劉 歡 李 艷
生長分化因子-15在常見心血管疾病中的研究進(jìn)展*
劉 歡綜述李 艷#審校
生長分化因子-15(GDF-15)是一種壓力損傷性因子,可表達(dá)于心肌細(xì)胞、脂肪細(xì)胞、巨噬細(xì)胞和內(nèi)皮細(xì)胞等。正常生理?xiàng)l件下,GDF-15幾乎不表達(dá),但在心肌損傷如壓力超負(fù)荷、心力衰竭、缺血再灌注損傷及動脈粥樣硬化等條件下,GDF-15的表達(dá)顯著升高,通過激活Smad2、Smad3及ALK4/5/7等發(fā)揮心血管保護(hù)作用,提示GDF-15可能成為新一代心肌損傷標(biāo)志物。
生長分化因子-15;心肌肥大;冠心?。恍牧λソ?/p>
生長分化因子-15(Growth Differentiation Factor-15,GDF-15)是一種壓力損傷性因子,生理狀態(tài)下幾乎不表達(dá),在組織損傷和炎癥狀態(tài)下,GDF-15的表達(dá)水平顯著升高,并且與心肌代謝性疾病風(fēng)險相關(guān),如心肌肥大、心力衰竭、動脈粥樣硬化、肥胖和糖尿病等。許多研究顯示GDF-15在不同組織中發(fā)揮一定的保護(hù)作用;但也有研究發(fā)現(xiàn),GDF-15缺乏時對機(jī)體抵抗血管損傷和炎癥是有益的。本文就近年來相關(guān)動物及臨床研究對GDF-15在常見心血管疾病中的作用作一綜述。
GDF-15是轉(zhuǎn)化生長因子-β(Transforming Growth Factor-β,TGF-β)超家族成員之一,在合成過程中先形成前體蛋白,蛋白裂解釋放N-端多肽后成為GDF-15的成熟形式,再以25kD的二聚體形式分泌到血清中[1]。GDF-15蛋白前體由308個氨基酸合成,包含29個氨基酸信號肽、167個氨基酸前肽和112個氨基酸成熟域。由于其首次在激活的巨噬細(xì)胞中發(fā)現(xiàn)[1],且正常情況下在胎盤的表達(dá)水平較高,因此又稱巨噬細(xì)胞抑制因子(Macrophage Inhibitory Cytokine-1,MIC-1)、胎盤轉(zhuǎn)化生長因子-β(Placental Transforming Growth Factor-β,PTGF-β)。健康人中,GDF-15在除胎盤以外的組織中表達(dá)水平極低;病理情況下,如炎癥、腫瘤、心血管疾病時,GDF-15的表達(dá)水平顯著升高。GDF-15的生物學(xué)作用依據(jù)所處環(huán)境而定,在疾病不同階段可能發(fā)揮不同作用[2-5]。如在患有急性心肌梗死的小鼠中,GDF-15可通過直接抑制骨髓細(xì)胞募集來干擾趨化因子信號通路的整合及活化,從而發(fā)揮抗炎作用,阻止心梗后心臟破裂的發(fā)生[5]。但Gabriel A等的研究發(fā)現(xiàn),GDF-15可通過調(diào)節(jié)血管內(nèi)皮細(xì)胞凋亡和IL-6依賴的炎癥反應(yīng)參與動脈粥樣硬化病變的進(jìn)展,起到一定的促炎作用[3-5]。
研究顯示,在疾病早期,GDF-15表達(dá)水平顯著升高且對相關(guān)心血管事件和死亡的預(yù)測有一定的價值,可預(yù)測急性胸痛、心肌梗死和慢性心絞痛的不良結(jié)局,其水平還與左心室射血分?jǐn)?shù)(Leventricular Ejection Fraction,LVEF)的下降、心肌舒縮功能及運(yùn)動能力的減弱相關(guān)。
心肌肥大是指在應(yīng)對生理性刺激和病理性刺激如運(yùn)動、高血壓、缺血性心肌病、瓣膜關(guān)閉不全等,心肌細(xì)胞代償性增多、增大,是臨床心血管疾病中最常見的靶器官損害。流行病學(xué)研究顯示,中國高血壓患者患心肌肥大的概率高達(dá)25%-35%[6-7]。左心室肥大可增加梗死、冠心病、充血性心力衰竭、心律失常和心源性猝死的風(fēng)險,而這些因素又都與心血管疾病死亡率和發(fā)病率以及全因死亡率相關(guān)[8-9]。盡管左心室肥大的主要病因是高血壓,但也受到其他心血管疾病傳統(tǒng)因素如年齡、性別、生活方式和糖尿病合并癥等的影響。除此之外,一些生長因子和細(xì)胞因子在高血壓患者發(fā)展為心室肥大的病程中也發(fā)揮著重要作用[10]。
正常生理?xiàng)l件下,GDF-15在心臟幾乎不表達(dá),在出現(xiàn)心血管損傷如壓力過剩、心力衰竭、缺血/再灌注損傷和動脈粥樣硬化等條件下,血清GDF-15水平顯著升高。Hao等[11]的研究結(jié)果顯示,與不伴心室肥大的高血壓患者相比,伴有心室肥大的高血壓患者血清中GDF-15水平顯著升高。再以是否伴有心室肥大作為狀態(tài)變量,GDF-15水平作為檢驗(yàn)變量作ROC曲線分析,結(jié)果顯示,曲線下的面積為0.808,提示GDF-15對診斷高血壓伴心室肥大具有一定的檢驗(yàn)效能。在調(diào)整年齡、性別、體重指數(shù)(BMI)等因素后,多重線性回歸分析顯示,GDF-15水平與左心室質(zhì)量指數(shù)、心室間隔厚度、后壁厚度獨(dú)立相關(guān)[12]。體外研究顯示,接受壓力過載刺激后,與野生型小鼠相比,心臟特異性高表達(dá)GDF-15的轉(zhuǎn)基因小鼠的心室肥大癥狀減弱。相反,GDF-15靶向敲除小鼠更易發(fā)展為心室肥大,說明GDF-15可能通過參與調(diào)控心肌肥大而發(fā)揮一定的心血管保護(hù)作用[13]。另有研究顯示[14],GDF-15可通過參與調(diào)節(jié)磷脂酰肌醇激酶(Phosphoinositude-3 kinase, PI3K)及細(xì)胞外信號調(diào)節(jié)激酶(Extracellular signal-ragulated kinase, ERK)信號通路及轉(zhuǎn)錄因子R-SMAD1對抗各種凋亡刺激,增強(qiáng)心肌細(xì)胞的肥厚性生長,從而影響心臟重塑。
體內(nèi)研究[5]通過短暫或長期的冠脈結(jié)扎造成的心肌缺血可增加病變區(qū)域GDF15 mRNA及蛋白的表達(dá)水平,且在心肌梗死邊緣區(qū)心肌細(xì)胞處,GDF-15的免疫活性最強(qiáng),血清GDF-15水平顯著升高,且與炎性因子呈明顯相關(guān)性;而GDF-15-/-的小鼠,出現(xiàn)梗死面積及凋亡程度增加,表明GDF-15可能通過某種抗凋亡機(jī)制而保護(hù)缺血心肌。
與社區(qū)老年人研究相似[15],在冠脈疾病患者中,GDF-15水平與年齡、糖尿病、吸煙與否、腎功能、血清鈉尿肽及hs-CRP水平獨(dú)立相關(guān)[16-19]。在另一項(xiàng)針對社區(qū)老年人的研究中也得出了相似結(jié)論[20]。血小板抑制及病人療效試驗(yàn)(Platelet Inhibition and Patient Outcomes trial,PLATO)[19]評估了GDF-15對急性冠脈綜合征預(yù)后評估的價值。基于大量的患者和結(jié)果事件,在調(diào)整臨床預(yù)測因素和其它生物標(biāo)志物如心肌肌鈣蛋白I(cardiac troponin I, cTnI)、血氨基末端腦鈉肽(N-terminal pro brain natriuretic peptide,NT- proBNP)、超敏C-反應(yīng)蛋白(high sensitivity C-reactive protein, hs-CRP)和胱抑素C(cystatin C,CYC)[20]的影響后,高水平GDF-15與全因死亡率、心血管疾病死亡率及中風(fēng)風(fēng)險的增加相關(guān)。
心力衰竭是所有心血管疾病發(fā)展的終末階段,嚴(yán)重影響著患者的預(yù)后,諸多研究顯示GDF-15水平在心力衰竭患者中顯著升高[21-23]。高水平GDF-15可為慢性心力衰竭患者的NYHA功能分級、左心室射血分?jǐn)?shù)(Left Ventricular Ejection Fraction,LVEF)及NT-proBNP水平提供額外的預(yù)后和預(yù)測信息。除此之外,對于LVEF正常心力衰竭患者的診斷,GDF-15優(yōu)于NT-proBNP[24];對于病態(tài)肥胖的個體,與NT-pro-BNP相比,GDF-15與舒張功能不全有更好的相關(guān)性[25]。因此,GDF-15與NT-proBNP聯(lián)合檢測可顯著提高心力衰竭患者的診斷價值。Kempf等[22]的研究顯示,GDF-15有望作為評估慢性心力衰竭患者死亡風(fēng)險的新型生物標(biāo)志物并可有效評估患者預(yù)后。該研究顯示,慢性心力衰竭患者GDF-15水平顯著升高,并與全因死亡率呈一定的等級關(guān)系;多重COX回歸分析顯示GDF-15和LVEF是預(yù)測慢性心力衰竭患者死亡的最強(qiáng)因素。血清GDF-15水平與慢性心力衰竭患者年齡、NYHA心功能分級、腎功能損害程度、尿酸水平(可識別慢性心衰病人的代謝異常)[26]及NT-proBNP呈現(xiàn)很好的獨(dú)立相關(guān)關(guān)系,顯示GDF-15與眾多慢性心衰不良預(yù)后的臨床和生化標(biāo)志物均有關(guān)。
綜上所述,GDF-15水平對心血管疾病的診斷和預(yù)后判斷有重要價值,且在不同疾病的不同時期,GDF-15水平可為傳統(tǒng)危險因素和其它血清學(xué)生物標(biāo)志物增加預(yù)測信息,有益于疾病的早期診斷[19,27-29]。因此,需要深入研究GDF-15的上下游通路,為其作為相應(yīng)疾病的治療靶點(diǎn)提供一定依據(jù)。
?
本文作者簡介:
劉歡(1990-),女,滿族,博士研究生,研究方向:冠心病的防治
1 Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily[J]. Proc Natl Acad Sci U S A, 1997,94(21):11 514-11 519.
2 Tsai VW, Lin S, Brown DA, et al. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15[J]. Int J Obes (Lond), 2016,40(2):193-197.
3 Bonaterra GA, Zugel S, Thogersen J, et al. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury[J]. J Am Heart Assoc, 2012,1(6):e002550.
4 de Jager SC, Bermudez B, Bot I, et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis[J]. J Exp Med, 2011,208(2):217-225.
5 Kempf T, Zarbock A, Widera C, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice[J]. Nat Med, 2011;17(5):581-588.
6 Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report[J]. JAMA, 2003,289(19):2 560-2 572.
7 Zhan S, Liu M, Yao W, et al. Prevalence and relevant factors on echocardiographic left ventricular hypertrophy among community-based hypertensive patients in Shanghai[J]. Zhonghua Liu Xing Bing Xue Za Zhi, 2002,23(3):182-185.
8 Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study[J]. N Engl J Med, 1990,322(22):1 561-1 566.
9 Schillaci G, Verdecchia P, Porcellati C, et al. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension[J]. Hypertension, 2000,35(2):580-586.
10 de Simone G, Pasanisi F, Contaldo F. Link of nonhemodynamic factors to hemodynamic determinants of left ventricular hypertrophy[J]. Hypertension, 2001,38(1):13-18.
11 Xue H, Fu Z, Chen Y, et al. The association of growth differentiation factor-15 with left ventricular hypertrophy in hypertensive patients[J]. PLoS One, 2012;7(10):e46534.
12 Xu XY, Nie Y, Wang FF, et al. Growth differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial hypertrophy via a novel pathway involving inhibition of epidermal growth factor receptor transactivation[J]. J Biol Chem, 2014,289(14):10 084-10 094.
13 Xu J, Kimball TR, Lorenz JN, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation[J]. Circ Res, 2006,98(3):342-350.
14 Heger J, Schiegnitz E, von Waldthausen D, et al. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes[J]. J Cell Physiol, 2010,224(1):120-126.
15 Ho JE, Mahajan A, Chen MH, et al. Clinical and genetic correlates of growth differentiation factor 15 in the community[J]. Clin Chem, 2012,58(11):1 582-1 591.
16 Eggers KM, Kempf T, Lagerqvist B, et al. Growth-differentiation factor-15 for long-term risk prediction in patients stabilized after an episode of non-ST-segment-elevation acute coronary syndrome[J]. Circ Cardiovasc Genet, 2010, 3(1): 88-96.
17 Dallmeier D, Brenner H, Mons U, et al. Growth differentiation factor 15, Its 12-month relative change, and risk of car-diovascular events and total mortality in patients with stable coronary heart disease: 10-year followup of the KAROLA study[J]. Clin Chem, 2016,62(7):982-992.
18 Hagstrom E, Held C, Stewart RA, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease[J]. Clin Chem, 2017,63(1):325-333.
19 Hagstrom E, James SK, Bertilsson M, et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study[J]. Eur Heart J, 2016,37(16):1 325-1 333.
20 沈云峰,胡遠(yuǎn)貴,張洪波,等. 冠心病患者血清胱抑素C、一氧化氮、超氧化物歧化酶及超敏C反應(yīng)蛋白水平變化及與冠脈狹窄程度的相關(guān)性[J]. 微循環(huán)學(xué)雜志, 2014,24(3):28-31.
21 Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial[J]. Circulation, 2010,122(14):1 387-1 395.
22 Kempf T, Horn-Wichmann R, Brabant G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay[J]. Clin Chem, 2007,53(2):284-291.
23 Jankovic-Tomasevic R, Pavlovic SU, Jevtovic-Stoimenov T, et al. Prognostic utility of biomarker growth differentiation factor-15 in patients with acute decompensated heart failure[J]. Acta Cardiol, 2016,71(5):587-595.
24 Stahrenberg R, Edelmann F, Mende M, et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction[J]. Eur J Heart Fail, 2010,12(12):1 309-1 316.
25 Baessler A, Strack C, Rousseva E, et al. Growth-differentiation factor-15 improves reclassification for the diagnosis of heart failure with normal ejection fraction in morbid obesity[J]. Eur J Heart Fail, 2012,14(11):1 240-1 248.
26 Anker SD, Doehner W, Rauchhaus M, et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging[J]. Circulation, 2003,107(15):1 991-1 997.
27 Rohatgi A, Patel P, Das SR, et al. Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: observations from the Dallas Heart Study[J]. Clin Chem, 2012,58(1):172-182.
28 Wallentin L, Zethelius B, Berglund L, et al. GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men[J]. PLoS One, 2013, 8(12): e78797.
29 Ho JE, Hwang SJ, Wollert KC, et al. Biomarkers of cardiovascular stress and incident chronic kidney disease[J]. Clin Chem, 2013,59(11):1 613-1 620.
ResearchProgressofGDF-15inCommonCardiovascularDiseases
LIU Huan, LI Yan#
Department of Clinical Laboratory ,Renmin Hospital of Wuhan University ,Wuhan 430060 ,China;#Corresponding author
GDF-15 is a stress-induced factor that can be widely expressed in cardiomyocytes, adipocytes, macrophages and endothelial cells. Under normal physiological conditions, GDF-15 is hardly expressed, but the expression of GDF-15 was significantly increased under the conditions of myocardial overload such as stress overload, heart failure, ischemia-reperfusion injury and atherosclerosis. And GDF-15 plays a cardioprotective role through activating Smad2 , Smad3 and ALK4 / 5/7, which suggesting that GDF-15 may become a new generation of myocardial injury markers.
GDF-15; Cardiac hypertrophy; Coronary heart disease; Heart failure
10.3969/j.issn.1005-1740.2017.04.015
R543.3
A
1005-1740(2017)04-0068-04
國家自然科學(xué)基金(81572069;81501815)
武漢大學(xué)人民醫(yī)院檢驗(yàn)科,武漢 430060#
,E-mail: yanlitf1120@163.com
本文2017-07-16收到,2017-09-10修回