唐國芳,陳麗麗,劉良專,王 川,盧蘭芬,吳移謀
IFN-γ抗鸚鵡熱衣原體急性感染保護(hù)作用研究
唐國芳1,2,陳麗麗1,劉良專1,王 川1,盧蘭芬3,吳移謀1
工作單位:1.南華大學(xué)醫(yī)學(xué)院病原生物學(xué)研究所,衡陽 421001; 2.廣州市第八人民醫(yī)院傳染病研究所,廣州 510060; 3.中山市人民醫(yī)院檢驗(yàn)醫(yī)學(xué)中心,中山 528403
目的 探討IFN-γ對(duì)鸚鵡熱衣原體(Chlamydiapsittaci,Cps)的抗感染作用,為進(jìn)一步闡明機(jī)體抗衣原體免疫機(jī)制提供參考數(shù)據(jù)。方法 不同濃度的重組人IFN-γ(5 ng/mL、25 ng/mL和50 ng/mL)作用于感染Cps6BC的HeLa細(xì)胞,48 h后計(jì)數(shù)包涵體數(shù)量,并觀察包涵體形態(tài)的改變。2×106IFUs Cps 6BC滴鼻感染C57BL/6J小鼠,于感染前、后24 h腹腔內(nèi)注射10 μg重組鼠IFN-γ,觀察小鼠體重、活動(dòng)狀態(tài)、生存率等一般指標(biāo),分別于感染后5 d和10 d處死小鼠,取肝、肺組織進(jìn)行HE染色檢測(cè)其病理變化;并取感染后5 d的肺組織,勻漿,計(jì)數(shù)其中Cps包涵體數(shù)量。結(jié)果 感染48 h后,Cps 6BC在5 ng/mL、25 ng/mL、50 ng/mL重組人IFN-γ處理的HeLa細(xì)胞中包涵體數(shù)量低于對(duì)照組(包涵體數(shù)分別為(23.8±5.1)×106,(10±3.58)×106,(8.0±2.22)×106,(43.3±11.05)×106,衣原體包涵體形狀不規(guī)則,體積變小。小鼠實(shí)驗(yàn)顯示,腹腔注射IFN-γ可明顯提高Cps6BC感染小鼠生存率,并減輕急性臨床表現(xiàn)及臟器病變。結(jié)論 IFN-γ可發(fā)揮早期抗Cps感染的保護(hù)作用。
干擾素-γ;鸚鵡熱衣原體;急性感染;免疫保護(hù)
鸚鵡熱衣原體(Chlamydiapsittaci,C.psittaci,Cps)為革蘭陰性胞內(nèi)寄生菌,主要感染家禽和寵物鳥,可經(jīng)氣溶膠吸入或密切接觸傳染給人[1-2]。依據(jù)Cps菌株和宿主類型的不同,其臨床疾病表現(xiàn)多種多樣。禽類和牲畜類主要表現(xiàn)為肺炎和慢性腸炎表現(xiàn),人類主要表現(xiàn)為呼吸系統(tǒng)感染,也可累及身體其他臟器,如心包炎、心內(nèi)膜炎、腦炎、肝脾腫大、眼附屬器淋巴瘤等,重者可發(fā)生多臟器功能衰竭或死亡[2-3]。
IFN-γ生物學(xué)活性十分廣泛,在免疫應(yīng)答和免疫調(diào)節(jié)過程中發(fā)揮重要作用。系列實(shí)驗(yàn)研究發(fā)現(xiàn),IFN-γ可抑制衣原體生長,但I(xiàn)FN-γ濃度不同,對(duì)衣原體生長的抑制程度不同[4-5]。IFN-γ對(duì)不同衣原體菌株的作用也有一定的差異,如Nelson[6-10]等報(bào)道CD4+ T細(xì)胞分泌的IFN-γ能有效清除沙眼衣原體(C.trachomatis,Ct),但清除鼠衣原體(MoPn)的作用卻較小。Cps不管從基因組同源性、感染的宿主范圍、引發(fā)的宿主免疫反應(yīng)還是引起的疾病類型,均與其他衣原體存在較大的差異[11]。而IFN-γ對(duì)Cps的作用未見系統(tǒng)研究報(bào)道。本文擬從細(xì)胞實(shí)驗(yàn)及動(dòng)物體內(nèi)實(shí)驗(yàn)初步研究IFN-γ對(duì)Cps的作用,為進(jìn)一步闡明機(jī)體抗衣原體免疫機(jī)制提供參考數(shù)據(jù)。
1.1 材料
1.1.1 菌株和細(xì)胞Cps6BC菌株(ATCC VR-125)受贈(zèng)于美國德克薩斯大學(xué)圣安東尼奧健康科學(xué)中心(UTHSCSA)鐘光明教授;HeLa細(xì)胞購自上海中國科學(xué)院細(xì)胞庫。
1.1.2 主要試劑 RPMI 1640培養(yǎng)液和胎牛血清購自GIBCO公司;兔抗Cps一抗受贈(zèng)于美國德克薩斯大學(xué)圣安東尼奧健康科學(xué)中心(UTHSCSA)鐘光明教授;FITC 標(biāo)記山羊抗兔IgG 購自上海碧云天生物技術(shù)有限公司;重組鼠IFN-γ和重組人IFN-γ購自PeproTech公司。
1.1.3 實(shí)驗(yàn)動(dòng)物 動(dòng)物近交系6~8周齡SPF級(jí)雌性C57BL/6J小鼠購自湖南斯萊克景達(dá)實(shí)驗(yàn)動(dòng)物有限公司。
1.2 方法
1.2.1 細(xì)胞和衣原體培養(yǎng) HeLa細(xì)胞培養(yǎng)于含10%胎牛血清的RPMI 1640培養(yǎng)基中,以1×105個(gè)/孔的細(xì)胞數(shù)接種于24 孔板內(nèi)(提前鋪好直徑為13 mm的圓蓋玻片),37 ℃,5%CO2溫箱培養(yǎng)至細(xì)胞密度大約在80%時(shí),感染2×106IFUsCps6BC,低速離心30 min,再37 ℃,5%CO2溫箱培養(yǎng)2 h后,更換含2 mg/L放線菌酮的衣原體分離培養(yǎng)基繼續(xù)培養(yǎng)至實(shí)驗(yàn)所需時(shí)間。
1.2.2 衣原體包涵體定量檢測(cè) 間接免疫熒光法檢測(cè)衣原體包涵體數(shù)量。感染細(xì)胞經(jīng)甲醇∶丙酮=1∶1固定液固定后,以兔抗Cps抗血清為一抗,F(xiàn)ITC標(biāo)記的山羊抗兔IgG為二抗(綠色),用Hoechst 33258進(jìn)行細(xì)胞核染色。用熒光顯微鏡計(jì)數(shù)其中衣原體包涵體數(shù)量。實(shí)驗(yàn)重復(fù)三次,取三次實(shí)驗(yàn)的平均值。
1.2.3 重組人IFN-γ抗Cps6BC感染體外實(shí)驗(yàn) 2×106IFUSCps6BC感染HeLa細(xì)胞,2 h后棄衣原體感染液,PBS清洗兩次,分別更換含5 ng/mL、25 ng/mL、50 ng/mL重組人IFN-γ(recombinant human IFN-γ,rhIFN-γ)的衣原體生長培養(yǎng)基,同時(shí)設(shè)不加rhIFN-γ對(duì)照組。37 ℃、5% CO2恒溫細(xì)胞培養(yǎng)箱中培養(yǎng)48 h后,進(jìn)行熒光抗體染色,計(jì)數(shù)各組衣原體包涵體數(shù)量。
1.2.4 重組鼠IFN-γ抗Cps6BC感染體內(nèi)實(shí)驗(yàn) SPF級(jí)6~8周齡雌性C57BL/6J小鼠32只,體重18~20 g,分成四組,每組8只。2×106IFUsCps6BC鼻內(nèi)感染小鼠,實(shí)驗(yàn)組在感染衣原體前24 h(rmIFN-γ+Cps組)和后24 h(Cps+ rmIFN-γ組)內(nèi)腹腔注射重組鼠IFN-γ(recombinant murine IFN-γ,rmIFN-γ)10 μg/只,同時(shí)設(shè)非處理Cps感染小鼠對(duì)照和PBS滴鼻非感染組對(duì)照。每天觀察小鼠食欲情況、活動(dòng)狀態(tài),動(dòng)態(tài)監(jiān)測(cè)生長狀況、體重及生存率等。
1.2.5 鼠肺、肝組織的病理檢測(cè) 于感染Cps后的第5 d和第10 d處死小鼠,分離肺、肝組織,甲醛固定,石蠟包埋,切片行HE染色,觀察并記錄其病變程度。
1.2.6 鼠肺組織勻漿中衣原體計(jì)數(shù) 處死小鼠后,取肺組織加入5 mL預(yù)冷的SPG,勻漿,短暫超聲,系列稀釋后取合適稀釋度的稀釋液感染HeLa單層細(xì)胞,進(jìn)行間接免疫熒光染色計(jì)數(shù)衣原體數(shù)量。
2.1 IFN-γ對(duì)Cps6BC在體外生長的影響Cps6BC感染HeLa細(xì)胞后,分別用5 ng/mL、25 ng/mL、50 ng/mL的rhIFN-γ處理,48 h后經(jīng)免疫熒光染色。結(jié)果表明,rhIFN-γ處理的3組衣原體包涵體形狀不規(guī)則,體積變小,釋放到細(xì)胞外的原體(elementary bodies,EBs)數(shù)量較對(duì)照組減少,尤以50 ng/mL的高劑量組表現(xiàn)最為明顯(圖1)。3個(gè)劑量組包涵體數(shù)量分別為(23.8±5.1)×106,(10±3.58)×106,(8.0±2.22)×106,對(duì)照組為(43.3±11.05)×106。經(jīng)統(tǒng)計(jì)學(xué)分析,rhIFN-γ處理組包涵體數(shù)量明顯高于非處理組(P<0.05),且呈一定的劑量依賴性(圖2)。
圖1 rmIFN-γ抑制HeLa細(xì)胞內(nèi)Cps 6BC的生長(×400)Fig.1 Recombinant human IFN-γ inhibited C. psittaci 6BC growth in Hela cells
Statistical significance was determined by Unpaired t test (* P<0.05; ** P<0.01)圖2 rmIFN-γ抑制Cps 6BC包涵體增殖Fig.2 Recombinant human IFN-γ inhibited C. psittaci 6BC inclusions proliferation
2.2 IFN-γ對(duì)Cps感染小鼠體重的影響 2×106IFUSCps 6BC鼻內(nèi)感染C57BL/6J小鼠后,第2 dCps感染組小鼠精神倦怠,雙眼半睜,眼角有黃色分泌物,背部蜷縮,步態(tài)趔趄。而在感染衣原體前、后24 h經(jīng)rmIFN-γ處理的實(shí)驗(yàn)組小鼠精神較PBS組略差外,其飲食、活動(dòng)均未受明顯影響。
每日記錄4組小鼠體重變化,感染后第2 d,Cps感染組體重下降(2.75±0.89)g,rmIFN-γ+Cps組下降(1.00±1.07)g,Cps+ rmIFN-γ組下降(1.88±1.36)g;而PBS對(duì)照組體重增加(0.13±0.99)g,經(jīng)統(tǒng)計(jì)學(xué)分析,rmIFN-γ+Cps組體重下降程度顯著低于Cps感染組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),但Cps+ rmIFN-γ組與Cps感染組相比,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。感染后5 d,Cps感染組體重下降為(3.75±0.88)g,rmIFN-γ+Cps組下降(1.25±0.89)g,Cps+rmIFN-γ組下降(1.5±1.82)g,rmIFN-γ+Cps、Cps+rmIFN-γ組與Cps感染組比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.01)。但無論是感染后2 d還是5 d,rmIFN-γ+Cps與Cps+rmIFN-γ組間差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)(圖3)。2.3 IFN-γ對(duì)Cps感染小鼠生存率的影響 感染后5 d,rmIFN-γ+Cps、Cps+mIFN-γ、Cps、PBS組小鼠生存率分別為100.0%、87.5%、37.5%、100.0%;感染后10 d,分別為75.0%、43.75%、12.5%、100.0%。rmIFN-γ+Cps、Cps+rmIFN-γ組與Cps感染組比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.01),而rmIFN-γ+Cps與Cps+rmIFN-γ組間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)(圖4)。
2.4 IFN-γ對(duì)衣原體所致小鼠肺、肝組織病變的影響 分別于感染后第5 d和10 d處死小鼠,分離肺臟和肝臟。HE染色后,可見經(jīng)rmIFN-γ處理的小鼠肺泡腔清亮,肺泡間隔增寬,細(xì)支氣管肺泡上皮增生,有多形核白細(xì)胞(polymorphonuclear leukocyte,PMN)浸潤,感染后10 d肺部炎癥幾乎完全清除。而未經(jīng)rmIFN-γ處理的Cps感染小鼠肺組織出現(xiàn)重度肺炎的改變,肺泡間隔模糊不清,肺泡腔內(nèi)充血,肺泡間隔毛細(xì)血管充血伴漿液滲出,支氣管見炎性滲出液,大量淋巴細(xì)胞增生(圖5)。經(jīng)rmIFN-γ處理的Cps感染小鼠肝組織病變不明顯,僅見少量的炎性細(xì)胞,而未經(jīng)rmIFN-γ處理的Cps感染小鼠肝組織有大量的淋巴細(xì)胞、PMNs和單核細(xì)胞浸潤,部分肝細(xì)胞壞死(圖6)。
Statistical significance was determined by Log-rank Test (* P<0.05; ** P<0.01)圖3 rmIFN-γ對(duì)Cps 6BC感染小鼠體重的影響Fig.3 Influence of rmIFN-γ on body weight of C. psittaci-infected mice
Statistical significance was determined by Log-rank test (* P<0.05; ** P<0.01)圖4 rmIFN-γ對(duì)Cps 6BC感染小鼠生存率的影響Fig.4 Influence of rmIFN-γ on survival rate of C. psittaci-infected mice
a,e: rmIFN +Cps; b,f: Cps +rmIFN; c,g: Cps control; d,h: PBS圖5 rmIFN-γ對(duì)C. psittaci 6BC 感染小鼠肺病理損傷的影響(×200)Fig.5 Influence of rmIFN-γ on lung pathology of C. psittaci-infected mice
a,e: rmIFN +Cps; b,f: Cps +rmIFN; c,g: Cps control; d,h: PBS圖6 rmIFN-γ處理感染Cps 6BC 5天、10天的鼠肝組織HE染色圖(×400)Fig.6 Influence of rmIFN-γ on liver pathology of C. psittaci-infected mice
2.5 IFN-γ對(duì)Cps在小鼠肺組織中清除速度的影響 rmIFN-γ處理Cps6BC感染小鼠5 d后,無菌取鼠肺組織,SPG勻漿并取合適稀釋度的稀釋液感染HeLa單層細(xì)胞,于5% CO2恒溫箱中培養(yǎng)72 h后計(jì)數(shù)各組肺組織包涵體數(shù)量。rmIFN+Cps、Cps+rmIFN、Cps感染組包涵體數(shù)量分別為(5.25×103)±(1×102),(3.60×104)±(2.5×102),(9.80×108)±(3.0×102)。經(jīng)統(tǒng)計(jì)學(xué)分析,發(fā)現(xiàn)兩rmIFN-γ處理組小鼠肺組織中包涵體數(shù)量明顯低于Cps感染組(P<0.05);而rmIFN +Cps與Cps+rmIFN兩組間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)(圖7)。
Statistical significance was determined by Unpaired t test (* P<0.05)圖7 小鼠肺組織Cps 6BC包涵體數(shù)量Fig.7 Effect of rmIFN-γ on the number of inclusion bodies in lung tissues of C. psittaci 6BC infected mice
IFN-γ是宿主抵御細(xì)胞內(nèi)病毒、細(xì)菌和原蟲感染的主要細(xì)胞因子,在抗衣原體早期感染中也發(fā)揮著舉足輕重的作用。由于IFN-γ介導(dǎo)的抗衣原體的敏感性因衣原體菌種、菌株的不同而有所差異,IFN-γ對(duì)Cps的作用尚未見系統(tǒng)報(bào)道。本文從細(xì)胞和小鼠體內(nèi)實(shí)驗(yàn)初步研究了IFN-γ在Cps感染過程中的作用。
不同濃度的rmIFN-γ作用于感染Cps 6BC的HeLa細(xì)胞,5.0 ng/mL rmIFN-γ即可抑制C.psittaci在感染細(xì)胞中的增殖,且隨著IFN-γ劑量的加大,抗衣原體作用越來越明顯。50 ng/mL rmIFN-γ處理的衣原體包涵體體積明顯縮小,約為對(duì)照組的1/3~1/4大小,形態(tài)不規(guī)則,釋放到細(xì)胞外的EBs亦明顯減少,這與文獻(xiàn)報(bào)道一致[12]。Munir A等用100U/mL 的外源性IFN-γ作用于Ct感染的THP-1細(xì)胞,發(fā)現(xiàn)其EBs數(shù)量僅為對(duì)照組的一半,電鏡下見EBs表面覆蓋有兩層包膜,難以釋放到細(xì)胞外,始體形狀不規(guī)則,不能發(fā)育成新的EB,囊泡液明顯增多[13]。
為進(jìn)一步證實(shí)IFN-γ抗Cps的保護(hù)作用,本研究成功構(gòu)建了小鼠鼻腔感染Cps模型。動(dòng)物實(shí)驗(yàn)結(jié)果顯示,經(jīng)IFN-γ處理的實(shí)驗(yàn)小鼠與未處理的Cps感染小鼠相比,體重下降幅度小,死亡率降低,肺組織內(nèi)衣原體包涵體數(shù)量明顯少于對(duì)照組,肝肺組織病理病變亦明顯減輕,再次證明IFN-γ具有抗Cps急性感染保護(hù)作用。Zhong等也報(bào)道,在感染衣原體前24 h用外源性rmIFN-γ能顯著抑制CtL1血清型菌株在BALB/c小鼠體內(nèi)增殖[14-15]。
關(guān)于IFN-γ對(duì)抗衣原體感染的作用機(jī)制目前還沒有統(tǒng)一的觀點(diǎn)。有學(xué)者認(rèn)為IFN-γ介導(dǎo)抗衣原體感染的效應(yīng)機(jī)制主要有誘導(dǎo)激活吲哚胺2,3二氧化酶(indoleamine 2,3-dioxygenase,IDO)途徑[16-17]、激活誘導(dǎo)性一氧化氮合酶(inducible nitric oxide synthase,iNOS)途徑[18]及誘導(dǎo)鐵缺失途徑[19]。另外IFN-γ可介導(dǎo)激活hGBP1和hGBP2,引發(fā)吞噬有衣原體包涵體的溶酶體降解和抑制巨噬細(xì)胞自噬潮被激活;或介導(dǎo)衣原體DNA復(fù)制、轉(zhuǎn)錄以及細(xì)胞壁生物合成的ftsW和amiA基因顯著下調(diào),發(fā)揮抗衣原體感染效應(yīng)機(jī)制[13, 20-21],也可通過誘導(dǎo)p47 GTPase、65-kD GTPase家族蛋白和Irga6蛋白的表達(dá),修飾衣原體包涵體促進(jìn)溶酶體溶菌從而抵御衣原體感染[21-23]。盡管IFN-γ能夠通過多種途徑發(fā)揮抗衣原體感染效應(yīng),但衣原體同樣可以逃避宿主IFN-γ對(duì)自身的干擾,如鼠衣原體限制GTPases家族蛋白Irgb10或其它成員進(jìn)入包涵體逃避IFN-γ誘導(dǎo)的宿主抗衣原體作用[24];降解上游轉(zhuǎn)錄刺激因子-1(upstream stimulatory factor-1,USF-1)阻斷IFN-γ信號(hào)通路,進(jìn)而抑制IFN-γ誘導(dǎo)的MHCⅡ類分子的表達(dá),以逃避CD4+T細(xì)胞介導(dǎo)的免疫應(yīng)答[25];肺炎衣原體也可通過誘導(dǎo)激活多胺信號(hào)通路抑制iNOS轉(zhuǎn)錄,減少NO的生成,從而逃避宿主的固有免疫應(yīng)答[26]。因此,IFN-γ介導(dǎo)的抗衣原體作用大小與衣原體種型、作用劑量等密切相關(guān)。
本文在細(xì)胞水平及體內(nèi)實(shí)驗(yàn)初步證實(shí)了IFN-γ可在一定程度上發(fā)揮抗BALB/c小鼠感染作用,但具體機(jī)制仍有待進(jìn)一步深入研究。
[1] Harkinezhad T, Verminnen K, De Buyzere M, et al. Prevalence ofChlamydophilapsittaciinfections in a human population in contact with domestic and companion birds[J]. J Med Microbiol, 2009, 58(Pt 9): 1207-1212.DOI: 10.1099/jmm.0.011379-0
[2] Knittler MR, Sachse K.Chlamydiapsittaci: update on an underestimated zoonotic agent[J]. Pathog Dis, 2015, 73(1): 1-15.DOI: 10.1093/femspd/ftu007
[3] Sliwa-Dominiak J, Suszynska E, Pawlikowska M, et al.Chlamydiabacteriophages[J]. Arch Microbiol, 2013, 195(10-11): 765-771.DOI: 10.1007/s00203-013-0912-8
[4] Wyrick PB.Chlamydiatrachomatis persistenceinvitro: an overview[J]. J Infect Dis, 2010, 201 Suppl 2: S88-95.DOI: 10.1086/652394
[5] Jerchel S, Kaufhold I, Schuchardt L, et al. Host immune responses after hypoxic reactivation of IFN-gamma induced persistentChlamydiatrachomatis infection[J]. Front Cell Infect Microbiol, 2014, 4: 43.DOI: 10.3389/fcimb.2014.00043
[6] Beatty WL, Morrison RP, Byrne GI. Reactivation of persistentChlamydiatrachomatis infection in cell culture[J]. Infect Immun, 1995, 63(1): 199-205.DOI: 0019-9567/95/$04.0010
[7] Pantoja LG, Miller RD, Ramirez JA, et al. Characterization ofChlamydiapneumoniae persistence in HEp-2 cells treated with gamma interferon[J]. Infect Immun, 2001, 69(12): 7927-7932.DOI: 10.1128/IAI.69.12.7927-7932.2001
[8] Nelson DE, Virok DP, Wood H, et al.ChlamydialIFN-gamma immune evasion is linked to host infection tropism[J]. Proc Natl Acad Sci U S A, 2005, 102(30): 10658-10663.DOI: 10.1073/pnas.0504198102
[9] Morre SA, Lyons JM, Ito JI, Jr. Murine models ofChlamydiatrachomatis genital tract infection: use of mouse pneumonitis strain versus human strains[J]. Infect Immun, 2000, 68(12): 7209-7211.
[10] Roshick C, Wood H, Caldwell HD, et al. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells[J]. Infect Immun, 2006,74(1): 225-238.DOI: 10.4049/jimmunol.180.9.6237
[11] Knittler MR, Berndt A, Bocker S, et al.Chlamydiapsittaci: new insights into genomic diversity, clinical pathology, host-pathogen interaction and anti-bacterial immunity[J]. Int J Med Microbiol, 2014, 304(7): 877-893.DOI: 10.1016/j.ijmm.2014.06.010
[12] Beatty WL, Byrne GI, Morrison RP. Morphologic and antigenic characterization of interferon gamma-mediated persistentChlamydiatrachomatis infection in vitro[J]. Proc Natl Acad Sci U S A, 1993, 90(9): 3998-4002.
[13] Al-Zeer MA, Al-Younes HM, Lauster D, et al. Autophagy restrictsChlamydiatrachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins[J]. Autophagy, 2013, 9(1): 50-62.DOI: 10.4161/auto.22482
[14] Zhong GM, de la Maza LM. Activation of mouse peritoneal macrophages in vitro orinvivoby recombinant murine gamma interferon inhibits the growth of Chlamydia trachomatis serovar L1[J]. Infect Immun, 1988, 56(12): 3322-3325.DOI:0019-9567/88/123322-04$02.00/0
[15] Zhong GM, Peterson EM, Czarniecki CW, et al. Recombinant murine gamma interferon inhibitsChlamydiatrachomatis serovar L1 in vivo[J]. Infect Immun, 1988, 56(1): 283-286.DOI :0019-9567/88/010283-04$02.00/0
[16] Muramatsu MK, Brothwell JA, Stein BD, et al. Beyond tryptophan synthase: identification of genes that contribute toChlamydiatrachomatis survival during IFN-gamma induced persistence and reactivation[J]. Infect Immun, 2016, 84(10): 2791-2801.DOI: 10.1128/IAI.00356-16
[17] Aiyar A, Quayle AJ, Buckner LR, et al[J]. Front Cell Infect Microbiol, 2014, 4: 72.DOI: 10.3389/fcimb.2014.00072
[18] Johnson RM, Kerr MS, Slaven JE. Plac8-dependent and inducible NO synthase-dependent mechanisms clearChlamydiamuridarum infections from the genital tract[J]. J Immunol, 2012, 188(4): 1896-1904.DOI: 10.4049/jimmunol.1102764
[19] Thompson CC, Carabeo RA. An optimal method of iron starvation of the obligate intracellular pathogen,Chlamydiatrachomatis[J]. Front Microbiol, 2011, 2: 20.DOI: 10.3389/fmicb.2011.00020
[20] Tietzel I, El-Haibi C, Carabeo RA. Human guanylate binding proteins potentiate the anti-chlamydia effects of interferon-gamma[J]. PLoS One, 2009, 4(8): e6499.DOI: 10.1371/journal.pone.0006499
[21] Burian K, Endresz V, Deak J, et al. Transcriptome analysis indicates an enhanced activation of adaptive and innate immunity by chlamydia-infected murine epithelial cells treated with interferon gamma[J]. J Infect Dis, 2010, 202(9): 1405-1414.DOI: 10.1086/656526
[22] Kim BH, Shenoy AR, Kumar P, et al. A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection[J]. Science, 2011, 332(6030): 717-721.DOI :10.1126/science.1201711
[23] Al-Zeer MA, Al-Younes HM, Braun PR, et al. IFN-gamma-inducible Irga6 mediates host resistance againstChlamydiatrachomatis via autophagy[J]. PLoS ONE, 2009, 4(2): e4588.DOI: 10.1371/journal.pone.0004588
[24] Coers J, Bernstein-Hanley I, Grotsky D, et al.Chlamydiamuridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10[J]. J Immunol,2008, 180(9): 6237-6245. DOI: 10.4049/jimmunol.180.9.6237
[25] Zhong G, Fan T, Liu L.Chlamydiainhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1[J]. J Exp Med, 1999, 189(12): 1931-1938.DOI: 10.1084/jem.189.12.1931
[26] Abu-Lubad M, Meyer TF, Al-Zeer MA.Chlamydiatrachomatis inhibits inducible NO synthase in human mesenchymal stem cells by stimulating polyamine synthesis[J]. J Immunol, 2014, 193(6): 2941-2951.DOI: 10.4049/jimmunol.1400377
DOI:10.3969/j.issn.1002-2694.2017.02.003
Protective effect of interferon-γ onChlamydiapsittaciacute infection
TANG Guo-fang1,2, CHEN Li-li1, LIU Liang-zhuan1, WANG Chuan1, LU Lan-fen3, WU Yi-mou1
(1.PathogenicBiologyInstitute,UniversityofSouthChina,Hengyang421001,China;
2.InstituteofInfectiousDiseases,GuangzhouEighthPeople'sHospital,Guangzhou510060,China;
3.MedicalLaboratoryCenterofZhongshanPeople'sHospital,Zhongshan528403,China)
We investigated the effects of IFN-γ onChlamydiapsittaci(Cps) infection. HeLa cells were treated with different concentrations of recombinant human IFN-γ (5 ng/mL, 25 ng/mL, 50 ng/mL) after infecting withC.psittaci6BC, then the number and morphology ofC.psittaciinclusion bodies were examined after 48 hours. C57BL/6J mice were intranasally infected with 2×106IFUsC.psittaci6BC, and intraperitoneally administrated with 10 μg recombinant murine interferon-γ 24 hours prior or post infection, then body weight, activity and survival rate were recorded. The histopathology of mice livers and lungs was analyzed by HE staining on day 5 or day10 post infection. And the chlamydial inclusion bodies were titrated in the lung homogenates of mice sacrificed on day 5 after infection. The inclusion body numbers of recombinant human IFN-γ treated groups (by 5ng/mL, 25ng/mL, 50ng/mL) were significantly less than that in the control group (23.8±5.1)×106, (10±3.58)×106, (8.0±2.22)×106, (43.3±11.05)×106, respectively). And the morphology of inclusion bodies in IFN-γ treated HeLa cells was irregular and much smaller. We also found that IFN-γ could significantly improve the survival rate, reduce acute clinical manifestations and pathological injurery of lung and liver inC.psittacirespiratory tract infected mice model. So we summarized that IFN-γ can mediate strong immunological protection during acuteC.psittaciearly infection.
interferon-γ;Chlamydiapsittaci; acute infection; immune protection
s:Wu Yi-mon,Email:yimouwu@sina.com
10.3969/j.issn.1002-2694.2017.02.002
國家自然科學(xué)基金(No.31270218);中山市衛(wèi)生局科研基金(No.J2012002);中山市科技計(jì)劃項(xiàng)目(No.2015B1025)聯(lián)合資助
吳移謀,Email:yimouwu@sina.com
R374
A
1002-2694(2017)02-0098-06
2016-10-25 編輯:李友松
This study supported by National Natural Science Foundation (grant No.31270218);Zhongshan Municipal Health Bureau Research Foundation (Grant No.J2012002);Zhongshan science and technology plan project (Grant No.2015B1025)