国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

李超三系上帶有權(quán)λ的廣義導(dǎo)子

2017-03-13 11:17張慶成
關(guān)鍵詞:李超有權(quán)廣義

尹 雪,劉 寧,張慶成

(東北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,吉林 長(zhǎng)春 130024)

李超三系上帶有權(quán)λ的廣義導(dǎo)子

尹 雪,劉 寧,張慶成

(東北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,吉林 長(zhǎng)春 130024)

給出了李超三系上帶有權(quán)λ的廣義(θ,φ)-導(dǎo)子和帶有權(quán)λ的廣義Jordan(θ,φ)-導(dǎo)子的定義,得到了李超三系上帶有權(quán)λ的廣義Jordan(θ,φ)-導(dǎo)子是帶有權(quán)λ的廣義(θ,φ)-導(dǎo)子的充分條件,對(duì)李超三系上廣義導(dǎo)子的相關(guān)結(jié)果進(jìn)行了推廣.

廣義導(dǎo)子;廣義Jordan導(dǎo)子;李超三系;權(quán)λ

1 預(yù)備知識(shí)

李超三系的概念是在解Yang-Baxter方程的過(guò)程中逐漸提出的.[1]文獻(xiàn)[2]應(yīng)用三角積解決了Yang-Baxter方程的問題.李超三系雖然是新提出的,但它易于接受,其與李超代數(shù)的關(guān)系,就如同李三系與李代數(shù)的關(guān)系.李三系的研究曾主要集中在單李三系的研究上,文獻(xiàn)[3]從多個(gè)方面對(duì)李三系進(jìn)行了系統(tǒng)的研究,對(duì)李三系的導(dǎo)子、分解唯一性等都進(jìn)行了系統(tǒng)的討論.

導(dǎo)子代數(shù)與廣義導(dǎo)子代數(shù)在李代數(shù)和李超代數(shù)的研究中起著非常重要的作用.[4]文獻(xiàn)[5-6]對(duì)n-李代數(shù)導(dǎo)子、李三系廣義導(dǎo)子進(jìn)行了研究,但是帶有權(quán)的廣義導(dǎo)子的研究卻少之又少.本文在文獻(xiàn)[7]的基礎(chǔ)上對(duì)帶有權(quán)的廣義導(dǎo)子進(jìn)行了研究.

定義1.1[8]Z2-階化線性空間T上若有三元運(yùn)算[·,·,·]滿足:

(1)d([x,y,z])≡(d(x)+d(y)+d(z))(mod 2);

(2) [x,y,z]=-(-1)d(x)d(y)[y,x,z];

(3) (-1)d(x)d(z)[x,y,z]+(-1)d(x)d(y)[y,z,x]+(-1)d(y)d(z)[z,x,y]=0;

(4) [u,v,[x,y,z]]=[[u,v,x],y,z]+(-1)(d(u)+d(v))d(x)[x,[u,v,y],z]+(-1)(d(u)+d(v))(d(x)+d(y))·[x,y,[u,v,z]].

其中x,y,z,u,v是T中的齊次元素,d(x)表示齊次元素x的Z2次數(shù).則稱T為李超三系.本文中符號(hào)d(x)出現(xiàn)時(shí)默認(rèn)x為T中的齊次元素.

定義1.2[7]設(shè)T是李超三系,則:

(1) 一個(gè)齊次線性映射D1:T→T被稱為關(guān)于(θ,φ)1-導(dǎo)子δ1的廣義(θ,φ)1-導(dǎo)子,若d(D1)=d(δ1),且

D1([x,y,z])=[δ1(x),θ(y),φ(z)]+(-1)d(D1)d(x)[θ(x),δ1(y),φ(z)]+
(-1)d(D1)(d(x)+d(y))[θ(x),φ(y),D1(z)],?x,y,z∈T;

(2) 一個(gè)齊次線性映射D2:T→T被稱為關(guān)于(θ,φ)2-導(dǎo)子δ2的廣義(θ,φ)2-導(dǎo)子,若d(D2)=d(δ2),且

D2([x,y,z])=[δ2(x),θ(y),θ(z)]+(-1)d(D2)d(x)[θ(x),δ2(y),φ(z)]+
(-1)d(D2)(d(x)+d(y))[φ(x),φ(y),D2(z)],?x,y,z∈T;

(3) 一個(gè)齊次線性映射D3:T→T被稱為關(guān)于(θ,φ)3-導(dǎo)子δ3的廣義(θ,φ)3-導(dǎo)子,若d(D3)=d(δ3),且

D3([x,y,z])=[δ3(x),θ(y),θ(z)]+(-1)d(D3)d(x)[φ(x),δ3(y),θ(z)]+
(-1)d(D3)(d(x)+d(y))[φ(x),φ(y),D3(z)],?x,y,z∈T.

特別地,?i=1,2,3,若θ=φ,則稱廣義(θ,φ)i-導(dǎo)子D為關(guān)于θ-導(dǎo)子δ的廣義θ-導(dǎo)子.當(dāng)θ=φ=1T且δ是導(dǎo)子時(shí),稱D是廣義導(dǎo)子.

定義1.3[7]設(shè)T是李超三系,有:

(1) 若δ1為Jordan(θ,φ)1-導(dǎo)子,則一個(gè)齊次線性映射D1:T→T被稱為關(guān)于δ1的廣義Jordan(θ,φ)1-導(dǎo)子,如果d(D1)=d(δ1),且

D1([x,y,x])=[δ1(x),θ(y),φ(x)]+(-1)d(D1)d(x)[θ(x),δ1(y),φ(x)]+
(-1)d(D1)(d(x)+d(y))[θ(x),φ(y),D1(x)],?x,y∈T;

(2) 若δ2為Jordan(θ,φ)2-導(dǎo)子,則一個(gè)齊次線性映射D2:T→T被稱為關(guān)于δ2的廣義Jordan(θ,φ)2-導(dǎo)子,如果d(D2)=d(δ2),且

D2([x,y,x])=[δ2(x),θ(y),θ(x)]+(-1)d(D2)d(x)[θ(x),δ2(y),φ(x)]+
(-1)d(D2)(d(x)+d(y))[φ(x),φ(y),D2(x)],?x,y∈T;

(3) 若δ3為Jordan(θ,φ)3-導(dǎo)子,則一個(gè)齊次線性映射D3:T→T被稱為關(guān)于δ3的廣義Jordan(θ,φ)3-導(dǎo)子,如果d(D3)=d(δ3),且

D3([x,y,x])=[δ3(x),θ(y),θ(x)]+(-1)d(D3)d(x)[φ(x),δ3(y),θ(x)]+
(-1)d(D3)(d(x)+d(y))[φ(x),φ(y),D3(x)],?x,y∈T.

特別地,?i=1,2,3,若θ=φ,則稱廣義Jordan(θ,φ)i-導(dǎo)子D為關(guān)于Jordanθ-導(dǎo)子δ的廣義Jordanθ-導(dǎo)子.當(dāng)θ=φ=1T,且δ是Jordan導(dǎo)子時(shí),稱D是廣義Jordan導(dǎo)子.

本文假設(shè):基域F的特征不為3;T是一個(gè)李超三系;θ,φ:T→T是T的齊次線性映射,且d(θ)=d(φ)=0.

定義1.4設(shè)T是李超三系,有:

(1) 設(shè)α1是(θ,φ)1-導(dǎo)子,且d(α1)=0,δ1為帶有權(quán)λ的(θ,φ)1-導(dǎo)子.一個(gè)齊次線性映射D1:T→T被稱為關(guān)于δ1的廣義帶有權(quán)λ的(θ,φ)1-導(dǎo)子,若d(D1)=d(δ1),且

D1([x,y,z])=[δ1(x),θ(y),φ(z)]+(-1)d(D1)d(x)[θ(x),δ1(y),φ(z)]+
(-1)d(D1)(d(x)+d(y))[θ(x),φ(y),D1(z)]+λ[α1(x),α1(y),φ(z)]+
λ[α1(x),θ(y),α1(z)]+λ[θ(x),α1(y),α1(z)]+λ2[α1(x),α1(y),α1(z)],?x,y,z∈T.

(2) 設(shè)α2是(θ,φ)2-導(dǎo)子,且d(α2)=0,δ2為帶有權(quán)λ的(θ,φ)2-導(dǎo)子.一個(gè)齊次線性映射D2:T→T被稱為關(guān)于δ2的廣義帶有權(quán)λ的(θ,φ)2-導(dǎo)子,若d(D2)=d(δ2),且

D2([x,y,z])=[δ2(x),θ(y),θ(z)]+(-1)d(D2)d(x)[θ(x),δ2(y),φ(z)]+
(-1)d(D2)(d(x)+d(y))[φ(x),φ(y),D2(z)]+λ[α2(x),α2(y),φ(z)]+
λ[α2(x),φ(y),α2(z)]+λ[φ(x),α2(y),α2(z)]+λ2[α2(x),α2(y),α2(z)],?x,y,z∈T.

(3) 設(shè)α3是(θ,φ)3-導(dǎo)子,且d(α3)=0,δ3為帶有權(quán)λ的(θ,φ)3-導(dǎo)子.一個(gè)齊次線性映射D3:T→T被稱為關(guān)于δ3的廣義帶有權(quán)λ的(θ,φ)3-導(dǎo)子,若d(D3)=d(δ3),且

D3([x,y,z])=[δ3(x),θ(y),θ(z)]+(-1)d(D3)d(x)[φ(x),δ3(y),θ(z)]+
(-1)d(D3)(d(x)+d(y))[φ(x),φ(y),D3(z)]+λ[α3(x),α3(y),θ(z)]+
λ[α3(x),φ(y),α3(z)]+λ[φ(x),α3(y),α3(z)]+λ2[α3(x),α3(y),α3(z)],?x,y,z∈T.

特別地,?i=1,2,3,若θ=φ,則稱廣義帶有權(quán)λ的(θ,φ)i-導(dǎo)子D為關(guān)于帶有權(quán)λ的θ-導(dǎo)子δ的廣義帶有權(quán)λ的θ-導(dǎo)子.當(dāng)θ=φ=1T,且δ是帶有權(quán)λ的導(dǎo)子時(shí),稱D是廣義帶有權(quán)λ的導(dǎo)子.

定義1.5設(shè)T是李超三系,有:

(1) 設(shè)α1是Jordan(θ,φ)1-導(dǎo)子,且d(α1)=0,δ1為帶有權(quán)λ的Jordan(θ,φ)1-導(dǎo)子.一個(gè)齊次線性映射D1:T→T被稱為關(guān)于δ1的廣義帶有權(quán)λ的Jordan(θ,φ)1-導(dǎo)子,若d(D1)=d(δ1),且

D1([x,y,x])=[δ1(x),θ(y),φ(x)]+(-1)d(D1)d(x)[θ(x),δ1(y),φ(x)]+
(-1)d(D1)(d(x)+d(y))[θ(x),φ(y),D1(x)]+λ[α1(x),α1(y),φ(x)]+
λ[α1(x),θ(y),α1(x)]+λ[θ(x),α1(y),α1(x)]+λ2[α1(x),α1(y),α1(x)],?x,y∈T.

(2) 設(shè)α2是Jordan(θ,φ)2-導(dǎo)子,且d(α2)=0,δ2為帶有權(quán)λ的Jordan(θ,φ)2-導(dǎo)子.一個(gè)齊次線性映射D2:T→T被稱為關(guān)于δ2的廣義帶有權(quán)λ的Jordan(θ,φ)2-導(dǎo)子,若d(D2)=d(δ2),且

D2([x,y,x])=[δ2(x),θ(y),θ(x)]+(-1)d(D2)d(x)[θ(x),δ2(y),φ(x)]+
(-1)d(D2)(d(x)+d(y))[φ(x),φ(y),D2(x)]+λ[α2(x),α2(y),φ(x)]+
λ[α2(x),φ(y),α2(x)]+λ[φ(x),α2(y),α2(x)]+λ2[α2(x),α2(y),α2(x)],?x,y∈T.

(3) 設(shè)α3是Jordan(θ,φ)3-導(dǎo)子,且d(α3)=0,δ3為帶有權(quán)λ的Jordan(θ,φ)3-導(dǎo)子.一個(gè)齊次線性映射D3:T→T被稱為關(guān)于δ3的廣義帶有權(quán)λ的Jordan(θ,φ)3-導(dǎo)子,若d(D3)=d(δ3),且

D3([x,y,x])=[δ3(x),θ(y),θ(x)]+(-1)d(D3)d(x)[φ(x),δ3(y),θ(x)]+
(-1)d(D3)(d(x)+d(y))[φ(x),φ(y),D3(x)]+λ[α3(x),α3(y),θ(x)]+
λ[α3(x),φ(y),α3(x)]+λ[φ(x),α3(y),α3(x)]+λ2[α3(x),α3(y),α3(x)],?x,y∈T.

特別地,?i=1,2,3,若θ=φ,則稱廣義帶有權(quán)λ的Jordan(θ,φ)i-導(dǎo)子D為關(guān)于帶有權(quán)λ的Jordanθ-導(dǎo)子δ的廣義帶有權(quán)λ的Jordanθ-導(dǎo)子.當(dāng)θ=φ=1T,且δ是帶有權(quán)λ的Jordan導(dǎo)子時(shí),稱D是廣義帶有權(quán)λ的Jordan導(dǎo)子.

注1在上述定義中,當(dāng)λ=0時(shí),帶有權(quán)λ的廣義(θ,φ)i-導(dǎo)子是廣義(θ,φ)i-導(dǎo)子,帶有權(quán)λ的廣義Jordan(θ,φ)i-導(dǎo)子是廣義Jordan(θ,φ)i-導(dǎo)子(i=1,2,3).[7]當(dāng)D=δ時(shí),帶有權(quán)λ的廣義(θ,φ)i-導(dǎo)子是帶有權(quán)λ的(θ,φ)i-導(dǎo)子,帶有權(quán)λ的廣義Jordan (θ,φ)i-導(dǎo)子是帶有權(quán)λ的Jordan (θ,φ)i-導(dǎo)子(i=1,2,3).[9]

注2顯然,當(dāng)Di是T的帶有權(quán)λ的(θ,φ)i-導(dǎo)子時(shí),Di是T的帶有權(quán)λ的Jordan(θ,φ)i-導(dǎo)子(i=1,2,3).

注3在上述定義中,(θ,φ)i-導(dǎo)子及Jordan(θ,φ)i-導(dǎo)子的定義見文獻(xiàn)[7](i=1,2,3).

2 主要結(jié)論及證明

定理2.1設(shè)δ為帶有權(quán)λ的(θ,φ)1-導(dǎo)子,則D是T關(guān)于δ的帶有權(quán)λ的廣義(θ,φ)1-導(dǎo)子,當(dāng)且僅當(dāng)D是關(guān)于δ的帶有權(quán)λ的廣義Jordan(θ,φ)1-導(dǎo)子,且?x,y,z∈T,滿足:

(1) [θ(x),φ(y),D(z)]=[φ(x),θ(y),D(z)];

(2) (-1)d(x)d(z)B(x,y,z)+(-1)d(x)d(y)B(y,z,x)+(-1)d(y)d(z)B(z,x,y)=0.

其中

B(x,y,z)=[δ(x),θ(y),φ(z)]+(-1)d(D)d(x)[θ(x),δ(y),φ(z)]+
(-1)d(D)(d(x)+d(y))[θ(x),φ(y),D(z)]+λ[α1(x),α1(y),φ(z)]+
λ[α1(x),θ(y),α1(z)]+λ[θ(x),α1(y),α1(z)]+λ2[α1(x),α1(y),α1(z)].

證明必要性.設(shè)D是T的關(guān)于δ的帶有權(quán)λ的廣義(θ,φ)1-導(dǎo)子,則顯然D是帶有權(quán)λ的廣義Jordan(θ,φ)1-導(dǎo)子,且由定義1.1的條件(2)可得

D( [x,y,z])=-(-1)d(x)d(y)D([y,x,z]),

(1)

-(-1)d(x)d(y)D([y,x,z])=(-1)d(x)d(y)[δ(y),θ(x),φ(z)]+(-1)d(D)d(y)[θ(y),δ(x),φ(z)]+
(-1)d(D)(d(x)+d(y))[θ(y),φ(x),D(z)]+λ[α1(y),α1(x),φ(z)]+
λ[α1(y),θ(x),α1(z)]+λ[θ(y),α1(x),α1(z)]+λ2[α1(y),α1(x),α1(z)]=
(-1)d(D)d(x)[θ(x),δ(y),φ(z)]+[δ(x),θ(y),φ(z)]+
(-1)d(D)(d(x)+d(y))[φ(x),θ(y),D(z)]+λ[α1(x),α1(y),φ(z)]+
λ[α1(x),θ(y),α1(z)]+λ[θ(x),α1(y),α1(z)]+λ2[α1(x),α1(y),α1(z)].

從而由(1)式有

[θ(x),φ(y),D(z)]=[φ(x),θ(y),D(z)].

因?yàn)镈是T關(guān)于δ的帶有權(quán)λ的廣義(θ,φ)1-導(dǎo)子,故D([x,y,z])=B(x,y,z),從而

(-1)d(x)d(z)B(x,y,z)+(-1)d(x)d(y)B(y,z,x)+(-1)d(y)d(z)B(z,x,y)=
(-1)d(x)d(z)D([x,y,z])+(-1)d(x)d(y)D([y,z,x])+(-1)d(y)d(z)D([z,x,y])=
D((-1)d(x)d(z)[x,y,z]+(-1)d(x)d(y)[y,z,x]+(-1)d(y)d(z)[z,x,y])=0.

充分性.設(shè)D是關(guān)于δ的帶有權(quán)λ的廣義Jordan(θ,φ)1-導(dǎo)子,且滿足條件(1)和(2).為證明結(jié)論,只需要證明B(y,x,z)=-(-1)d(x)d(y)B(x,y,z)成立.事實(shí)上,

B(y,x,z)=[δ(y),θ(x),φ(z)]+(-1)d(D)d(y)[θ(y),δ(x),φ(z)]+
(-1)d(D)(d(x)+d(y))[θ(y),φ(x),D(z)]+λ[α1(y),α1(x),φ(z)]+
λ[α1(y),θ(x),α1(z)]+λ[θ(y),α1(x),α1(z)]+λ2[α1(y),α1(x),α1(z)]=
-(-1)d(x)(d(D)+d(y))[θ(x),δ(y),φ(z)]-(-1)d(D)d(y)+d(y)(d(D)+d(x))[δ(x),θ(y),φ(z)]-
(-1)d(D)(d(x)+d(y))+d(x)d(y)[φ(x),θ(y),D(z)]-λ(-1)d(x)d(y)[α1(x),α1(y),φ(z)]-
λ(-1)d(x)d(y)[α1(x),θ(y),α1(z)]-λ(-1)d(x)d(y)[θ(x),α1(y),α1(z)]-
λ2(-1)d(x)d(y)[α1(x),α1(y),α1(z)]=-(-1)d(x)d(y)((-1)d(x)d(D)[θ(x),δ(y),φ(z)]+
[δ(x),θ(y),φ(z)]+(-1)d(D)(d(x)+d(y))[φ(x),θ(y),D(z)]+λ[α1(x),α1(y),φ(z)]+
λ[α1(x),θ(y),α1(z)]+λ[θ(x),α1(y),α1(z)]+
λ2[α1(x),α1(y),α1(z)])=-(-1)d(x)d(y)B(x,y,z).

從而D是T關(guān)于δ的帶有權(quán)λ的廣義(θ,φ)1-導(dǎo)子.

推論2.1設(shè)δ為帶有權(quán)λ的θ-導(dǎo)子,則D是T關(guān)于δ的帶有權(quán)λ的廣義θ-導(dǎo)子,當(dāng)且僅當(dāng)δ為帶有權(quán)λ的Jordanθ-導(dǎo)子,D是關(guān)于δ的帶有權(quán)λ的廣義Jordanθ-導(dǎo)子,且

F(x,y,z)+F(y,z,x)+F(z,x,y)=0.

(2)

其中

F(x,y,z)=(-1)d(z)(d(D)+d(x))[θ(x),θ(y),(D-δ)(z)].

證明充分性.設(shè)D是帶有權(quán)λ的廣義Jordanθ-導(dǎo)子,則顯然定理2.1中的條件(1)成立,下證條件(2)也成立.利用(2)式與定義1.1,

(-1)d(x)d(z)B(x,y,z)+(-1)d(x)d(y)B(y,z,x)+(-1)d(y)d(z)B(z,x,y)=
(-1)d(x)d(z)[δ(x),θ(y),θ(z)]+(-1)d(x)d(z)+d(D)d(x)[θ(x),δ(y),θ(z)]+
(-1)d(x)d(z)+d(D)(d(x)+d(y))[θ(x),θ(y),D(z)]+λ(-1)d(x)d(z)[α1(x),α1(y),θ(z)]+
λ(-1)d(x)d(z)[α1(x),θ(y),α1(z)]+λ(-1)d(x)d(z)[θ(x),α1(y),α1(z)]+
λ2(-1)d(x)d(z)[α1(x),α1(y),α1(z)]+(-1)d(x)d(y)[δ(y),θ(z),θ(x)]+
(-1)d(D)d(y)+d(x)d(y)[θ(y),δ(z),θ(x)]+(-1)d(D)(d(z)+d(y))+d(x)d(y)[θ(y),θ(z),D(x)]+
λ(-1)d(x)d(y)[α1(y),α1(z),θ(x)]+λ(-1)d(x)d(y)[α1(y),θ(z),α1(x)]+
λ(-1)d(x)d(y)[θ(y),α1(z),α1(x)]+λ2(-1)d(x)d(y)[α1(y),α2(z),α2(x)]+
(-1)d(y)d(z)[δ(z),θ(x),θ(y)]+(-1)d(D)d(z)+d(y)d(z)[θ(z),δ(x),θ(y)]+
(-1)d(D)(d(z)+d(x))+d(y)d(z)[θ(z),θ(x),D(y)]+λ(-1)d(y)d(z)[θ(z),α1(x),α1(y)]+
λ2(-1)d(y)d(z)[α1(z),α1(x),α1(y)]+λ(-1)d(y)d(z)[α1(z),α1(x),θ(y)]+
λ(-1)d(y)d(z)[α1(x),θ(z),α1(y)]=(-1)d(y)d(z)[δ(x),θ(y),θ(z)]+
(-1)d(x)d(z)+d(D)d(x)[θ(x),δ(y),θ(z)]+(-1)d(x)d(z)+d(D)(d(x)+d(y))[θ(x),θ(y),δ(z)]+
λ(-1)d(x)d(z)[α1(x),α1(y),θ(z)]+λ(-1)d(x)d(z)[α1(x),θ(y),α1(z)]+
λ(-1)d(x)d(z)[θ(x),α1(y),α1(z)]+λ2(-1)d(x)d(z)[α1(x),α1(y),α1(z)]+
(-1)d(x)d(y)[δ(y),θ(z),θ(x)]+(-1)d(D)d(y)+d(x)d(y)[θ(y),δ(z),θ(x)]+
(-1)d(D)(d(z)+d(y))+d(x)d(y)[θ(y),θ(z),δ(x)]+λ(-1)d(x)d(y)[α1(y),α1(z),θ(x)]+
λ(-1)d(x)d(y)[α1(y),θ(z),α1(x)]+λ(-1)d(x)d(y)[θ(y),α1(z),α1(x)]+
λ2(-1)d(x)d(y)[α1(y),α2(z),α2(x)]+(-1)d(y)d(z)[δ(z),θ(x),θ(y)]+
(-1)d(D)d(z)+d(y)d(z)[θ(z),δ(x),θ(y)]+(-1)d(D)(d(z)+d(x))+d(y)d(z)[θ(z),θ(x),δ(y)]+
λ(-1)d(y)d(z)[θ(z),α1(x),α1(y)]+λ2(-1)d(y)d(z)[α1(z),α1(x),α1(y)]+
λ(-1)d(y)d(z)[α1(z),α1(x),θ(y)]+λ(-1)d(y)d(z)[α1(z),θ(x),α1(y)]=
(-1)d(D)d(z)((-1)d(x)d(z)+d(D)d(z)[δ(x),θ(y),θ(z)]+
(-1)d(D)d(y)+d(x)d(y)[θ(y),θ(z),δ(x)]+(-1)d(y)d(z)[θ(z),δ(x),θ(y)])+
(-1)d(D)d(x)((-1)d(x)d(z)[θ(x),δ(y),θ(z)]+(-1)d(x)d(y)+d(D)d(x)[δ(y),θ(z),θ(x)]+
(-1)d(D)d(z)+d(y)d(z)[θ(z),θ(x),δ(y)])+(-1)d(D)d(y)((-1)d(x)d(D)+d(x)d(z)[θ(x),θ(y),δ(z)]+
(-1)d(x)d(y)[θ(y),δ(z),θ(x)]+(-1)d(y)d(z)+d(D)d(y)[δ(z),θ(x),θ(y)])+
λ((-1)d(x)d(z)[α1(x),α1(y),θ(z)]+(-1)d(x)d(y)[α1(y),θ(z),α1(x)]+
(-1)d(y)d(z)[θ(z),α1(x),α1(y)])+λ((-1)d(x)d(z)[α1(x),θ(y),α1(z)]+
(-1)d(x)d(y)[θ(y),α1(z),α1(x)]+(-1)d(y)d(z)[α1(z),α1(x),θ(y)])+
λ((-1)d(x)d(z)[θ(x),α1(y),α1(z)]+(-1)d(x)d(y)[α1(y),α1(z),θ(x)]+
(-1)d(y)d(z)[α1(z),θ(x),α1(y)])+λ2((-1)d(x)d(z)[α1(x),α1(y),α1(z)]+
(-1)d(x)d(y)[α1(y),α1(z),α1(x)]+(-1)d(y)d(z)[α1(z),α1(x),α1(y)])=0,

故定理2.1的條件(2)也成立.由推論2.1條件可知δ是帶有權(quán)λ的θ-導(dǎo)子,故由定理2.1可得D是關(guān)于δ的帶有權(quán)λ的廣義θ-導(dǎo)子.

必要性.設(shè)D是T關(guān)于δ的帶有權(quán)λ的廣義θ-導(dǎo)子.由定理2.1,

(-1)d(z)d(x)B(x,y,z)+(-1)d(x)d(y)B(y,z,x)+(-1)d(y)d(z)B(z,x,y)=0,

消去相同項(xiàng)即得

(-1)d(z)(d(D)+d(x))[θ(x),θ(y),(D-δ)(z)]+
(-1)d(x)(d(D)+d(y))[θ(y),θ(z),(D-δ)(x)]+
(-1)d(y)(d(D)+d(z))[θ(z),θ(x),(D-δ)(y)]=0,

即(2)式成立.顯然D是關(guān)于帶有權(quán)λ的Jordanθ-導(dǎo)子δ的帶有權(quán)λ的廣義Jordanθ-導(dǎo)子.

利用定理2.1的證明方法,易證下列結(jié)論:

定理2.2設(shè)δ為帶有權(quán)λ的(θ,φ)2-導(dǎo)子,則D是T關(guān)于δ的帶有權(quán)λ的(θ,φ)2-導(dǎo)子,當(dāng)且僅當(dāng)D是關(guān)于帶有權(quán)λ的(θ,φ)2-導(dǎo)子,且?x,y,z∈T,有:

(1) [δ(x),θ(y),(φ-θ)(z)]=(-1)d(D)d(x)[θ(x),δ(y),(φ-θ)(z)];

(2) (-1)d(x)d(z)B′(x,y,z)+(-1)d(x)d(y)B′(y,z,x)+(-1)d(y)d(z)B′(z,x,y)=0.

其中

B′(x,y,z)=[δ(x),θ(y),θ(z)]+(-1)d(D)d(x)[θ(x),δ(y),φ(z)]+
(-1)d(D)(d(x)+d(y))[φ(x),φ(y),D(z)]+
λ[α2(x),α2(y),φ(z)]+λ[α2(x),φ(y),α2(z)]+
λ[φ(x),α2(y),α2(z)]+λ2[α2(x),α2(y),α2(z)].

定理2.3設(shè)δ為帶有權(quán)λ的(θ,φ)3-導(dǎo)子,則D是T關(guān)于δ的帶有權(quán)λ的(θ,φ)3-導(dǎo)子,當(dāng)且僅當(dāng)D是關(guān)于δ的帶有權(quán)λ的廣義Jordan(θ,φ)3-導(dǎo)子,且?x,y,z∈T,有:

(1) [δ(x),(φ-θ)(y),θ(z)]=(-1)d(D)d(x)[(φ-θ)(x),δ(y),θ(z)];

(2) (-1)d(x)d(z)B″(x,y,z)+(-1)d(x)d(y)B″(y,z,x)+(-1)d(y)d(z)B″(z,x,y)=0.

其中

B″(x,y,z)=[δ(x),θ(y),θ(z)]+(-1)d(D)d(x)[φ(x),δ(y),θ(z)]+
(-1)d(D)(d(x)+d(y))[φ(x),φ(y),D(z)]+
λ[α3(x),α3(y),θ(z)]+λ[α3(x),φ(y),α3(x)]+
λ[φ(x),α3(y),α3(z)]+λ2[α3(x),α3(y),α3(z)].

注4推論2.1也可由定理2.2或者定理2.3得到.因?yàn)楫?dāng)D是帶有權(quán)λ的廣義Jordanθ-導(dǎo)子時(shí),定理2.2和定理2.3的條件(1)均成立,且?x,y,z∈T,B(x,y,z)=B′(x,y,z)=B″(x,y,z).

[1] 潘玉霞,張慶成,馮閃.二次李超三系的分解及唯一性[J].東北師大學(xué)報(bào)(自然科學(xué)版),2012,44:9-13.

[2] OKUBO SUSUMU.Triple products and Yang-Baxter equation and symplectic ternary systems[J].J Math Phys,1993,34:3273-3292.

[3] 史毅茜.李三系的某些結(jié)果[D].天津:南開大學(xué),2003.

[4] 倪霖.李COLOR代數(shù)的廣義導(dǎo)子[D].長(zhǎng)春:東北師范大學(xué),2011.

[5] 趙冠華.n-李代數(shù)導(dǎo)子和自同構(gòu)群[J].河北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,28(2):127-129.

[6] LI HAI LING,WANG YING.Generalized Lie triple derivations[J].Linear and Multilinear Algebra Appl,2011,59(3):237-247.

[7] 馬瑤,陳良云.李超三系的廣義導(dǎo)子[J].數(shù)學(xué)學(xué)報(bào),2013,56(6):961-970.

[8] OKUBO S.Parastatistics as Lie-supertriple systems[J].J Math Phys,1994,35(6):2785-2803.

[9] 唐鑫鑫,劉寧,張慶成.李超三系上帶有權(quán)λ的導(dǎo)子[J].吉林大學(xué)學(xué)報(bào)(理學(xué)版),2017,55(4):797-803.

OngeneralizedderivationsofweightλofLiesupertriplesystems

YIN Xue,LIU Ning,ZHANG Qing-cheng

(School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China)

The concept of generalized (θ,φ)-derivations of weightλand generalized Jordan (θ,φ)-derivations of weightλon a Lie supertriple system are introduced.It is proved that under some conditions,generalized Jordan (θ,φ)-derivations of weightλare generalized (θ,φ)-derivations of weightλ,hence some relevant results of generalized derivations of Lie supertriple are extended.

generalized derivations;generalized Jordan derivations;Lie supertriple system;weightλ

1000-1832(2017)04-0001-06

10.16163/j.cnki.22-1123/n.2017.04.001

2016-09-26

國(guó)家自然科學(xué)基金資助項(xiàng)目(11471090);吉林省自然科學(xué)基金資助項(xiàng)目(201301068JC).

尹雪(1992—),女,碩士,主要從事李理論研究;通信作者:張慶成(1960—),男,博士,教授,主要從事李理論研究.

O 152.5學(xué)科代碼110·2130

A

(責(zé)任編輯:李亞軍)

猜你喜歡
李超有權(quán)廣義
Rn中的廣義逆Bonnesen型不等式
Increasing the·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution
李超:人口大國(guó)面臨人口變局
有權(quán)莫任性 人大在監(jiān)督
從廣義心腎不交論治慢性心力衰竭
王夫之《說(shuō)文廣義》考訂《說(shuō)文》析論
廣義RAMS解讀與啟迪
Hom-李超代數(shù)的同調(diào)和非交換張量積
為“有權(quán)不可任性”點(diǎn)贊
Cartan型模李超代數(shù)H作為osp—模的分解與零維上同調(diào)