等途徑改善心臟泵血功能。外泌體的這些特性使其有望成為AMI后心肌再生修復(fù)治療的新策略。盡管目前外泌體用于治療心血管疾病的臨床試驗還未進(jìn)行,但其用于腫瘤患者的免疫療法已經(jīng)開始I期臨床試驗,業(yè)已證明有良好的應(yīng)用安全性[33-34]。相信不久的將來,干細(xì)胞源性外泌體治療心血管疾病的有效性及安全性將得到證實,為心血管疾病患者帶來福音。
[1] Barad L, Schick R, Zeevi-Levin N,etal. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair[J].Can J Cardiol, 2014,30(11):1279-1287.
[2] Moon S H, Kang S W, Park S J,etal. The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction[J].Biomaterials, 2013,34(16):4013-4026.
[3] Chong J J, Yang X, Don C W,etal. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts[J].Nature, 2014,510(7504):273-277.
[4] Zhang L, Guo J, Zhang P,etal. Derivation and high engraftment of patient-specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast[J].Circ Heart Fail, 2015,8(1):156-166.
[5] Tang X L, Rokosh G, Sanganalmath S K,etal. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction[J].Circulation, 2010,121(2):293-305.
[6] Sanganalmath S K, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions[J].Circ Res, 2013,113(6):810-834.
[7] Ailawadi S, Wang X, Gu H,etal. Pathologic function and therapeutic potential of exosomes in cardiovascular disease[J].Biochim Biophys Acta, 2015,1852(1):1-11.
[8] Barile L, Moccetti T, Marban E,etal. Roles of exosomes in cardioprotection[J].Eur Heart J, 2017,38(18):1372-1379.
[9] Johnstone R M, Adam M, Hammond J R,etal. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J].J Biol Chem, 1987,262(19):9412-9420.
[10]Zeringer E, Barta T, Li M,etal. Strategies for isolation of exosomes[J].Cold Spring Harb Protoc, 2015,2015(4):319-323.
[11]Vrijsen K R, Sluijter J P, Schuchardt M W,etal. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells[J].J Cell Mol Med, 2010,14(5):1064-1070.
[12]Xin H, Li Y, Liu Z,etal. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles[J].Stem Cells, 2013,31(12):2737-2746.
[13]Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C,etal. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells[J].Nat Commun, 2011,2:282.
[14]Goldie B J, Dun M D, Lin M,etal. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons[J].Nucleic Acids Res, 2014,42(14):9195-9208.
[15]Montecalvo A, Larregina A T, Shufesky W J,etal. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes[J].Blood, 2012,119(3):756-766.
[16]Peinado H, Aleckovic M, Lavotshkin S,etal. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J].Nat Med, 2012,18(6):883-891.
[17]van Berlo J H, Kanisicak O, Maillet M,etal. c-kit+ cells minimally contribute cardiomyocytes to the heart[J].Nature, 2014,509(7500):337-341.
[18]Wang K, Zhao X, Kuang C,etal. Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway[J].PLoS One, 2012,7(9):e43922.
[19]Lai R C, Arslan F, Lee M M,etal. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J].Stem Cell Res, 2010,4(3):214-222.
[20]Barile L, Moccetti T, Marban E,etal. Roles of exosomes in cardioprotection[J].Eur Heart J, 2017,38(18):1372-1379.
[21]Giricz Z, Varga Z V, Baranyai T,etal. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles[J].J Mol Cell Cardiol, 2014,68:75-78.
[22]Arslan F, Lai R C, Smeets M B,etal. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J].Stem Cell Res, 2013,10(3):301-312.
[23]Bian S, Zhang L, Duan L,etal. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model[J].J Mol Med (Berl), 2014,92(4):387-397.
[24]Yu B, Kim H W, Gong M,etal. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J].Int J Cardiol, 2015,182:349-360.
[25]Feng Y, Huang W, Wani M,etal. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J].PLoS One, 2014,9(2):e88685.
[26]Chen L, Wang Y, Pan Y,etal. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury[J].Biochem Biophys Res Commun, 2013,431(3):566-571.
[27]Barile L, Lionetti V, Cervio E,etal. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J].Cardiovasc Res, 2014,103(4):530-541.
[28]Ibrahim A G, Cheng K, Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J].Stem Cell Reports, 2014,2(5):606-619.
[29]Tseliou E, Fouad J, Reich H,etal. Fibroblasts Rendered Antifibrotic, Antiapoptotic, and Angiogenic by Priming With Cardiosphere-Derived Extracellular Membrane Vesicles[J].J Am Coll Cardiol, 2015,66(6):599-611.
[30]Gray W D, French K M, Ghosh-Choudhary S,etal. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology[J].Circ Res, 2015,116(2):255-263.
[31]Ong S G, Lee W H, Huang M,etal. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer[J].Circulation, 2014,130(11 Suppl 1):S60-S69.
[32]Wang Y, Zhang L, Li Y,etal. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium[J].Int J Cardiol, 2015,192:61-69.
[33]Escudier B, Dorval T, Chaput N,etal. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial[J].J Transl Med, 2005,3(1):10.
[34]Dai S, Wei D, Wu Z,etal. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer[J].Mol Ther, 2008,16(4):782-790.
563003 貴州 遵義,遵義醫(yī)學(xué)院附屬醫(yī)院心血管內(nèi)科
許官學(xué),E-mail:xuguanxue2008@163.com
R617
A
1002-3429(2017)07-0107-04
10.3969/j.issn.1002-3429.2017.07.033
2016-12-28 修回時間:2017-05-12)