何順偉,李曉燕,趙瑞雪,彭 源,魏曉星,
體液游離寄生蟲(chóng)DNA在寄生蟲(chóng)病診斷中的研究進(jìn)展
何順偉1,李曉燕2,趙瑞雪2,彭 源3,魏曉星1,3
目前在多種寄生蟲(chóng)感染患者的血清、血漿、尿液、唾液等體液中檢測(cè)到相應(yīng)的游離寄生蟲(chóng)DNA分子(Cell-Free Parasite DNA, CFPD),由于其高度的特異性和靈敏性,在寄生蟲(chóng)病無(wú)創(chuàng)診斷和連續(xù)監(jiān)測(cè)等方面展示出較強(qiáng)優(yōu)勢(shì)。本文即對(duì)近年來(lái)國(guó)內(nèi)外學(xué)者對(duì)寄生蟲(chóng)感染者體液中CFPD的研究現(xiàn)狀作一綜述,以期為今后寄生蟲(chóng)病診斷的發(fā)展方向提供新思路,并對(duì)當(dāng)前存在的相關(guān)問(wèn)題進(jìn)行探討。
體液;寄生蟲(chóng);游離DNA;診斷;研究進(jìn)展
寄生蟲(chóng)病在人類傳染病中占據(jù)重要位置,呈世界性流行,廣泛分布于熱帶和亞熱帶地區(qū),嚴(yán)重危害公眾健康,阻礙社會(huì)經(jīng)濟(jì)發(fā)展。及時(shí)有效的診斷是寄生蟲(chóng)病防治的首要環(huán)節(jié)。傳統(tǒng)的方式主要為使用血液、糞便等樣品進(jìn)行病原學(xué)或血清學(xué)診斷,盡管它們已經(jīng)使用了相當(dāng)長(zhǎng)的時(shí)期,但在實(shí)際應(yīng)用中仍存在一些不足。例如,病原學(xué)診斷易導(dǎo)致漏診或誤診,免疫學(xué)診斷易發(fā)生交叉反應(yīng)且不能區(qū)分現(xiàn)癥感染或既往感染。隨著分子生物學(xué)技術(shù)的發(fā)展,分子診斷獨(dú)樹(shù)一幟,其靈敏性和特異性比前兩者都有所提高,尤其以目標(biāo)DNA序列為檢測(cè)對(duì)象的核酸擴(kuò)增方法更加簡(jiǎn)便精確,在寄生蟲(chóng)病檢測(cè)方面展示出廣闊的應(yīng)用前景。
目前,眾多研究者通過(guò)分子診斷技術(shù)在瘧疾[1]、利什曼原蟲(chóng)[2]、錐形蟲(chóng)[3]、班氏絲蟲(chóng)[4]和血吸蟲(chóng)[5]等多種寄生蟲(chóng)感染患者不同體液中檢測(cè)到相應(yīng)的特異的CFPD,并且發(fā)現(xiàn)其在寄生蟲(chóng)病診斷中顯示出良好的應(yīng)用潛能。本文對(duì)近年來(lái)CFPD在不同寄生蟲(chóng)病的研究進(jìn)展做一回顧,以期為寄生蟲(chóng)病診斷的發(fā)展方向提供思路,并對(duì)當(dāng)前存在的有關(guān)問(wèn)題進(jìn)行探討。
體液游離DNA (cell-free DNA, cfDNA)為存在于血漿、血清、尿液和唾液等體液中的細(xì)胞外游離狀態(tài)的DNA分子。對(duì)cfDNA研究的歷史起源于1948年,Mandel和Metais在一篇法國(guó)雜志上首次報(bào)道發(fā)現(xiàn)在人體血漿中檢測(cè)到cfDNA[6]。不幸的是,可能當(dāng)時(shí)由于對(duì)cfDNA缺乏清楚的認(rèn)識(shí),他們的工作并未得到學(xué)界重視。而在隨后的30年里,有關(guān)cfDNA的報(bào)道較少。直到1994年,Sorenson等發(fā)現(xiàn)胰腺癌患者血漿DNA分子存在K-RAS基因突變[7],學(xué)界才重新認(rèn)識(shí)到cfDNA的重要性。隨后有關(guān)cfDNA的研究得到迅速展開(kāi),并取得眾多進(jìn)展。盡管關(guān)于cfDNA的來(lái)源還不清楚,但它作為一種有效的生物標(biāo)志物對(duì)癌癥、產(chǎn)前篩查、損傷、感染等方面的早期診斷具有重要價(jià)值,已成為國(guó)內(nèi)外學(xué)者研究的熱點(diǎn)。
關(guān)于CFPD的來(lái)源也是尚不明確,可能是蟲(chóng)體或蟲(chóng)卵的細(xì)胞或碎片在增生、成熟、脫落、腐爛、崩解等過(guò)程中主動(dòng)分泌或被動(dòng)釋放出內(nèi)部的DNA分子進(jìn)入宿主體液循環(huán)中產(chǎn)生的[3,8]。同cfDNA具有的診斷潛能一樣,CFPD也已被證實(shí)可通過(guò)傳統(tǒng)PCR、巢氏PCR、實(shí)時(shí)定量PCR、多重PCR、數(shù)字PCR和LAMP(環(huán)介導(dǎo)等溫?cái)U(kuò)增法)等核酸擴(kuò)增技術(shù)檢測(cè)出來(lái),作為寄生蟲(chóng)病的診斷工具。眾多研究表明[9-12],CFPD在寄生蟲(chóng)病檢測(cè)中具有高度的靈敏性和特異性,適用于寄生蟲(chóng)病的明確診斷。并且,使用尿液、唾液等體液作為CFPD的檢測(cè)標(biāo)本,提供了一種非侵入性、無(wú)痛、簡(jiǎn)便、經(jīng)濟(jì)的樣本采集方式,在需要多個(gè)或多次樣本采集時(shí)更易于廣大患者接受,有利于提高他們的依從性。因此,對(duì)CFPD的研究已成為寄生蟲(chóng)病診斷研究的新方向,具有重要的實(shí)際意義。
近年來(lái),不同類型CFPD的發(fā)現(xiàn)屢見(jiàn)報(bào)道,有些已在相應(yīng)寄生蟲(chóng)病的檢測(cè)中得到了快速發(fā)展,表1列出了部分學(xué)者關(guān)于CFPD的研究?jī)?nèi)容。
表1 近年來(lái)CFPD在寄生蟲(chóng)病檢測(cè)中的一些研究
Tab.1 Some researches about CFPD of parasitic disease detection in recent years
分類category種名/基因型specificname/genetype標(biāo)本specimen檢測(cè)方法detectionmethod擴(kuò)增基因(片段大小)amplificationgenes(fragmentsize)參考文獻(xiàn)references瘧原蟲(chóng)PlasmodiumP.falciparum血漿巢式PCRssrRNA(205bp)[1]尿液、唾液巢式PCRMSP2[13]巢式PCR,qPCR18SrRNA(205bp)[9]P.vivaxandPlas-modiumfalciparum尿液、唾液巢式PCRssrRNA(P.vivax419bp(P.falciparum452bp)[10]巢式PCR/LAMP18SrRNA[15]弓形蟲(chóng)ToxoplasmaToxoplasmagondii羊水傳統(tǒng)PCRB1(115bp)[16]傳統(tǒng)PCRB1(120bp,180bp)[17]qPCRB1[18]尿液、腦脊液傳統(tǒng)PCRB1(97bp)[20]眼房水巢式PCRB1、P30、18SrDNA[21]利什曼原蟲(chóng)LeishmaniaL.viannia尿液傳統(tǒng)PCR微環(huán)kDNA(90bp)minicirclekDNA(90bp)[23]L.infantum尿液傳統(tǒng)PCR微環(huán)kDNA(145bp)[2]巢式PCRssrRNAkDNA(100bp)[22]傳統(tǒng)PCR微環(huán)kDNA(145bp)[24]錐 蟲(chóng)TrypanosomeT.brucei唾液、尿液(猴模型)傳統(tǒng)PCR/LAMP糖蛋白基因(PCR308bp,LAMP195bp)[26]T.cruzi血清傳統(tǒng)PCR195bp重復(fù)序列[3]表1(續(xù))分類category種名/基因型specificname/genetype標(biāo)本specimen檢測(cè)方法detectionmethod擴(kuò)增基因(片段大小)amplificationgenes(fragmentsize)參考文獻(xiàn)references尿液(豚鼠模型)傳統(tǒng)PCRkDNA(330bp),核DNA(188bp)[25]溶組織內(nèi)阿米巴Entamoebahisto-lyticaE.histolytica尿液巢式多重PCR16srRNA類似基因(439bp)[27]唾液巢式多重PCR16srRNA類似基因(439bp)[28]唾液、尿液qPCR小亞基rRNA基因(134bp)[29]班氏絲蟲(chóng)WuchereriabancroftiW.bancrofti尿液(白天)傳統(tǒng)PCRSspI(188bp)[4]血清、尿液半巢式PCRpWb(400bp)[30]痰液傳統(tǒng)PCRWb19(254bp)[31]SspI(188bp)[32]血吸蟲(chóng)SchistosomeS.mansoni尿液傳統(tǒng)PCR121bp高度重復(fù)序列(110bp)[33,11,34]28SrDNA(350bp)[35]
2.1 原蟲(chóng)
2.1.1 瘧原蟲(chóng) 在早期研究中,Gal等[1]通過(guò)巢式PCR在人類血漿中首次擴(kuò)增出惡性瘧原蟲(chóng)核糖體小亞基rRNA(ssrRNA)基因,開(kāi)創(chuàng)了瘧疾研究的新方向。后來(lái),Mharakurwa等[13]證實(shí)了在患者唾液和尿液中也可以檢測(cè)到惡性瘧原蟲(chóng)DNA,并闡明其具有瘧原蟲(chóng)基因型分型的潛能。該項(xiàng)研究進(jìn)一步強(qiáng)調(diào),通過(guò)優(yōu)化DNA提純技術(shù)和擴(kuò)增結(jié)果,可以不需要采集血液樣品來(lái)實(shí)現(xiàn)大規(guī)模瘧疾篩查和流行病學(xué)調(diào)查。Najafabadi等[14]以血液樣品作為參考標(biāo)準(zhǔn),證實(shí)使用巢式PCR檢測(cè)唾液瘧原蟲(chóng)DNA的靈敏度和特異度要比尿液高,其中唾液中的靈敏度和特異度同為97%,在尿液中的靈敏度和特異度分別為91%和70%。其他的研究也同樣表明,唾液瘧原蟲(chóng)DNA的含量與蟲(chóng)體負(fù)荷的相關(guān)性比尿液更加顯著[9-10]。因此,基于唾液瘧原蟲(chóng)DNA取樣的簡(jiǎn)便性和良好的PCR檢測(cè)效果,將它用于瘧疾的診斷將更有助于該病的縱向監(jiān)督和臨床應(yīng)用,但仍需要更深入的研究來(lái)證實(shí)這一發(fā)現(xiàn)。此外,LAMP技術(shù)也已成功應(yīng)用于患者尿液和唾液中惡性和間日瘧原蟲(chóng)的檢測(cè),但是同巢式PCR相比,靈敏度較低[15]。然而,基于LAMP技術(shù)的簡(jiǎn)便、快速、準(zhǔn)確、廉價(jià)、適于臨床和基層等特點(diǎn),繼續(xù)提高其用于尿液、唾液中瘧原蟲(chóng)DNA的檢測(cè)效果,對(duì)于瘧疾的簡(jiǎn)便快速診斷將具有重大意義。
2.1.2 弓形蟲(chóng) 羊水弓形蟲(chóng)DNA的PCR檢測(cè)或許是先天性弓形蟲(chóng)病產(chǎn)前診斷的最大進(jìn)步。這種檢測(cè)手段同免疫學(xué)、細(xì)胞培養(yǎng)和體外接種等方法相比,更加簡(jiǎn)便、快捷、精確。Hohlfeld等[16]最早使用PCR技術(shù)從孕婦羊水中擴(kuò)增出剛地弓形蟲(chóng)DNA,其靈敏度為97.4%,高于傳統(tǒng)病原學(xué)診斷方法(89.5%)。Gratzl等[17]通過(guò)對(duì)實(shí)行羊水弓形蟲(chóng)PCR檢測(cè)后的嬰兒進(jìn)行跟蹤隨訪,證實(shí)羊水弓形蟲(chóng)PCR檢測(cè)是一種鑒定或排除嬰兒弓形蟲(chóng)感染有用的方法。Romand等[18]使用熒光定量PCR技術(shù)對(duì)孕婦羊水弓形蟲(chóng)DNA的濃度進(jìn)行測(cè)定,認(rèn)為其可作為先天性弓形蟲(chóng)病早期的預(yù)后指標(biāo),并推斷如果母體妊娠的前20周蟲(chóng)體負(fù)荷超過(guò)100/mL (parasites/mL),將會(huì)對(duì)嬰兒造成嚴(yán)重后果。Azevedo等[19]對(duì)孕婦羊水弓形蟲(chóng)DNA的PCR檢測(cè)效果進(jìn)行系統(tǒng)性評(píng)價(jià)和Meta分析,得到其全局靈敏度異質(zhì)性為66.5%,并建議孕后五周進(jìn)行弓形蟲(chóng)病診斷篩查。此外,其他學(xué)者也在嬰兒腦脊液、尿液[20]和患者眼房水[21]中檢測(cè)到了弓形蟲(chóng)DNA,為弓形蟲(chóng)病的診斷、預(yù)防和控制指明了新方向。
2.1.3 利什曼原蟲(chóng) Motazedian等[2]首次將尿液蟲(chóng)體DNA的PCR檢測(cè)用于免疫缺陷型內(nèi)臟利什曼蟲(chóng)病人的診斷,結(jié)果表明該方法具有高度的靈敏性(96.8%)、特異性(100%)和簡(jiǎn)便性,認(rèn)為可將其作為內(nèi)臟利什曼蟲(chóng)病的診斷工具。Fisa等[22]同樣證實(shí)該方法在嬰氏利什曼蟲(chóng)感染活躍期展示出高水平的精確性,并且治療后不同時(shí)期的檢測(cè)結(jié)果同尿液抗原檢測(cè)、外周血PCR和細(xì)胞培養(yǎng)等其他診斷方法相一致,認(rèn)為可能對(duì)治療效果的監(jiān)控有作用。Veland等[23]在皮膚和黏膜型利什曼蟲(chóng)病人的尿液中檢測(cè)到利什曼蟲(chóng)動(dòng)基體DNA (kDNA),雖然靈敏度(20.9%)較低,但對(duì)低程度的組織定位類型和治療方案是有用的。Silva等[24]認(rèn)為尿液利什曼蟲(chóng)DNA的質(zhì)量是PCR成功擴(kuò)增的關(guān)鍵因素,他們通過(guò)對(duì)內(nèi)臟利什曼蟲(chóng)病人尿液利什曼蟲(chóng)DNA的4種提取方法進(jìn)行比較,結(jié)果顯示苯酚/氯仿乙醇沉淀法在檢測(cè)結(jié)果和花費(fèi)方面是最有效的。
2.1.4 錐蟲(chóng) Russomando等[3]使用PCR技術(shù)在恰加斯病病人血清和全血中均檢測(cè)到克氏錐形蟲(chóng)DNA,但發(fā)現(xiàn)兩者檢測(cè)結(jié)果沒(méi)有差異,同全血樣本相比,血清樣本不需要特殊的化學(xué)處理,在流行地區(qū)現(xiàn)場(chǎng)調(diào)查中更容易處理和運(yùn)輸。Castro-Sesquen等[25]發(fā)現(xiàn)在克氏錐蟲(chóng)感染的豚鼠尿液中存在錐蟲(chóng)DNA,認(rèn)為該DNA是由于寄生蟲(chóng)全身感染產(chǎn)生的,而不是直接來(lái)源于腎損傷;如果提高尿液中錐蟲(chóng)DNA的檢測(cè)效果,對(duì)先天性、免疫功能不全等恰加斯病患者的診斷將是非常有價(jià)值的。Ngotho等[26]使用LAMP技術(shù)在感染的猴模型血清、腦脊液、尿液和血漿中檢測(cè)到布氏錐蟲(chóng)DNA,結(jié)果顯示LAMP技術(shù)在血清樣本中檢測(cè)效果最佳,依次為唾液和尿液;在感染后21~77 d內(nèi)唾液樣本中LAMP檢測(cè)率達(dá)100%,在感染后28~91 d內(nèi)尿液樣本中LAMP檢測(cè)率均超過(guò)80%,在分別超過(guò)140 d和126 d兩種樣品均不能檢測(cè)到蟲(chóng)體DNA,該方法強(qiáng)調(diào)了使用唾液和尿液樣本進(jìn)行非洲錐蟲(chóng)病診斷的重要性。這些研究表明,體液游離錐蟲(chóng)DNA具備錐蟲(chóng)病的診斷潛能。
2.1.5 溶組織阿米巴 Parija等[27]證實(shí)游離溶組織阿米巴DNA能夠穿透腎小球屏障,通過(guò)PCR技術(shù)可在阿米巴肝膿腫病人的尿液中檢測(cè)到,有可能成為阿米巴肝膿種新型診斷標(biāo)志物;由于尿液中溶組織阿米巴DNA隨著治療進(jìn)程逐漸消除,也可將其作為療效評(píng)估的預(yù)后標(biāo)志物。Khairnar等[28]使用巢氏多重PCR技術(shù)在接受甲硝唑治療的阿米巴肝膿腫病人唾液中檢測(cè)到溶組織阿米巴DNA,而未接受甲硝唑治療的病人唾液中沒(méi)有檢測(cè)到,這可能是由于治療過(guò)程中蟲(chóng)體大量死亡釋放出內(nèi)部的DNA分子進(jìn)入患者唾液中。Haque等[29]使用熒光定量PCR技術(shù)檢測(cè)阿米巴肝膿腫和阿米巴結(jié)腸炎病人血液、尿液和唾液中的溶組織阿米巴DNA,靈敏性分別為49%、77%、69%和36%、61%、64%,發(fā)現(xiàn)使用尿液和唾液比血液具有更高的檢測(cè)靈敏性。由于在阿米巴肝膿腫形成過(guò)程中,糞便寄生蟲(chóng)難以被檢測(cè),因此,游離溶組織阿米巴DNA在阿米巴肝膿腫篩查和檢測(cè)方面是一個(gè)很有潛力的診斷工具。
2.2 蠕蟲(chóng)
2.2.1 班氏絲蟲(chóng) 微絲蚴檢查是班氏絲蟲(chóng)病常規(guī)診斷方法,根據(jù)微絲蚴夜間出現(xiàn)的周期性,取血時(shí)間以晚上9時(shí)至次日凌晨2時(shí)為宜。然而,夜間取血無(wú)疑對(duì)班氏絲蟲(chóng)病的診斷帶來(lái)實(shí)際的約束,尤其在對(duì)流行區(qū)域?qū)嵭写笠?guī)模調(diào)查的時(shí)候。體液游離微絲蚴DNA的檢測(cè)提供了一個(gè)很好的解決辦法,因?yàn)椴徽撐⒔z蚴存在何種時(shí)期,其游離的DNA是一直存在的。多項(xiàng)研究表明,使用以核酸擴(kuò)增為基礎(chǔ)的檢測(cè)手段可從病人尿液[4,30]、唾液[31-32]、血清[30]等體液中檢測(cè)到班氏絲蟲(chóng)的DNA,其靈敏度和特異度可分別達(dá)97.5%和92.4%[31]。這種方法不僅可以在白天很方便地采集標(biāo)本,而且選用易獲取的尿液、唾液等標(biāo)本用于診斷,可實(shí)現(xiàn)非侵入無(wú)痛性操作,更受患者的青睞,尤其在社區(qū)監(jiān)管和疾病控制項(xiàng)目中。
2.2.2 血吸蟲(chóng) 同其他CFPD相比,體液游離血吸蟲(chóng)DNA在血吸蟲(chóng)病診斷中使用的更加廣泛。與糞便或尿液中蟲(chóng)卵的隨機(jī)分布不同,游離血吸蟲(chóng)DNA在體液中呈均勻分布,因此可簡(jiǎn)便地獲取標(biāo)本用于檢測(cè)。這既克服了蟲(chóng)卵樣本采集的實(shí)際限制,又避免了因隨機(jī)取樣造成診斷的低準(zhǔn)確度。目前已在血漿、血清、唾液、尿液和腦脊液等多種體液中檢測(cè)到血吸蟲(chóng)DNA[33-42],同時(shí)也發(fā)現(xiàn)游離血吸蟲(chóng)DNA的檢測(cè)在現(xiàn)場(chǎng)調(diào)查和項(xiàng)目篩查研究中較其它檢測(cè)方法顯示出更高的靈敏性和特異性。例如,Kato-Hayashi等[12]對(duì)4種血吸蟲(chóng)病的診斷方法在菲律賓高流行地區(qū)大規(guī)模人群的調(diào)查結(jié)果進(jìn)行比較,發(fā)現(xiàn)血清中血吸蟲(chóng)DNA的PCR檢測(cè)靈敏性高達(dá)100%,特異度較NW (a network echogenic pattern)、ELISA和KK (Kato-Katz) 法都要高,并且能夠檢測(cè)出KK陰性的患者。Lodh等[11]通過(guò)對(duì)贊比亞地區(qū)人群尿沉淀中曼氏血吸蟲(chóng)的3種診斷方法進(jìn)行比較,發(fā)現(xiàn)PCR法(靈敏性100%,特異性100%)比KK(靈敏性50%,特異性100%)和CCA (circulating cathodic antigen) (靈敏性67%,特異性60%)法具有更高診斷的精確性。另外,Harter等[40]提出腦脊液和血清中血吸蟲(chóng)DNA的檢測(cè)對(duì)診斷困難的中樞神經(jīng)系統(tǒng)血吸蟲(chóng)病感染的確診是有用的。因此,使用游離血吸蟲(chóng)DNA用于血吸蟲(chóng)病診斷具有可行性和現(xiàn)實(shí)性。
研究發(fā)現(xiàn)游離的血吸蟲(chóng)DNA在感染早期就能夠被檢測(cè)出來(lái),有助于血吸蟲(chóng)病的早期診斷。Xia等[41]使用PCR技術(shù)在感染日本血吸蟲(chóng)1周后的兔子血清中檢測(cè)到蟲(chóng)體的DNA。Kato-Hayashi等[42]建立了能夠區(qū)分4種血吸蟲(chóng)的PCR檢測(cè)方法,實(shí)驗(yàn)中發(fā)現(xiàn)在感染1 d后的小鼠尿液或血清樣本中就能檢測(cè)到相應(yīng)的血吸蟲(chóng)DNA。此外,結(jié)合體液中游離血吸蟲(chóng)DNA的含量變化,能夠動(dòng)態(tài)監(jiān)測(cè)血吸蟲(chóng)病的治療效果。Wichmann等[8]使用熒光定量PCR檢測(cè)小鼠模型血漿中血吸蟲(chóng)DNA,發(fā)現(xiàn)其在吡喹酮治療后被大量清除;而且病人血漿中血吸蟲(chóng)DNA的濃度也在治療后顯著下降。Kato-Hayashi等[36]使用血清、尿液、精液和唾液中的血吸蟲(chóng)DNA監(jiān)控1例難治型埃及血吸蟲(chóng)患者發(fā)現(xiàn),同尿液中蟲(chóng)卵的快速消失不同,體液中血吸蟲(chóng)DNA在4次吡喹酮治療后一直存在。
2.2.3 絳蟲(chóng) 體液游離絳蟲(chóng)DNA目前也被用于絳蟲(chóng)病診斷研究中。Almeida等[43]和Hernández等[44]分別通過(guò)PCR和半巢式RCR技術(shù)均從腦囊蟲(chóng)病患者腦脊液中檢測(cè)到豬肉絳蟲(chóng)的DNA。Michelet等[45]通過(guò)對(duì)腦囊蟲(chóng)病的不同診斷方法進(jìn)行比較,發(fā)現(xiàn)腦脊液豬肉絳蟲(chóng)DNA的PCR檢測(cè)能夠檢測(cè)出不被影像學(xué)或免疫學(xué)檢測(cè)出的腦囊蟲(chóng)病,并顯示出較高的靈敏性(95.9%)和特異性(80%~100%)。Yera等[46]使用qPCR技術(shù)對(duì)腦囊蟲(chóng)病患者進(jìn)行隨訪發(fā)現(xiàn),在治療數(shù)月后患者腦脊液中仍能檢測(cè)到豬肉絳蟲(chóng)的DNA。因此,腦脊液豬肉絳蟲(chóng)DNA具有腦囊蟲(chóng)病診斷的潛能。另外,Parija等[47]一項(xiàng)研究發(fā)現(xiàn),在包囊破裂的病人血清中能檢測(cè)細(xì)粒棘球絳蟲(chóng)的DNA,而包囊未破裂的病人卻不能,表明細(xì)粒棘球絳蟲(chóng)DNA只有在包囊破裂時(shí)才進(jìn)入循環(huán)系統(tǒng)中;同時(shí)沒(méi)有發(fā)現(xiàn)任何尿液樣本能夠檢測(cè)出棘球絳蟲(chóng)的DNA,表明血清和尿液標(biāo)本都不適用于囊型包蟲(chóng)病的PCR檢測(cè);但是,通過(guò)對(duì)血清樣本和囊液的PCR檢測(cè)將有助于判斷包囊是否破裂。
開(kāi)發(fā)CFPD作為寄生蟲(chóng)病的診斷工具具有重要的理論和實(shí)踐意義,但當(dāng)前仍存在一些顯著性的問(wèn)題需要我們思考。例如:CFPD是如何產(chǎn)生的?它在宿主體液和組織中是如何分布的?CFPD在宿主體內(nèi)發(fā)生了哪些生物學(xué)變化?對(duì)宿主將會(huì)造成何種影響?CFPD同原來(lái)的寄生蟲(chóng)基因組DNA相比是否發(fā)生改變以及是否具備某些特殊的生物學(xué)功能,這都是值得關(guān)注的問(wèn)題。
CFPD提取方法繁瑣,質(zhì)量難以保證;PCR等核酸擴(kuò)增產(chǎn)物易造成實(shí)驗(yàn)室污染并且不易消除,難以保證診斷的精確性;CFPD的含量同疾病程度是否相關(guān)仍有待驗(yàn)證。另外,降低CFPD檢測(cè)技術(shù)成本也要考慮。
隨著防治工作的開(kāi)展,許多地區(qū)寄生蟲(chóng)感染已大為下降。但是傳統(tǒng)的診斷方式有可能低估了實(shí)際水平。目前,CFPD用于病原體檢測(cè)的研究已廣泛展開(kāi),尤其所使用的尿液、唾液等易于采集、分析和處理,在大規(guī)模的流行病學(xué)篩查中將帶來(lái)顯著性的益處。隨著分子生物學(xué)技術(shù)的不斷創(chuàng)新和完善,相信可以早日建立快速、靈敏、特異并具有療效考核價(jià)值的CFPD檢測(cè)方法。
[1] Gal S, Fidler C, Turner S, et al. Detection ofPlasmodiumfalciparumDNA in plasma[J]. Ann N Y Acad Sci, 2001, 945: 234-238.
[2] Motazedian M, Fakhar M, Motazedian MH, et al. A urine-based polymerase chain reaction method for the diagnosis of visceral leishmaniasis inimmunocompetent patients[J]. Diagn Microbiol Infect Dis, 2008, 60(2): 151-154. DOI: 10.1016/j.diagmicrobio.2007.09.001
[3] Russomando G, Figueredo A, Almirón M, et al. Polymerase chain reaction-based detection of Trypanosoma cruzi DNA in serum[J]. J Clin Microbiol, 1992, 30(11): 2864-2868.
[4] Lucena WA, Dhalia R, Abath FG, et al. Diagnosis ofWuchereriabancroftiinfection by the polymerase chain reaction using urine and dayblood samples from amicrofilaraemic patients[J]. Trans R SocTrop Med Hyg, 1998, 92(3): 290-293.
[5] Pontes LA, Dias-Neto E, Rabello A. Detection by polymerase chain reaction ofSchistosomamansoniDNA in human serum and feces[J]. Am J Trop Med Hyg, 2002, 66(2): 157-162.
[6] Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l'homme[J]. CR Acad Sci Paris, 1948, 142: 241-243.
[7] Sorenson GD, Pribish DM, Valone FH, et al, Soluble normal and mutated DNA sequences from single-copy genes in human blood[J]. Cancer Epidemiol Biomarkers Prev, 1994, 3(1): 67-71.
[8] Wichmann D, Panning M, Quack T, et al. Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma[J]. PLoS Negl Trop Dis, 2009, 3(4): e422. DOI: 10.1371/journal.pntd.0000422
[9] Nwakanma DC, Gomez-Escobar N, Walther M, et al. Quantitative detection ofPlasmodiumfalciparumDNA in saliva, blood, and urine[J]. J Infect Dis, 2009, 199(11): 1567-1574. DOI: 10.1086/598856
[10] Buppan P, Putaporntip C, Pattanawong U, et al. Comparative detection ofPlasmodiumvivaxandPlasmodiumfalciparumDNA in saliva and urine samples from symptomatic malaria patients in a low endemic area[J]. Malar J, 2010, 9: 72. DOI: 10.1186/1475-2875-9-72
[11] Lodh N, Mwansa JC, Mutengo MM, et al. Diagnosis ofSchistosomamansoniwithout the stool: comparison of three diagnostic tests to detectSchistosoma[corrected]mansoniinfection from filtered urine in Zambia[J]. Am J Trop Med Hyg, 2013, 89(1): 46-50. DOI: 10.4269/ajtmh.13-0104
[12] Kato-Hayashi N, Leonardo LR, Arevalo NL, et al. Detection of active schistosome infection by cell-free circulating DNA ofSchistosomajaponicumin highly endemic areas in Sorsogon Province, the Philippines[J]. Acta Trop, 2015, 141(PtB): 178-183. DOI: 10.1016/j.actatropica.2014.05.003
[13] Mharakurwa S, Simoloka C, Thuma PE, et al, PCR detection ofPlasmodiumfalciparumin human urine and saliva samples[J]. Malar J, 2006, 5: 103. DOI: 10.1186/1475-2875-5-103
[14] Ghayour Najafabadi Z, Oormazdi H, Akhlaghi L, et al. Mitochondrial PCR-based malaria detection in saliva and urine of symptomatic patients[J]. Trans R Soc Trop Med Hyg, 2014, 108(6): 358-362. DOI: 10.1093/trstmh/tru061
[15] Ghayour Najafabadi Z, Oormazdi H, Akhlaghi L, et al. Detection ofPlasmodiumvivaxandPlasmodiumfalciparumDNA in human saliva and urine: Loop-mediated isothermal amplification for malaria diagnosis[J]. Acta Trop, 2014, 136: 44-49. DOI: 10.1016/j.actatropica.2014.03.029
[16] Hohlfeld P, Daffos F, Costa JM, et al. Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chain-reaction test on amniotic fluid[J]. N Engl J Med, 1994, 331(11): 695-699. DOI: 10.1056/NEJM199409153311102
[17] Gratzl R, Hayde M, Kohlhauser C, et al. Follow-up of infants with congenital toxoplasmosis detected by polymerase chain reaction analysis of amniotic fluid[J]. Eur J Clin Microbiol Infect Dis, 1998, 17(12): 853-858.
[18] Romand S, Chosson M, Franck J, et al. Usefulness of quantitative polymerase chain reaction in amniotic fluid as early prognostic marker of fetal infection withToxoplasmagondii[J]. Am J Obstet Gynecol, 2004, 190(3): 797-802. DOI: 10.1016/j.ajog.2003.09.039
[19] de Oliveira Azevedo CT, do Brasil PE, Guida L, et al. Performance of polymerase chain reaction analysis of the amniotic fluid of pregnant women for diagnosis of congenital toxoplasmosis: a systematic review and meta-analysis[J]. PLoS ONE, 2016, 11(4): e0149938. DOI: 10.1371/journal.pone.0149938
[20] Fuentes I, Rodriguez M, Domingo CJ, et al. Urine sample used for congenital toxoplasmosis diagnosis by PCR[J]. J Clin Microbiol, 1996, 34(10): 2368-2371.
[21] Jones CD, Okhravi N, Adamson P, et al. Comparison of PCR detection methods for B1, P30, and 18S r DNA genes ofT.gondiiin Aqueous Humor[J]. Invest Ophthalmol Vis Sci, 2000, 41(3): 634-644.
[22] Fisa R, Riera C, López-Chejade P, et al.LeishmaniainfantumDNA detection in urine from patients with visceral leishmaniasis and after treatment control[J]. Am J Trop Med Hyg, 2008, 78(5): 741-744.
[23] Veland N, Espinosa D, Valencia BM, et al. Polymerase chain reaction detection of Leishmania k DNA from the urine of Peruvian patients with cutaneous and mucocutaneous leishmaniasis[J]. Am J Trop Med Hyg, 2011, 84(4): 556-561. DOI: 10.4269/ajtmh.2011.10-0556
[24] Silva MA, Medeiros Z, Soares CR, et al. A comparison of four DNA extraction protocols for the analysis of urine from patients with visceral leishmaniasis[J]. Rev Soc Bras Med Trop, 2014, 47(2): 193-197.
[25] Castro-Sesquen YE, Gilman RH, Yauri V, et al. Detection of soluble antigen and DNA ofTrypanosomacruziin urine is independent of renal injury in the guinea pig model[J]. PLoS ONE, 2013, 8(3): e58480. DOI: 10.1371/journal.pone.0058480
[26] Ngotho M, Kagira JM, Gachie BM, et al. Loop mediated isothermal amplification for detection ofTrypanosomabruceigambiense in urine and saliva samples in nonhuman primate model[J]. Biomed Res Int, 2015, 2015: 867846. DOI: 10.1155/2015/867846
[27] Parija SC, Khairnar K. Detection of excretoryEntamoebahistolyticaDNA in the urine, and detection ofE.histolyticaDNA and lectin antigen in the liver abscess pus for the diagnosis of amoebic liver abscess[J]. BMC Microbiol, 2007, 7: 41. DOI: 10.1186/1471-2180-7-41
[28] Khairnar K, Parija SC. Detection ofEntamoebahistolyticaDNA in the saliva of amoebic liver abscess patients who received prior treatment with metronidazole[J]. J Heal Popul Nutr, 2008, 26(4): 418-425.
[29] Haque R, Kabir M, Noor Z, et al. Diagnosis of amebic liver abscess and amebic colitis by detection ofEntamoebahistolyticaDNA in blood, urine, and saliva by a real-time PCR assay[J]. J Clin Microbiol, 2010, 48(8): 2798-2801. DOI:10.1128/JCM.00152-10
[30] Ximenes C, Brand OE, Oliveira P, et al, Detection ofWuchereriabancroftiDNA in paired serum and urine samples using polymerase chain reaction-based systems[J]. Mem Inst Oswaldo Cruz, 2014, 109(8): 978-983. DOI: 10.1590/0074-0276140155
[31] Abbasi I, Githure J, Ochola JJ, et al. Diagnosis ofWuchereriabancroftiinfection by the polymerase chain reaction employing patients' sputum[J]. Parasitol Res, 1999, 85(10): 844-849.
[32] Kagai JM, Mpoke S, Muli F, et al. Molecular technique utilising sputum for detecting Wuchereria bancrofti infections in Malindi, Kenya[J]. EastAfr Med J, 2008, 85(3): 118-122.
[33] Enk MJ, Oliveirae Silva G, Rodrigues NB. Diagnostic accuracy and applicability of a PCR system for the detection ofSchistosomamansoniDNA in human urine samples from an endemic area[J]. PLoS ONE, 2012, 7(6): e38947. DOI: 10.1371/journal.pone.0038947
[34] Lodh N, Naples JM, Bosompem KM, et al. Detection of parasite-specific DNA in urine sediment obtained by filtration differentiates between single and mixed infections ofSchistosomamansoniandS.hHaematobiumfrom endemic areas in Ghana[J]. PLoS ONE, 2014, 9(3): e91144. DOI: 10.1371/journal.pone.0091144
[35] Sandoval N, Siles-Lucas M, Pérez-Arellano JL, et al. A new PCR-based approach for the specific amplification of DNA from differentSchistosomaspecies applicable to human urine samples[J]. Parasitology, 2006, 133(Pt5): 581-587. DOI: 10.1017/S0031182006000898
[36] Kato-Hayashi N, Yasuda M, Yuasa J, et al. Use of cell-free circulating schistosome DNA in serum, urine, semen, and saliva to monitor a case of refractory imported schistosomiasis hematobia[J]. J Clin Microbiol, 2013, 51(10): 3435-3438. DOI: 10.1128/JCM.01219-13
[37] Cnops L, Soentjens P, Clerinx J, et al. ASchistosomahaematobium-specific real-time PCR for diagnosis of urogenital schistosomiasis in serum samples of international travelers and migrants[J]. PLoS Negl Trop Dis, 2013, 7(8): e2413. DOI: 10.1371/journal.pntd.0002413
[38] Guo JJ, Zheng HJ, Xu J, et al. Sensitive and specific target sequences selected from retrotransposons ofSchistosomajaponicumfor the diagnosis of schistosomiasis[J]. PLoS Negl Trop Dis, 2012, 6(3): e1579. DOI: 10.1371/journal.pntd.0001579
[39] Xu X, Zhang Y, Lin D, et al. Serodiagnosis ofSchistosomajaponicuminfection: genome-wide identification of a protein marker, and assessment of its diagnostic validity in a field study in China[J]. Lancet Infect Dis, 2014, 14(6): 489-497. DOI: 10.1016/S1473-3099(14)70067-2
[40] H?rter G, Frickmann H, Zenk S, et al. Diagnosis of neuroschistosomiasis by antibody specificity index and semi-quantitative real-time PCR from cerebrospinal fluid and serum[J]. J Med Microbiol, 2014, 63(Pt2): 309-312. DOI: 10.1099/jmm.0.066142-0
[41] Xia CM, Rong R, Lu ZX, et al.Schistosomajaponicum: A PCR assay for the early detection and evaluation of treatment in a rabbit model[J]. Exp Parasitol, 2009, 121(2): 175-179. DOI: 10.1016/j.exppara.2008.10.017
[42] Kato-Hayashi N, Kirinoki M, Iwamura Y, et al. Identification and differentiation of human schistosomes by polymerase chain reaction[J]. Experimental Parasitol, 2010, 124(3): 325-329. DOI: 10.1016/j.exppara.2009.11.008
[43] Almeida CR, Ojopi EP, Nunes CM, et al.TaeniasoliumDNA is present in the cerebro spinal fluid of neurocysticercosis patients and can be used for diagnosis[J]. Eur Arch Psychiatry Clin Neurosci, 2006, 256(5): 307-310102. DOI: 10.1007/s00406-006-0612-3
[44] Hernández M, Gonzalez LM, Fleury A, et al. Neurocysticercosis: detection ofTaeniasoliumDNA in human cerebro spinal fluid using a semi-nested PCR based on HDP2[J]. Ann Trop Med Parasitol, 2008, 102(4): 317-323. DOI: 10.1179/136485908X278856
[45] Michelet L, Fleury A, Sciutto E, et al. Human neurocysticercosis: comparison of different diagnostic tests using cerebro spinal fluid[J]. J Clin Microbiol, 2011, 49(1): 195-200. DOI: 10.1128/JCM.01554-10
[46] Yera H, Dupont D, Houze S, et al. Confirmation and follow-up of neurocysticercosis by real-time PCR in cerebro spinal fluid samples of patients living in France[J]. J Clin Microbiol, 2011, 49(12): 4338-434077. DOI: 10.1128/JCM.05839-11
[47] Chaya D, Parija SC. Performance of polymerase chain reaction for the diagnosis of cystic echinococcosis using serum, urine, and cystic fluids amples[J]. Trop Parasitol, 2014, 4(1): 43-46. DOI: 10.4103/2229-5070.129164
Research progress of cell-free parasite DNA in the diagnosis of parasitic diseases
HE Shun-wei1, LI Xiao-yan2, ZHAO Rui-xue2, PENG Yuan3, WEI Xiao-xing1,3
(1.DepartmentofEcologically-environmentEngineering,QinghaiUniversity,Xining810016,China;
2.AffiliatedHospitalofQinghaiUniversity,Xining810016,China;
3.DepartmentofMedicalCollege,QinghaiUniversity,Xining810016,China)
At present, corresponding cell-free parasite DNA molecules (CFPD) has been detected in serum, plasma, urine, saliva and other bodily fluids of a variety of the patients with parasitic diseases.Due to its high specificity and sensitivity, the CFPD shows a strong advantage of noninvasive diagnosis and continuous monitoring, etc. in parasitic diseases. This article namely reviews the current research of CFPD in the patients with parasitic disease at home and abroad in recent years, so as to provide new ideas for the development direction of parasitic disease diagnosis in the future. The current related problems are discussed in the mean time.
bodily fluid; parasite; cell-free DNA; diagnosis; research progress
Wei Xiao-xing, Email: weixiaoxing@tsinghua.org.cn
10.3969/j.issn.1002-2694.2017.02.013
魏曉星,Email:weixiaoxing@tsinghua.org.cn
1.青海大學(xué)生態(tài)環(huán)境工程學(xué)院,西寧 810016; 2.青海大學(xué)附屬醫(yī)院,西寧 810016; 3.青海大學(xué)醫(yī)學(xué)院,西寧 810016
R381
A
1002-2694(2017)02-0163-07
2016-08-16 編輯:劉岱偉
青海省科技項(xiàng)目(No. 2016-ZJ-746)資助
Supported by the Science and Technology Project of Qinghai Province (N0. 2016-ZJ-746)
中國(guó)人獸共患病學(xué)報(bào)2017年2期