国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

SOCE在消化道腫瘤細(xì)胞增殖及遷移中的調(diào)控作用

2017-03-11 23:14:12瑞,盧
關(guān)鍵詞:內(nèi)質(zhì)網(wǎng)結(jié)腸癌調(diào)控

孔 瑞,盧 潔

上海市第十人民醫(yī)院消化內(nèi)科,上海 200072

SOCE在消化道腫瘤細(xì)胞增殖及遷移中的調(diào)控作用

孔 瑞,盧 潔

上海市第十人民醫(yī)院消化內(nèi)科,上海 200072

鈣離子作為胞內(nèi)重要第二信使通過(guò)參與基因轉(zhuǎn)錄、蛋白表達(dá)及胞內(nèi)信號(hào)傳導(dǎo)等過(guò)程調(diào)控細(xì)胞生理活動(dòng)。近年來(lái),由內(nèi)質(zhì)網(wǎng)上的基質(zhì)相關(guān)聯(lián)分子1(stromal interaction molecule,STIM1)及鈣釋放激活的鈣通道蛋白1 (calcium release-activated calcium channel protein1,CRCM1,也叫做ORAI1)介導(dǎo)的鈣池調(diào)控的鈣離子通道(store-operated calcium entry,SOCE)如何調(diào)控腫瘤生物學(xué)行為已成為研究熱點(diǎn),其在腫瘤細(xì)胞增殖、遷移、侵襲及凋亡中發(fā)揮著重要作用。許多研究表明,由鈣庫(kù)調(diào)控鈣內(nèi)流介導(dǎo)腫瘤細(xì)胞內(nèi)鈣穩(wěn)態(tài)變化作為起始信號(hào),引起下游特異性級(jí)聯(lián)反應(yīng),來(lái)影響腫瘤細(xì)胞胞內(nèi)酶的活動(dòng)、基因轉(zhuǎn)錄及信號(hào)分子的表達(dá)。本文主要介紹SOCE基本信息、其在消化系統(tǒng)腫瘤細(xì)胞增殖及運(yùn)動(dòng)行為中作用機(jī)理,及靶向作用于該通道的抗腫瘤藥物作一概述。

鈣池調(diào)控的離子通道;消化道腫瘤;致癌基因;增殖;遷移

細(xì)胞內(nèi)鈣離子信號(hào)通路可嚴(yán)格調(diào)控細(xì)胞功能,鈣穩(wěn)態(tài)調(diào)節(jié)異常在細(xì)胞惡性表型中起著重要作用,如惡性增殖、遷移、侵襲及轉(zhuǎn)移。細(xì)胞增殖及遷移是惡性腫瘤侵襲、轉(zhuǎn)移的先決條件,關(guān)乎疾病預(yù)后。已有研究[1]表明,腫瘤細(xì)胞中鈣庫(kù)調(diào)控鈣內(nèi)流信號(hào)通路、其組成蛋白鈣釋放激活鈣調(diào)節(jié)蛋白1(calcium release-activated calcium channel protein 1,CRCM1,也叫做ORAI1)及某些鈣離子受體等可調(diào)控細(xì)胞中致癌基因表達(dá)、增殖遷移相關(guān)因子及信號(hào)通路、細(xì)胞增殖周期、上皮間充質(zhì)轉(zhuǎn)化過(guò)程(epithelial-mesenchymal transition,EMT)、細(xì)胞骨架重構(gòu)及黏著斑周轉(zhuǎn)等過(guò)程。本文主要概述鈣內(nèi)流通路重要組成成分及對(duì)消化道腫瘤細(xì)胞增殖遷移行為的調(diào)控機(jī)制,并簡(jiǎn)述近年靶向作用于鈣池調(diào)控的鈣離子通道(store operated calcium entry,SOCE)通路藥物治療腫瘤的研究熱點(diǎn)。

1 SOCE通道組成

SOCE在調(diào)節(jié)胞內(nèi)鈣離子穩(wěn)態(tài)中發(fā)揮重要作用,其核心組份由內(nèi)質(zhì)網(wǎng)上的基質(zhì)相關(guān)聯(lián)分子(stromal interaction molecule,STIM)及位于細(xì)胞膜上的CRCM1/ORAI1構(gòu)成[2]。目前研究發(fā)現(xiàn),STIM蛋白分為兩個(gè)亞型STIM1和STIM2,該蛋白單次跨膜并主要存在于內(nèi)質(zhì)網(wǎng)上[3],STIM1主要包括以下結(jié)構(gòu):存在于內(nèi)質(zhì)網(wǎng)的N-末端信號(hào)肽、可與鈣離子結(jié)合的EF手性模體、鈣離子非結(jié)合性手性結(jié)構(gòu)及SAM模體;主要存在于胞質(zhì)側(cè)的卷曲螺旋域(coiled-coil domain,CCD)、STIM-ORAI結(jié)合區(qū)域(STIM-ORAI activating region,SOAR)、絲氨酸-脯氨酸富集簇及C-末端信號(hào)肽。

EF手性結(jié)構(gòu)主要感受內(nèi)質(zhì)網(wǎng)中鈣離子濃度波動(dòng),SOAR區(qū)域主要負(fù)責(zé)STIM1及ORAI1的結(jié)合及ORAI1通道開(kāi)放。靜息期STIM1同樣遍布內(nèi)質(zhì)網(wǎng)上,隨著鈣庫(kù)內(nèi)鈣離子耗竭,STIM1迅速發(fā)生二聚化/寡聚構(gòu)象改變并移動(dòng)至內(nèi)質(zhì)網(wǎng)-胞膜結(jié)合區(qū)(endoplasmic reticulum-plasma membrane junctions,ER-PM)與ORAI1相互作用在數(shù)秒內(nèi)引發(fā)鈣內(nèi)流??赡苁且?yàn)殁}離子感受EF手性結(jié)構(gòu)中組成蛋白的微小差異,使得STIM2和STIM1相比激活ORAI作用較弱,但其對(duì)內(nèi)質(zhì)網(wǎng)中鈣離子濃度變化更敏感[4],可通過(guò)調(diào)節(jié)作用維持內(nèi)質(zhì)網(wǎng)及胞漿鈣離子濃度在一定水平,防止SOCE的不必要激活[5]。目前研究認(rèn)為,ORAI1為四次跨膜蛋白,激活后可由靜息時(shí)四聚體向六聚體結(jié)構(gòu)轉(zhuǎn)變,其N-、C-末端均存在于胞質(zhì)內(nèi)[6],第一段跨膜結(jié)構(gòu)主要作用為通過(guò)鈣離子傳導(dǎo)通路介導(dǎo)鈣內(nèi)流,C-末端參與形成螺旋結(jié)構(gòu)輔助STIM與ORAI結(jié)合,若螺旋結(jié)構(gòu)破壞將會(huì)影響STIM介導(dǎo)的ORAI激活,N-末端存在鈣調(diào)蛋白結(jié)合區(qū)域,其主要參與鈣離子依賴ORAI1通道失活[7]。ORAI包括3個(gè)亞型,ORAI1、ORAI2、ORAI3可在鈣庫(kù)內(nèi)鈣離子耗竭后被STIM蛋白激活,但與其他兩者相較,ORAI1在SOCE激活中效率最高,其基因沉默后對(duì)SOCE影響最大,Shuttleworth[8]報(bào)道稱三種ORAI亞型與STIM1共表達(dá),但他們?cè)诮M織中分布、對(duì)鈣離子的選擇性及傳導(dǎo)性均不相同。

2 SOCE與細(xì)胞內(nèi)信號(hào)傳導(dǎo)

眾所周知,鈣離子作為細(xì)胞內(nèi)信號(hào)傳導(dǎo)通路極為重要的第二信使,在腫瘤生理及病理過(guò)程中發(fā)揮重要作用,例如腫瘤的血管生成、細(xì)胞增殖、遷移及侵襲[2];細(xì)胞內(nèi)鈣離子濃度改變與惡性腫瘤行為息息相關(guān),其中SOCE是參與調(diào)節(jié)胞內(nèi)鈣離子濃度的重要通道之一。對(duì)于SOCE的探究最早可追溯到上世紀(jì)80年代,Putney[9]提出細(xì)胞內(nèi)鈣離子的耗竭可導(dǎo)致胞質(zhì)鈣離子通道的激活,胞質(zhì)配體-受體接受胞內(nèi)鈣離子耗竭信號(hào)或藥物性操作使胞內(nèi)鈣離子濃度降低均可激活SOCE[10],胞質(zhì)內(nèi)質(zhì)網(wǎng)是鈣離子儲(chǔ)存的主要裝置,大多數(shù)研究表明,SOCE最初是由內(nèi)質(zhì)網(wǎng)少量鈣離子釋放激活的,即鈣釋鈣機(jī)制,在正常生理情況下,胞質(zhì)上不同受體激活引起胞內(nèi)鈣穩(wěn)態(tài)改變由一系列信號(hào)傳導(dǎo)完成,例如G蛋白偶聯(lián)受體接收信號(hào)后激活磷脂酶C (phospholipase C, PLC),PLC可促使磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol-4,5-bisphosphate,PIP2)水解為甘油二酯(diacylglycerol,DAG)及三磷酸肌醇 (inositol triphosphate,IP3), IP3與內(nèi)質(zhì)網(wǎng)上其受體結(jié)合促使內(nèi)質(zhì)網(wǎng)儲(chǔ)存的鈣離子向細(xì)胞內(nèi)釋放[11],而此時(shí)STIM蛋白可檢測(cè)到內(nèi)質(zhì)網(wǎng)中鈣離子濃度下降,發(fā)生構(gòu)象改變及遷移至胞質(zhì)與ORAI1直接偶聯(lián)[12-13],實(shí)現(xiàn)SOCE的功能開(kāi)放而引起鈣內(nèi)流。當(dāng)鈣庫(kù)中Ca2+得到補(bǔ)充后,STIM與ORAI結(jié)合解除,通路關(guān)閉。另有報(bào)道[10]稱,在人體某些特定細(xì)胞內(nèi),IP3受體介導(dǎo)的瞬時(shí)感受器電位(transient receptor potential,TRP)通路激活也對(duì)SOCE起一定調(diào)節(jié)的作用。

3 SOCE參與消化道腫瘤細(xì)胞增殖與遷移

腫瘤細(xì)胞特征包括增殖增強(qiáng)、抵抗凋亡及獲得遷移和侵襲其他組織,有研究[14]表明,STIM1及 ORAI1可調(diào)節(jié)成神經(jīng)細(xì)胞瘤增殖,ORAI3參與乳腺癌細(xì)胞及非小細(xì)胞肺腺癌滲透性鈣離子通道組成[15];消化道腫瘤細(xì)胞也不例外,越來(lái)越多的證據(jù)表明,腫瘤細(xì)胞這些特征與細(xì)胞內(nèi)鈣離子信號(hào)通路改變相關(guān),SOCE及(transient receptor potential channel 6,TRPC6)瞬時(shí)感受器電位通道已被報(bào)道稱與人類肝癌細(xì)胞增殖密切相關(guān),其阻滯劑會(huì)阻斷腫瘤細(xì)胞增殖及侵襲[16],有報(bào)道[17]稱,STIM2在結(jié)腸癌細(xì)胞中也存在過(guò)表達(dá)現(xiàn)象,將其基因表達(dá)抑制后細(xì)胞惡性程度將被下調(diào),但其作用機(jī)制仍有待進(jìn)一步研究。

3.1SOCE參與結(jié)腸癌惡性行為Sobradillo等[18]通過(guò)研究發(fā)現(xiàn),與正常結(jié)腸上皮細(xì)胞(NCM460)相比,人類結(jié)腸癌細(xì)胞(HT29)中SOCE表達(dá)增強(qiáng),鈣儲(chǔ)存離子流增多,鈣庫(kù)耗竭速率加快導(dǎo)致細(xì)胞惡性行為增強(qiáng),腫瘤細(xì)胞靜息期鈣離子水平、對(duì)鈣離子激動(dòng)劑敏感性、鈣庫(kù)鈣離子水平及鈣庫(kù)儲(chǔ)存鈣內(nèi)流均高于正常細(xì)胞。腫瘤細(xì)胞存在TRPC1、ORAI1、ORAI2、ORAI3、STIM1過(guò)表達(dá),其增殖速率、細(xì)胞移動(dòng)能力、抵抗調(diào)亡及脫離原組織潛能均明顯高于正常結(jié)腸癌細(xì)胞。

3.2SOCE參與胰腺導(dǎo)管癌惡性行為胰腺導(dǎo)管腺癌是與癌相關(guān)死亡率最高的惡性腫瘤,癌細(xì)胞EMT過(guò)程、遷移及侵襲與腫瘤惡性程度息息相關(guān),Okeke等[19]報(bào)道稱,鈣信號(hào)級(jí)聯(lián)反應(yīng)中IP3R3及SOCE參與該癌細(xì)胞行為。胰腺正常初級(jí)腺泡細(xì)胞IP3R3主要存在于細(xì)胞頂端旁,靠近細(xì)胞間緊密連接區(qū)域,而在胰腺導(dǎo)管腺癌細(xì)胞中則主要分布在細(xì)胞邊緣,同時(shí)ER-PM結(jié)合區(qū)域及STIM分布也會(huì)從細(xì)胞間相互作用區(qū)域改分布到細(xì)胞邊緣區(qū),其功能也從在生理情況下調(diào)節(jié)細(xì)胞外泌變化至促進(jìn)腫瘤細(xì)胞與原組織脫離與加速遷移。目前研究[20]表明,鈣離子信號(hào)復(fù)合體促使癌細(xì)胞形成“間葉細(xì)胞”表型,并參與癌細(xì)胞與原組織解除空間及功能聯(lián)系,其中IP3R3和STIM1/ER-PM對(duì)胰腺導(dǎo)管腺癌細(xì)胞遷移及極性改變發(fā)揮較大作用,破壞這種極性作用則會(huì)阻止癌細(xì)胞的遷移、侵襲及轉(zhuǎn)移。

3.3SOCE參與肝癌惡性行為在正常肝細(xì)胞及肝癌細(xì)胞中,SOCE是調(diào)控胞內(nèi)鈣濃度的重要通道,有研究[21]表明,鈣流在肝癌細(xì)胞形成、增殖及遷移中發(fā)揮重要作用。Yang等[16]報(bào)道稱,STIM1在肝癌組織中表達(dá)遠(yuǎn)高于癌旁組織及正常肝組織;在肝癌細(xì)胞HCC-LM3中,STIM1表達(dá)是LO2、HepG2、Huh7、Hep3B等其他肝癌細(xì)胞系的5倍,可能與HCC-LM3細(xì)胞具有更強(qiáng)的遷移能力有關(guān),同時(shí)用STIM1 siRNA及鈣離子阻滯劑SKF96365可使HCC-LM3局部浸潤(rùn)能力降低;黏著斑組分包括多種跨膜整合素及胞漿蛋白,參與細(xì)胞骨架肌動(dòng)蛋白同細(xì)胞外基質(zhì)的聯(lián)系,黏著斑裝配及拆卸在細(xì)胞遷移過(guò)程中不可或缺,有研究[22]表明,黏著斑行為部分受SOCE控制,STIM1已被證明是肝癌細(xì)胞黏附及遷移過(guò)程的關(guān)鍵因素,在遷移能力較強(qiáng)的癌細(xì)胞中,阻滯該分子可增強(qiáng)細(xì)胞黏著能力、干擾黏著斑周轉(zhuǎn),并使纖味連接蛋白與細(xì)胞外基質(zhì)錨定聯(lián)系增強(qiáng),表明SOCE及STIM1參與肝癌細(xì)胞的遷移及侵襲。

4 SOCE在腫瘤中作用機(jī)制探討

目前研究[23-25]顯示,在不同種類的消化道腫瘤細(xì)胞中都發(fā)現(xiàn)STIM1及ORAI1表達(dá)異常可調(diào)節(jié)致癌基因表達(dá)。Xia等[26]通過(guò)一系列體內(nèi)外實(shí)驗(yàn)研究表明,胃癌組織中STIM1及ORAI1高表達(dá)可上調(diào)MACC1表達(dá),促進(jìn)胃癌細(xì)胞增殖、轉(zhuǎn)移、遷徙及侵襲,其臨床樣本數(shù)據(jù)表明,約80%的患者手術(shù)病理標(biāo)本胃癌組織中STIM1及ORAI1表達(dá)遠(yuǎn)高于正常組織,臨床追蹤顯示,處于相同腫瘤分期的患者,STIM1及ORAI1表達(dá)水平越高,腫瘤進(jìn)展越迅速,預(yù)后越差;相關(guān)研究[27]表明,應(yīng)用小干擾RNA使STIM1及ORAI1表達(dá)降低,結(jié)腸癌細(xì)胞周期停滯于G1期,增殖能力相應(yīng)降低。細(xì)胞轉(zhuǎn)染48 h后進(jìn)行mRNA及蛋白水平檢測(cè):與細(xì)胞分裂相關(guān)的p21會(huì)上調(diào),Cycline D則會(huì)相應(yīng)下降,細(xì)胞遷移水平明顯受到影響降低,波形蛋白及纖維蛋白表達(dá)水平降低,E鈣連蛋白水平升高;過(guò)表達(dá)細(xì)胞則表現(xiàn)為相反結(jié)果。更為重要的是,ORAI1及STIM1基因沉默可促使癌細(xì)胞中MACC1mRNA與蛋白表達(dá)水平明顯降低,進(jìn)一步影響細(xì)胞增殖與遷徙能力,相關(guān)證據(jù)表明MACC1可以促進(jìn)胃癌細(xì)胞增殖、遷移及癌組織中上皮細(xì)胞向間充質(zhì)細(xì)胞轉(zhuǎn)化,新生淋巴管及血管的形成[28],目前所知miR-338-3p為MACC1上游因子調(diào)控其表達(dá)[3],相關(guān)實(shí)驗(yàn)[29]表明,SOCE從致癌基因表達(dá)水平影響細(xì)胞增殖及遷徙,為SOCE的生物學(xué)行為提供新的研究方向。

5 靶向作用于SOCE治療腫瘤

越來(lái)越多的證據(jù)表明,改變腫瘤鈣信號(hào)通路對(duì)腫瘤增殖遷移有一定影響,特異性作用于鈣流或與鈣離子信號(hào)通路相關(guān)的物質(zhì)有望作為治療腫瘤的新藥物[30],目前臨床上已使用一些鈣離子通道阻滯劑及單克隆抗體治療腫瘤,但藥效不盡理想,亟待進(jìn)一步明確藥物作用機(jī)制以提高藥效。

SKF96365鈣離子拮抗劑被廣泛用于研究非興奮細(xì)胞中SOCE的病理生理功能,既往研究[31]表明,SKF96365在不同種類腫瘤細(xì)胞中都具有細(xì)胞毒性,Cai 等[31]報(bào)道稱,SKF-96365通過(guò)拮抗TRPC通道使胃癌細(xì)胞停滯于G2/M期阻止細(xì)胞增殖。移植瘤裸鼠腹腔注射SKF-96365 可顯著降低食管鱗狀細(xì)胞癌的生長(zhǎng)速度[32]。Selvaraj等[33]表明,SKF-96365通過(guò)下調(diào)STIM1的表達(dá)誘導(dǎo)前列腺癌細(xì)胞自噬及抑制癌細(xì)胞生長(zhǎng)。

Le poul等[34]報(bào)道稱,丁酸可通過(guò)SOCE介導(dǎo)的信號(hào)通路網(wǎng)絡(luò)誘發(fā)結(jié)腸癌細(xì)胞凋亡。丁酸,是一種來(lái)源于膳食的短鏈脂肪酸,其鈉鹽形式可誘導(dǎo)細(xì)胞內(nèi)質(zhì)網(wǎng)鈣離子的釋放,丁酸與其受體GPR41識(shí)別后,可直接與1,4,5-三磷酸肌醇及百日咳毒素敏感家族G1/G0蛋白相結(jié)合,這一信號(hào)可促使胞內(nèi)鈣釋放、胞外鈣離子內(nèi)流,用丁酸鈉處理后的細(xì)胞會(huì)出現(xiàn)核凝結(jié)及核碎片形成,促進(jìn)與凋亡相關(guān)的聚腺苷二磷酸-核糖聚合酶裂解;除了受體介導(dǎo),丁酸及其鈉鹽也被許多研究證實(shí)可調(diào)節(jié)SERCA的行為(sarcoplasmic/endoplasmic reticulum Ca2+-ATPase內(nèi)質(zhì)網(wǎng)鈣離子-ATP酶), SERCA可促使內(nèi)質(zhì)網(wǎng)再攝取胞內(nèi)鈣[35],擁有類似毒胡蘿卜素調(diào)節(jié)SERCA及激活SOCE的能力[36],相應(yīng)的,鈣離子螯合劑EGTA或BAPTA/AM可阻斷丁酸鈉引發(fā)的細(xì)胞凋亡,更加證明了丁酸鈉觸發(fā)結(jié)腸癌細(xì)胞凋亡依賴于SOCE參與。

Guéguinou等[37]報(bào)道稱,SOCE可以通過(guò)TRP1/ORAI1-SK3復(fù)合物形成脂筏離子通道促進(jìn)結(jié)腸癌細(xì)胞遷移,這一復(fù)合物形成有賴于EGF介導(dǎo)的網(wǎng)狀蛋白STIM1磷酸化及AKT通路的激活,抗表皮生長(zhǎng)因子受體單克隆抗體(anti-EGFR mAbs)可以通過(guò)Akt通路調(diào)節(jié)SOCE的功能及降低結(jié)腸癌細(xì)胞的遷移率;同時(shí),SK3通路阻滯劑Ohmline可以通過(guò)AKt的降磷酸化分解TRP1/ORAI1-SK復(fù)合離子通道,進(jìn)而阻滯癌細(xì)胞遷移,且該阻滯劑對(duì)mAbs也有一定調(diào)節(jié)作用。

Chen等[38]報(bào)道稱,EGF作為腫瘤遷移刺激因子,參與STIM多聚化及遷移至ORAI結(jié)合區(qū)等SOCE激活過(guò)程,該過(guò)程可引發(fā)腫瘤細(xì)胞中一系列級(jí)聯(lián)反應(yīng),包括激發(fā)鈣濃度依賴鈣調(diào)蛋白及酪氨酸激酶Pyk2調(diào)節(jié)腫瘤細(xì)胞黏著斑周轉(zhuǎn),STIM1依賴鈣信號(hào)通過(guò)重塑肌球蛋白結(jié)構(gòu)改變收縮力調(diào)控結(jié)腸癌細(xì)胞運(yùn)動(dòng),STIM1基因沉默則會(huì)使黏著斑激酶及踝蛋白的募集與聯(lián)合受到抑制,導(dǎo)致黏著斑運(yùn)轉(zhuǎn)周期阻滯及細(xì)胞運(yùn)動(dòng)牽引力改變。相關(guān)研究[16]表明,肝癌細(xì)胞中黏著斑重塑依賴鈣濃度相關(guān)酪氨酸激酶Pyk2、黏著斑相關(guān)蛋白分解過(guò)程也依賴鈣蛋白酶及MLC磷酸化。

Wang等[39]實(shí)驗(yàn)進(jìn)一步表明,STIM1通過(guò)上調(diào)細(xì)胞中環(huán)氧合酶-2(COX-2)表達(dá)及PGE2生成促進(jìn)結(jié)直腸癌細(xì)胞遷移,在STIM1沉默的細(xì)胞中COX-2過(guò)表達(dá)或予外源性PGE2同樣可以促進(jìn)細(xì)胞遷移,而用布洛芬或吲哚美辛等COX-2拮抗劑可阻斷STIM1介導(dǎo)的結(jié)直腸癌細(xì)胞運(yùn)動(dòng),并明顯降低癌組織大小、侵襲周圍淋巴結(jié)的能力,這項(xiàng)研究為應(yīng)用COX-2拮抗劑即臨床所知的非甾體類抗炎藥阻斷SOCE造成腫瘤轉(zhuǎn)移提供了新思路。

綜上所述,鈣離子信號(hào)通路蛋白及其下游因子均與腫瘤細(xì)胞增殖、遷移密不可分,具體作用機(jī)制仍待進(jìn)一步研究,STIM/ORAI蛋白介導(dǎo)的SOCE在腫瘤發(fā)生及惡性行為中發(fā)揮重要作用,其可調(diào)控致癌基因表達(dá)程度、腫瘤刺激因子激活、細(xì)胞骨架重塑及黏著斑周轉(zhuǎn)。許多研究正在發(fā)掘靶向作用于STIM及ORAI的藥物,阻滯SOCE造成的腫瘤細(xì)胞惡性行為,成為治愈腫瘤研究新熱點(diǎn)。

[1] Chen YW, Chen YF, Chiu WT, et al. STIM1-dependent Ca2+ signaling regulates podosome formation to facilitate cancer cell invasion [J]. Sci Rep, 2017, 7(1): 11523.

[2] Chen YF, Chen YT, Chiu WT, et al. Remodeling of calcium signaling in tumor progression [J]. J Biomed Sci, 2013, 20: 23.

[3] Wang L, Lin L, Chen X, et al. Metastasis-associated in colon cancer-1 promotes vasculogenic mimicry in gastric cancer by upregulating TWIST1/2 [J]. Oncotarget, 2015, 6(13): 11492-11506.

[4] Thiel M, Lis A, Penner R. STIM2 drives Ca2+ oscillations through store-operated Ca2+ entry caused by mild store depletion [J]. J Physiol, 2013, 591(6): 1433-1445.

[5] Wang X, Wang Y, Zhou Y, et al. Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site [J]. Nat Commun, 2014, 5: 3183.

[6] Stathopulos PB, Schindl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry [J]. Nat Commun, 2013, 4: 2963.

[7] Zhou Y, Srinivasan P, Razavi S, et al. Initial activation of STIM1, the regulator of store-operated calcium entry [J]. Nat Struct Mol Biol, 2013, 20(8): 973-981.

[8] Shuttleworth TJ. Orai3-the ‘exceptional’Orai[J]. J Physiol, 2012, 590(2): 241-257.

[9] Putney JW Jr. A model for receptor-regulated calcium entry [J]. Cell Calcium, 1986, 7(1): 1-12.

[10] Ma G, Wei M, He L, et al. Inside-out Ca(2+) signalling prompted by STIM1 conformational switch [J]. Nat Commun, 2015, 6: 7826.

[11] Soboloff J, Rothberg BS, Madesh M, et al. STIM proteins: dynamic calcium signal transducers [J]. Nat Rev Mol Cell Biol, 2012, 13(9): 549-565.

[12] Lewis RS. Store-operated calcium channels: new perspectives on mechanism and function [J]. Cold Spring Harb Perspect Biol, 2011, 3(12): a003970.

[13] Gudlur A, Zhou Y, Hogan PG. STIM-ORAI interactions that control the CRAC channel [J]. Curr Top Membr, 2013, 71: 33-58.

[14] Motiani RK, Hyzinski-García MC, Zhang X, et al. STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastomainvasion [J]. Pflugers Arch, 2013, 465(9): 1249-1260.

[15] Motiani RK, Abdullaev IF, Trebak M. A novel native store-operated calcium channel encoded by Orai3 selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells [J]. J Biol Chem, 2010, 285(25): 19173-19183.

[16] Yang N, Tang Y, Wang F, et al. Blockade of store-operated Ca 2+ entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover [J]. Cancer Lett, 2013, 330(2): 163-169.

[17] Aytes A, Molleví DG, Martinez-Iniesta M, et al. Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype [J]. Mol Carcinog, 2012, 51(9): 746-753.

[18] Sobradillo D, Hernández-Morale M, Ubierna D, et al. A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells[J]. J Biol Chen 2014,289(42): 28765-28782.

[19] Okeke E, Parker T, Dingsdale H, et al. Epithelial-mesenchymal transition, IP3 receptors and ER-PM junctions: translocation of Ca2+ signalling complexes and regulation of migration [J]. Biochem J, 2016, 473(6): 757-767.

[20] Kondratska K, Kondratskyi A, Yassine M, et al. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma [J]. Biochim Biophys Acta, 2014, 1843(10): 2263-2269.

[21] El C, Bidaux G, Enfissi A, et al. Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation [J]. Hepatology, 2008, 47(6): 2068-2077.

[22] Lee J, Ishihara A, Oxford G, et al. Regulation of cell movement is mediated by stretch-activated calcium channels [J]. Nature, 1999, 400(6742): 382-386.

[23] Choi S, Cui C, Luo Y, et al. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1 [J]. FASEB J, 2017, pii: fj.201700227RRR.

[24] Ali ES, Rychkov GY, Barritt GJ. Metabolic disorders and cancer: hepatocyte store-operated Ca2+ channels in nonalcoholic fatty Liver disease [J]. Adv Exp Med Biol, 2017, 993: 595-621.

[25] Wan H, Xie R, Xu J, et al. Anti-proliferative effects of nucleotides on gastric cancer via a novel P2Y6/SOCE/Ca2+/beta-catenin pathway [J]. Sci Rep, 2017, 7(1): 2459.

[26] Xia J, Wang H, Huang H, et al. Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer [J]. Cancer Lett, 2016, 381(1): 31-40.

[27] Gui L, Wang Z, Han J, et al. High expression of Orai1 enhances cell proliferation and is associated with poor prognosis in Human colorectal cancer [J]. Clin Lab, 2016, 62(9): 1689-1698.

[28] Huang N, Wu Z, Lin L, et al. MiR-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Aktsignaling [J]. Oncotarget, 2015, 6(17): 15222-155234.

[29] Chen F, Hsu KF, Shen MR. The store-operated Ca(2+) entry-mediated signaling is important for cancer spread [J]. Biochim Biophys Acta, 2016, 1863(6 Pt B): 1427-1435.

[30] Liu KH, Yang ST, Lin YK, et al. Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis [J]. Oncotarget, 2015, 6(7): 5088-5101.

[31] Cai R, Ding X, Zhou K, et al. Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells [J]. Int J Cancer, 2009, 125(10): 2281-2287.

[32] Zhu H, Zhang H, Jin F, et al. Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma [J]. Oncotarget, 2014, 5(11): 3455-3471.

[33] Selvaraj S, Sun Y, Sukumaran P, et al. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the Mtor pathway [J]. Mol Carcinog, 2016, 55(5): 818-831.

[34] Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation [J]. J Biol Chem, 2003, 278(28): 25481-25489.

[35] Ruf T, Arnold W. Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis [J]. Am J Physiol Regul Integr Comp Physiol, 2008, 294(3): R1044-R1052.

[36] Mignen O, Thompson JL, Shuttleworth TJ. Ca2+ selectivity and fatty acid specificity of the noncapacitative, arachidonate-regulated Ca2+ (ARC) channels [J]. J Biol Chem, 2003, 278(12): 10174-10181.

[37] Guéguinou M, HarnoisT, Crottes D, et al. SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline [J]. Oncotarget, 2016, 7(24): 36168-36184.

[38] Chen YT, Chen YF, Chiu WT, et al. The ER Ca2+ sensor STIM1 regulates actomyosin contractility of migratory cells [J]. J Cell Sci, 2013, 126(Pt 5): 1260-1267.

[39] Wang JY, Sun J, Huang MY, et al. STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression [J]. Oncogene, 2014, 34(33): 4358-4367.

(責(zé)任編輯:陳香宇)

RegulatoryeffectofSOCEoncellproliferationandmigrationofdigestivetracttumors

KONG Rui, LU Jie

Department of Gastroenterology, Shanghai Tenth People’s Hospital, Shanghai 200072, China

Calcuim is an important second messenger regulates cellular physiological activities by taking part in gene transcription, protein expression and intracellular signal transduction. Recently, how matrix associated mocular stromal interaction molecule (STIM1), located in the endoplasmic reticulum, and Calcium channels store-opearted calcium entry (SOCE) mediated by Calcium release channel calcium release-activated calcium channel protein1 (CRCM1/ORAI1) control the tumor biological behavior has become a hot research topic, including tumor cells proliferation, migration, invasion and apoptosis. Some studies have shown that calcium homeostasis changed by calcium influx is the trigger of signal activities, resulting the specific downstream cascade, and influent the expression of intracellular enzyme, gene transcription and signal molecules. In this review, we will introduce the information of SOCE channel, the regulating mechanism of tumor cell proliferation and invasion in the digestive system cancers, and the anti-tumor drugs targeting at SOCE channel.

Store-operateol calcium entry; Gastrointestinal cancer; Oncogene; Proliferation; Migration

盧潔, 博士,副主任醫(yī)師,研究方向:消化道腫癌。E-mail: kennisren@hotmail.com

10.3969/j.issn.1006-5709.2017.11.028

R735

A

1006-5709(2017)11-1309-04

2016-12-10

猜你喜歡
內(nèi)質(zhì)網(wǎng)結(jié)腸癌調(diào)控
內(nèi)質(zhì)網(wǎng)自噬及其與疾病的關(guān)系研究進(jìn)展
憤怒誘導(dǎo)大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá)
如何調(diào)控困意
經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
LPS誘導(dǎo)大鼠肺泡上皮細(xì)胞RLE-6 TN內(nèi)質(zhì)網(wǎng)應(yīng)激及凋亡研究
MicroRNA-381的表達(dá)下降促進(jìn)結(jié)腸癌的增殖與侵襲
順勢(shì)而導(dǎo) 靈活調(diào)控
結(jié)腸癌切除術(shù)術(shù)后護(hù)理
SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
Caspase12在糖尿病大鼠逼尿肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激中的表達(dá)
余干县| 灌阳县| 板桥市| 汾阳市| 麦盖提县| 济南市| 吉隆县| 武鸣县| 云和县| 安康市| 通化市| 衡南县| 千阳县| 东海县| 长沙县| 遂宁市| 玛沁县| 中宁县| 西贡区| 丰镇市| 鄂托克旗| 涞水县| 台中市| 榕江县| 公安县| 肇源县| 武安市| 封开县| 龙泉市| 岳普湖县| 涿州市| 若尔盖县| 溧阳市| 遵义市| 扎鲁特旗| 甘泉县| 怀宁县| 宝丰县| 汝州市| 闽清县| 二连浩特市|