徐國(guó)偉,陸大克,孫會(huì)忠,王賀正,李友軍
?
干濕交替灌溉與施氮耦合對(duì)水稻根際環(huán)境的影響
徐國(guó)偉1,2,陸大克1,孫會(huì)忠1,王賀正1,李友軍1
(1. 河南科技大學(xué)農(nóng)學(xué)院,洛陽(yáng) 471003;2. 揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室,揚(yáng)州 225009)
為了探討不同水氮耦合對(duì)水稻根際土壤環(huán)境及根系分泌有機(jī)酸總量的影響,以新稻20號(hào)為材料,進(jìn)行盆栽試驗(yàn),設(shè)置淺水層、輕度(?20 kPa)和重度干濕交替灌溉(?40 kPa)3種灌溉方式及不施氮肥,中氮(normal nitrogen, MN, 240 kg/hm2)和高氮(high nitrogen, HN, 360 kg/hm2)3種氮肥水平9個(gè)處理。結(jié)果表明:輕度干濕交替灌溉及中氮增加了土壤酶活性,提高土壤中微生物數(shù)量,根系分泌有機(jī)酸總量顯著提高(<0.05);重度干濕交替灌溉及重施氮肥則降低土壤酶活性及微生物的數(shù)量,顯著(<0.05)減少根系分泌有機(jī)酸的總量;相關(guān)分析表明:根際土壤酶活性及微生物數(shù)量與不同生育期根系分泌有機(jī)酸總量呈顯著(<0.05)或極顯著(<0.01)的正相關(guān)關(guān)系。土壤酶活性、微生物數(shù)量及有機(jī)酸總量的供氮效應(yīng)為正效應(yīng),輕度干濕交替灌溉供水效應(yīng)及耦合效應(yīng)均為正效應(yīng),而重度干濕交替灌溉的控水及耦合效應(yīng)則為負(fù)效應(yīng)。研究可為通過(guò)水氮耦合調(diào)控水稻良好的根際環(huán)境提供依據(jù)。
灌溉;氮肥;微生物;水稻;土壤酶;有機(jī)酸
土壤酶在土壤養(yǎng)分的轉(zhuǎn)化、釋放及固定等方面起著非常重要的角色,是土壤肥力及微生物活性的重要標(biāo)志[1-3]。土壤微生物直接參與有機(jī)質(zhì)的分解、加速腐殖質(zhì)產(chǎn)生吸收、固定并釋放營(yíng)養(yǎng)物質(zhì),改善與調(diào)節(jié)植物根際營(yíng)養(yǎng)狀況,在土壤肥力維持及生態(tài)系統(tǒng)修復(fù)中具有重要的作用[4-6],因此土壤酶與土壤微生物作為根際微生態(tài)系統(tǒng)的重要組成部分,已經(jīng)成為現(xiàn)代科學(xué)研究的一個(gè)熱點(diǎn)。水分與氮肥是作物生長(zhǎng)發(fā)育過(guò)程中不可或缺的重要因素,水分和氮肥因子融為一體,對(duì)改善作物生長(zhǎng)環(huán)境和提高肥料的利用效率有著重要作用[7]。國(guó)內(nèi)外學(xué)者就種植方式、施氮水平、根系分泌物運(yùn)用、秸稈還田、灌溉方式、肥料類(lèi)型等方面對(duì)土壤酶活性及微生物群落進(jìn)行了眾多的研究[8-16],得出有機(jī)無(wú)機(jī)肥配施、秸稈還田、根系分區(qū)灌溉及適宜的施氮水平有利于提高土壤的酶活性提高和微生物數(shù)量增加,但有關(guān)水氮互作對(duì)于土壤酶及微生物影響的研究較少,且大多集中在番茄、黃瓜等蔬菜以及小麥、玉米、煙草等旱作作物上[17-21],這些作物水分管理方式與水稻完全不同。作物生長(zhǎng)發(fā)育是水肥多因子交互作用的結(jié)果,其關(guān)系要比單因子作用復(fù)雜得多。根系分泌物中有機(jī)酸種類(lèi)及含量與根系合成的激素等物質(zhì)一起構(gòu)成根系化學(xué)信號(hào),向根際周?chē)暗厣喜枯敵?,從而?duì)根際及地上部作物的生長(zhǎng)起調(diào)控作用[22-25]。水氮耦合下根際分泌物中有機(jī)酸有何差異,與土壤酶活性及微生物數(shù)量有何關(guān)系,前人對(duì)此研究較少。本試驗(yàn)通過(guò)對(duì)水分的動(dòng)態(tài)控制,研究整個(gè)生育期不同水氮條件對(duì)水稻根際環(huán)境的影響及其耦合效應(yīng),以此探索水氮耦合機(jī)理,為水稻高產(chǎn)高效及根際生態(tài)提供理論及科學(xué)依據(jù)。
1.1 材料與試驗(yàn)地點(diǎn)
試驗(yàn)于2014-2015年在河南科技大學(xué)盆栽場(chǎng)進(jìn)行。供試品種為新稻20,常規(guī)粳稻品種。試驗(yàn)地氣候?qū)贉貛О霛駶?rùn)半干旱大陸性季風(fēng)氣候,年降水量600 mm,年輻射量491.5 kJ/cm2,年日照時(shí)數(shù)2 300~2 600 h,無(wú)霜期215~219 d。試驗(yàn)采用盆栽方式,塑料大棚擋雨。盆缽規(guī)格:直徑25 cm,高30 cm,盆缽內(nèi)裝過(guò)篩土15 kg左右。土壤為粘壤土,土壤有機(jī)質(zhì)14.9 g/kg,堿解氮65.3 mg/kg,有效磷5.9 mg/kg,有效鉀115.6 mg/kg。
1.2 試驗(yàn)設(shè)計(jì)
進(jìn)行灌溉方式×氮肥水平2因素隨機(jī)試驗(yàn)。設(shè)計(jì)3種灌溉方式:保持淺水層(分蘗末期進(jìn)行曬田,其余生育期保持1~2 cm水層)、輕度干濕交替灌溉(分蘗末期進(jìn)行曬田,其余生育期先灌1~2 cm水層,至土壤水勢(shì)降到?20 kPa再灌淺水層,如此反復(fù))、重度干濕交替灌溉(分蘗末期進(jìn)行曬田,其余生育期先灌1~2 cm水層,至土壤水勢(shì)降到?40 kPa再灌淺水層,如此反復(fù)),盆缽內(nèi)用負(fù)壓計(jì)以觀測(cè)土壤水勢(shì),陶土頭底部置于15 cm土層處,生育期間塑料大棚擋雨。全生育期氮肥水平為3個(gè)水平:不施氮肥(0N),中氮(normal nitrogen, MN, 240 kg/hm2,以N計(jì),下同)和高氮(high nitrogen, HN, 360 kg/hm2),氮肥運(yùn)籌按照4∶1∶5于移栽前1 d、移栽后7 d和穗分化期施用。磷、鉀肥各處理均一致,移栽前施用過(guò)磷酸鈣(含P2O513.5%)300 kg/hm2和氯化鉀(含K2O 52%)195 kg/hm2。大田育秧:5月6日播種,6月10日進(jìn)行移栽,每盆栽插3穴,每穴2苗,每個(gè)處理30盆,全生育期嚴(yán)格監(jiān)測(cè)水分及病蟲(chóng)害,其余管理同高產(chǎn)田一致。
1.3 測(cè)定項(xiàng)目與方法
1.3.1土壤酶及微生物數(shù)量測(cè)定
分別于分蘗盛期、穗分化始期、抽穗期和成熟期,各處理取樣3盆。每盆各取根際土樣5點(diǎn)混勻,稱(chēng)取泥土500 g儲(chǔ)存于4 ℃冰箱中,用于土壤酶活性及微生物數(shù)量的測(cè)定。土壤脲酶用苯酚鈉比色法,堿性磷酸酶用苯磷酸二鈉比色法,過(guò)氧化氫酶用高錳酸鉀滴定法[26]。土壤中細(xì)菌測(cè)定采用牛肉膏蛋白胨培養(yǎng)基、真菌采用馬丁氏(Martin)培養(yǎng)基、放線菌采用改良高氏一號(hào)培養(yǎng)基測(cè)定[27]。
1.3.2 根系分泌物中有機(jī)酸含量測(cè)定
分別于分蘗盛期、幼穗分化始期、抽穗期和成熟期,各材料取樣3盆,用自來(lái)水和蒸餾水洗凈后,置于裝有去離子水的燒杯(800 mL)中并封上燒杯口,每杯放1穴(水分脅迫處理在水中加入PEG-6000,輕度水分脅迫為10%,重度水分脅迫為30%)。在光下(光強(qiáng)為700~800mol/(m2·s),冠層溫度28~30 ℃)培養(yǎng)4 h,收集燒杯中的溶液,用高效液相色譜測(cè)定溶液中有機(jī)酸濃度[28]。
1.3.3 各因素效應(yīng)的計(jì)算公式[29-30]
供氮效應(yīng)=[(土壤水分脅迫與氮肥處理-土壤水分脅迫與無(wú)氮肥處理)+(正常水分與氮肥處理-正常水分與無(wú)氮肥處理)]/2
控水效應(yīng)=[(土壤水分脅迫與氮肥處理-正常水分與氮肥處理)+(土壤水分脅迫與無(wú)氮肥處理-正常水分與無(wú)氮肥處理)]/2
耦合效應(yīng)=[(土壤水分脅迫與氮肥處理-正常水分與無(wú)氮肥處理)-(正常水分與氮肥處理-正常水分與無(wú)氮肥處理)-(土壤水分脅迫與無(wú)氮肥處理-正常水分與無(wú)氮肥處理)]/2
1.4 數(shù)據(jù)處理與分析
本試驗(yàn)數(shù)據(jù)用SAS/STAT (version 6.12,SAS Institute,Cary,NC,USA)進(jìn)行方差分析,SigmaPlot 10.0進(jìn)行圖表繪制。
2.1 水稻土壤酶及微生物數(shù)量的處理效應(yīng)
在2014 和2015 2a中,土壤酶活性、微生物數(shù)量及根系分泌有機(jī)酸總量在施氮水平、灌溉方式間存在顯著差異(<0.01),灌溉方式′氮肥水平存在互作效應(yīng),其余的互作效應(yīng)均不顯著(表1)。所測(cè)定的主要指標(biāo)年度間差異均不顯著,說(shuō)明灌溉方式、施氮水平對(duì)根際特性的影響在年度間重演性較好。故本文土壤酶活性及微生物數(shù)量主要取2015年的數(shù)據(jù)。
表1 水氮耦合下土壤酶活性、微生物數(shù)量及根系分泌有機(jī)酸總量的方差分析
注:NS表示在在0.05 水平上不顯著。*與**表示在在0.05及 0.01 水平上差異顯著與極顯著。所有指標(biāo)均為抽穗期測(cè)定數(shù)據(jù)。Y表示年度間,W表示灌溉方式,N表示施氮水平,下同。
Note: NS, not significant (>0.05). * and** represents<0.05 and P<0.01, respectively. The indicator data were determined at heading stage. Y, W and N represents year, irrigation regime and nitrogen level, respectively, the same below.
2.2 水氮耦合對(duì)土壤酶活性及耦合效應(yīng)的影響
2.2.1 水氮耦合對(duì)土壤脲酶活性影響
土壤脲酶活力在水稻生育過(guò)程中表現(xiàn)為先增加后降低,在幼穗分化始期達(dá)到峰值(圖1a)。在同一氮肥水平下,與保持水層相比,輕度干濕交替灌溉總體增加土壤中脲酶活性,幼穗分化期(PI, panicle initiation)及成熟期尤為明顯,重度干濕交替灌溉則顯著(<0.05)降低酶活性,說(shuō)明適宜的水分才能促進(jìn)土壤脲酶活性的提高;在同一灌溉方式下,土壤脲酶活性隨著施氮量的增加而明顯提高,如幼穗分化期,土壤脲酶活性增加了20.2~28.1個(gè)酶活力單位,說(shuō)明增施氮肥能顯著提高土壤脲酶活性。從水氮耦合來(lái)看,高氮輕度干濕交替灌溉下土壤脲酶活性最高。
2.2.2 水氮耦合對(duì)蔗糖酶及過(guò)氧化氫酶活性影響
土壤蔗糖酶及過(guò)氧化氫酶活性在水稻生育過(guò)程中表現(xiàn)為先增加后降低,抽穗期活性最高(圖1b、1c)。在同一氮肥水平下,與對(duì)照保持水層相比,輕度干濕交替灌溉增加土壤中蔗糖酶及過(guò)氧化氫酶活性,重度干濕交替灌溉則降低酶活性;在同一灌溉方式下,土壤蔗糖酶及過(guò)氧化氫酶活性在MN下最高,進(jìn)一步增施氮肥反而降低蔗糖酶活性,如在抽穗期,HN處理蔗糖酶降低了5.8%~12.7%(圖1b),過(guò)氧化氫酶降低了9.1%~11.3%(圖1c),說(shuō)明過(guò)量施用氮肥并不能顯著提高土壤蔗糖酶及過(guò)氧化氫酶活性。從水氮耦合來(lái)看,輕度干濕交替灌溉耦合中氮下土壤蔗糖酶及過(guò)氧化氫酶活性最高。
注:0N:不施氮肥;MN:施氮240kg·hm-2;HN:施氮360kg·hm-2;0 kPa:淺水層灌溉;?20 kPa:水分脅迫?20kPa;?40 kPa:水分脅迫?40 kPa;同一生育期不同小寫(xiě)字母表示各處理在0.05水平上差異顯著,下同。
Note: 0N: No nitrogen applied. MN: Nitrogen 240 kg·hm-2. HN: Nitrogen 360 kg·hm-2. 0kPa: Submerged irrigation. ?20 kPa: Water stress ?20 kPa. ?40 kPa: Water stress ?40 kPa. Values within the same growth period followed by different lowercase letters are significantly different at 0.05 level, the same below.
a. 水氮耦合對(duì)水稻土壤脲酶活性的影響
a. Effect of water and nitrogen interaction on urease enzyme activity in rhizosphere soil
b. 水氮耦合對(duì)水稻土壤蔗糖酶活性的影響
b. Effect of water and nitrogen interaction on sucrose enzyme activity in rhizosphere soil
2.2.3 水氮耦合下土壤酶耦合效應(yīng)分析
不同水氮處理?xiàng)l件下土壤酶效應(yīng)表現(xiàn)不一(表2)。土壤酶的供氮效應(yīng)均表現(xiàn)為正效應(yīng),說(shuō)明施用氮肥可以提高土壤酶的活性。土壤脲酶供氮效應(yīng)隨著施氮量的增加而提高。蔗糖酶供氮效應(yīng)在施氮處理間差異較小,過(guò)氧化氫酶供氮效應(yīng)在MN處理下最高,HN處理下反而降低,如:抽穗期過(guò)氧化氫酶在高氮下的供氮效應(yīng)僅為中氮處理的66.3%(?20 kPa)及61.7%(?40 kPa),說(shuō)明重施氮肥并不能顯著(<0.05)地增加土壤中過(guò)氧化氫酶的活性;輕度干濕交替灌溉控水效應(yīng)為正效應(yīng),說(shuō)明其促進(jìn)土壤酶活性的增加,而重度干濕交替灌溉的控水效應(yīng)為負(fù)效應(yīng),說(shuō)明其抑制土壤酶活性的增加,不同的氮肥水平間表現(xiàn)一致;水氮耦合效應(yīng)方面:輕度干濕交替灌溉土壤酶表現(xiàn)為正效應(yīng),而重度干濕交替灌溉土壤脲酶及蔗糖酶(抽穗前)則表現(xiàn)為負(fù)效應(yīng),說(shuō)明輕度干濕交替與中氮耦合能夠促進(jìn)土壤酶活性提高。
表2 水氮耦合對(duì)土壤酶耦合效應(yīng)的影響
2.3 水氮耦合對(duì)土壤微生物數(shù)量及耦合效應(yīng)的影響
2.3.1 對(duì)細(xì)菌數(shù)量的影響
隨著生育進(jìn)程,土壤中細(xì)菌數(shù)量表現(xiàn)為先上升后降低的趨勢(shì),在抽穗期達(dá)到峰值(圖2a)。在同一氮肥水平下,與保持水層相比,輕度干濕交替灌溉提高土壤中細(xì)菌的數(shù)量,這在幼穗分化時(shí)期及抽穗表現(xiàn)尤為明顯,而重度干濕交替灌溉則明顯降低土壤中細(xì)菌的數(shù)量,如分蘗盛期細(xì)菌數(shù)量降低7.7%~15.0%;在同一灌溉方式下,施用氮肥明顯增加了土壤中細(xì)菌數(shù)量,MN和HN下細(xì)菌數(shù)量增加了20.0%~30.0%(保持淺水層)、13.6%~22.7%(?20 kPa)與29.4%~41.2%(?40 kPa);與MN相比,高氮處理下土壤中細(xì)菌數(shù)量反而顯著性(<0.05)降低,這在成熟前表現(xiàn)尤為明顯,說(shuō)明施用高氮并不能顯著(<0.05)提高土壤中細(xì)菌數(shù)量。從水氮耦合方面分析,中氮耦合輕度干濕交替灌溉處理細(xì)菌數(shù)量最多,如抽穗期,細(xì)菌數(shù)量達(dá)到65×106g-1,比對(duì)照(0N, 0 kPa)提高116.7%,可見(jiàn)中氮輕度干濕交替灌溉最有利于土壤細(xì)菌數(shù)量的提高。
2.3.2 對(duì)真菌數(shù)量的影響
土壤中真菌數(shù)量隨著生育進(jìn)程,表現(xiàn)為先提高后下降的趨勢(shì),抽穗期達(dá)到峰值(圖2b)。在同一施氮水平下,與保持水層相比,輕度干濕交替灌溉提高土壤中真菌的數(shù)量,這在幼穗分化時(shí)期及抽穗表現(xiàn)尤為明顯,而重度干濕交替灌溉則明顯降低土壤中真菌的數(shù)量,如幼穗分化時(shí)期真菌數(shù)量降低12.5%~16.7%;在同一灌溉方式下,施用氮肥增加了幼穗分化及抽穗期土壤中真菌數(shù)量,MN和HN下真菌數(shù)量平均增加了15.0%(保持淺水層)、8.4%(?20 kPa)與32.2%(?40 kPa);隨著施氮量的增加,土壤中真菌數(shù)量先增后降,MN處理下土壤中真菌數(shù)量最多,高氮處理下土壤中真菌數(shù)量反而顯著性(<0.05)降低,這在分蘗盛期以后表現(xiàn)尤為明顯,說(shuō)明施用高氮并不能顯著性(<0.05)提高土壤中真菌數(shù)量。從水氮耦合方面分析,中氮耦合輕度干濕交替灌溉處理真菌數(shù)量最多,如抽穗期,真菌數(shù)量達(dá)到67×104g-1,比對(duì)照(0N,0 kPa)提高48.9%,可見(jiàn)中氮輕度干濕交替灌溉最有利于土壤真菌數(shù)量的提高。
2.3.3 對(duì)放線菌數(shù)量的影響
隨著生育進(jìn)程,放線菌數(shù)量表現(xiàn)為先增加后降低的趨勢(shì),在抽穗期最大(圖2c)。在同一氮肥水平下,與保持水層相比,輕度干濕交替灌溉提高土壤中放線菌的數(shù)量,這在抽穗期表現(xiàn)尤為明顯,而重度干濕交替灌溉則明顯降低土壤中放線菌的數(shù)量,如成熟期放線菌數(shù)量降低18.2%~21.4%;在同一灌溉方式下,施用氮肥增加了幼穗分化及抽穗期土壤中放線菌數(shù)量,MN和HN下放線菌數(shù)量增加了50.0%~60.0%(保持淺水層)、14.3%~28.6%(?20 kPa)與50.0%~75.0%(?40 kPa);隨著施氮量的增加,土壤中放線菌數(shù)量先增后降,MN處理下土壤中放線菌數(shù)量最多,高氮處理下放線菌數(shù)量反而顯著性降低,說(shuō)明高氮并不能顯著(<0.05)提高土壤中放線菌數(shù)量。從水氮耦合方面分析,中氮耦合輕度干濕交替灌溉處理放線菌數(shù)量最多,如抽穗期,真菌數(shù)量達(dá)到64×105g-1,比對(duì)照(0N 0 kPa)提高60%,可見(jiàn)中氮輕度干濕交替灌溉最有利于土壤放線菌數(shù)量的提高。
a. 水氮耦合對(duì)水稻土壤細(xì)菌數(shù)量的影響
a. Effect of water and nitrogen coupling on bacteria quantity rhizosphere soil
b. 水氮耦合對(duì)水稻土壤根際真菌數(shù)量的影響
b. Effect of water and nitrogen coupling on fungi quantity in rhizosphere soil
Fig 2 Effect of water and nitrogen coupling on microorganism quantity in rhizosphere soil
2.3.4 水氮耦合對(duì)土壤微生物耦合效應(yīng)的影響
新稻20土壤微生物(細(xì)菌、真菌及放線菌)的供氮效應(yīng)大都表現(xiàn)為正效應(yīng)(表3),說(shuō)明施用氮肥可以提高土壤微生物的數(shù)量,進(jìn)一步觀察發(fā)現(xiàn):與MN相比,HN處理下土壤微生物的供氮效應(yīng)均較低,如:分蘗中期土壤中真菌在高氮下的供氮效應(yīng)僅為中氮處理的25%(?20 kPa)及30.7%(?40 kPa),說(shuō)明重施氮肥并不能顯著增加土壤中微生物的數(shù)量;輕度干濕交替灌溉控水效應(yīng)為正效應(yīng),說(shuō)明其促進(jìn)土壤中微生物數(shù)量的增加,而重度干濕交替灌溉為負(fù)效應(yīng),說(shuō)明其抑制土壤中微生物數(shù)量的增加,不同的氮肥水平間表現(xiàn)一致;耦合效應(yīng)方面:輕度干濕交替灌溉表現(xiàn)為正效應(yīng),而重度干濕交替灌溉整體表現(xiàn)為負(fù)效應(yīng)(真菌抽穗期除外),說(shuō)明適宜的水氮耦合能夠促進(jìn)土壤中微生物數(shù)量的提高。
表3 水氮耦合對(duì)土壤微生物耦合效應(yīng)的影響
2.4 水氮耦合對(duì)根系分泌物中有機(jī)酸總量及耦合效應(yīng)的影響
不同水氮肥耦合下根系分泌物中有機(jī)酸總量明顯存在差異[31]。新稻20根系分泌有機(jī)酸的供氮效應(yīng)均表現(xiàn)為正效應(yīng)(表4),說(shuō)明增施氮肥可以促進(jìn)根系有機(jī)酸的分泌。與MN相比,HN有機(jī)酸的供氮效應(yīng)較低,說(shuō)明重施氮肥并不能明顯增加根系分泌有機(jī)酸的量;輕度干濕交替灌溉控水效應(yīng)為正效應(yīng),說(shuō)明其促進(jìn)根系有機(jī)酸總量的增加,而重度干濕交替灌溉控水效應(yīng)則為負(fù)效應(yīng),說(shuō)明其抑制根系分泌有機(jī)酸的能力,不同的氮肥處理間表現(xiàn)一致;耦合效應(yīng)方面:輕度干濕交替灌溉表現(xiàn)為正效應(yīng),而重度干濕交替灌溉則表現(xiàn)為負(fù)效應(yīng),說(shuō)明適宜的水氮耦合能夠促進(jìn)根系分泌有機(jī)酸的量。
表4 水氮耦合對(duì)根系分泌有機(jī)酸總量耦合效應(yīng)的影響
2.5 根際土壤酶活性及微生物數(shù)量與有機(jī)酸總量的相關(guān)性分析
根際土壤中脲酶、蔗糖酶及過(guò)氧化氫酶活性與不同生育期根系分泌有機(jī)酸總量呈顯著(<0.05)或極顯著(<0.01)的正相關(guān)關(guān)系(=0.778*~0.987**),同樣根際土壤中細(xì)菌、真菌及放線菌數(shù)量與不同生育期根系分泌有機(jī)酸總量呈顯著(<0.05)或極顯著(<0.01)的正相關(guān)關(guān)系(=0.757*~0.974**),表明根際土壤中微生物數(shù)量及酶活性與根系分泌有機(jī)酸量關(guān)系密切。
表5 根際土壤微生物及酶活性與有機(jī)酸總量的相關(guān)分析
3.1 水氮耦合對(duì)水稻根際土壤酶及微生物數(shù)量的影響
根際是靠近作物根系的微域土區(qū),是作物-土壤生態(tài)系統(tǒng)物質(zhì)與能量交換的重要界面,也是土壤酶及微生物非?;钴S的區(qū)域[32]。Tang等[8]研究表明,施肥和耕作措施可以平衡土壤的C/N比,改善土壤水熱狀況,提高土壤酶活性。夏雪等[4]認(rèn)為施用氮肥可以提高土壤微生物群落碳源利用率、微生物群落的豐富度、功能多樣性及土壤酶的活性;低量和中量氮肥能夠提高蔗糖酶和脲酶活性,而中量和高量氮肥可以增加堿性磷酸酶活性。本研究表明,增施氮肥顯著提高水稻根際土壤酶活性及微生物量。原因是氮肥能夠促進(jìn)作物根系代謝,提高根系生理功能,使根系分泌有機(jī)酸、氨基酸、糖及高分子黏膠等物質(zhì)增加,為微生物的繁殖提供豐富的營(yíng)養(yǎng);同時(shí)根際土壤微生物的增加能夠固定并釋放營(yíng)養(yǎng)物質(zhì),改善與調(diào)節(jié)根際養(yǎng)分,提高土壤酶活性[33]。本研究表明,中氮條件下土壤蔗糖酶、過(guò)氧化氫酶及微生物數(shù)量較多,進(jìn)一步增施氮肥反而降低。原因可能是高氮條件下根系土壤處于較高濃度的養(yǎng)分,對(duì)根系土壤的微生物產(chǎn)生一定的毒害作用,降低其分解及礦化有機(jī)質(zhì)的能力,影響根際養(yǎng)分水平,降低土壤酶的活性。說(shuō)明氮肥對(duì)微生物數(shù)量的變化具有雙重性,合理的氮濃度對(duì)于土壤微生物的數(shù)量提高及酶活性的保持具有促進(jìn)作用[33]。
蔡曉紅等[34]研究認(rèn)為,土壤酶及微生物生物量在淺水層連續(xù)灌溉模式下最小,控水模式和干濕交替模式下土壤微生物量碳最大[14]。本研究表明,輕度干濕交替灌溉下,土壤酶活性及微生物數(shù)量明顯增加,而重度干濕交替灌溉后土壤酶活性及微生物數(shù)量明顯下降。究其原因,一方面,輕度水分脅迫下根系土壤通透性增加,有利于土壤微生物的有氧呼吸,給微生物的生長(zhǎng)提供良好的條件,有利于土壤酶活性的提高及維持;另一方面,輕度水分下水稻根系生理活性較強(qiáng),產(chǎn)生較多的分泌物,這些分泌物反而促進(jìn)土壤微生物的滋生及提供養(yǎng)分;重度干濕交替灌溉下土壤雖然通透性提高,但是根系生理能力降低,微生物賴(lài)以生存的物質(zhì)減少,影響其數(shù)量的增加。故本研究結(jié)果與蔡曉紅等[34]研究不盡一致,是兩者之間所處的生長(zhǎng)條件并不一致。
3.2 水氮耦合對(duì)水稻根系分泌有機(jī)酸總量的影響
關(guān)于根系分泌物中有機(jī)酸的研究,單因子的試驗(yàn)較多,而對(duì)于水氮耦合下根系分泌特性研究仍然較少。常二華等[35]研究表明,水稻缺少氮素時(shí)會(huì)抑制根系有機(jī)酸的分泌,其研究的是低氮條件下根系分泌的特性,當(dāng)?shù)睾枯^少時(shí),水稻從土壤中可吸收的NO3-就比較少,根系分泌的有機(jī)酸含量就相對(duì)較低。本研究表明,MN條件下根系分泌的有機(jī)酸含量整體較高,而高氮?jiǎng)t抑制了根系分泌,說(shuō)明重施氮肥后根系活性降低,根系分泌受到抑制,不利于根系功能的發(fā)揮。中氮及高氮條件下的根系分泌特性,更加貼近生產(chǎn)實(shí)際,對(duì)于不同的氮肥下根系分泌觀察更為系統(tǒng)。
Henry等[36]人認(rèn)為,在干旱的情況下根系的有機(jī)酸分泌普遍的高于在淹水條件下的有機(jī)酸分泌,尤其是對(duì)富馬酸、馬來(lái)酸和丁二酸最為顯著。Huang[37]與Marzieh[24]等發(fā)現(xiàn)水分的脅迫可以增加根系分物的含碳量,甘藍(lán)型油菜的根系可以分泌出更多的有機(jī)酸??梢?jiàn)不同水分對(duì)根系分泌有機(jī)酸的含量研究結(jié)果不盡一致。本試驗(yàn)得出,輕度干濕交替灌溉后根系分泌物中有機(jī)酸含量明顯增加,而重度干濕交替灌溉則明顯降低。究其原因,在輕度水分脅迫下水稻的根系土壤中微生物數(shù)量及酶的活性得到提高,根系活性較高,能夠主動(dòng)分泌有機(jī)酸的含量,從而提高根系的生理功能,為地上部的生長(zhǎng)發(fā)育提供物質(zhì)與能量;同時(shí)根系分泌物為根系周?chē)奈⑸锾峁┝舜罅康哪茉春蜖I(yíng)養(yǎng)物質(zhì),所以根系周?chē)蔀榱宋⑸锏拇x活動(dòng)旺盛場(chǎng)所,相關(guān)分析也表明,根系分泌有機(jī)酸含量與土壤酶及微生物數(shù)量呈顯著與極顯著正相關(guān)關(guān)系,可見(jiàn)根系分泌物對(duì)根際土壤酶活性及微生物數(shù)量具有選擇塑造作用,根際土壤酶及微生物區(qū)系變化也對(duì)作物根系分泌及信息傳遞有著重要的影響。
3.3 水氮耦合對(duì)水稻根際耦合效應(yīng)的影響
關(guān)于耦合效應(yīng)的分析一般采用回歸旋轉(zhuǎn)組合及值方差等方法,評(píng)價(jià)各試驗(yàn)因子的效應(yīng)[38-41]。本研究通過(guò)各因素效應(yīng)公式計(jì)算出各因子大小,從直觀上反映各因素效應(yīng)的有無(wú)及效應(yīng)的高低。研究表明,土壤酶活性、微生物數(shù)量及有機(jī)酸總量的供氮效應(yīng)為正效應(yīng),說(shuō)明增施氮肥有利于根際環(huán)境的改善,但重施氮肥(360 kg/hm2)后土壤蔗糖酶、過(guò)氧化氫酶、微生物數(shù)量及根系分泌有機(jī)酸的供氮效應(yīng)反而降低,說(shuō)明過(guò)量施肥并不能顯著改善根際環(huán)境。輕度干濕交替灌溉供水效應(yīng)為正效應(yīng),而重度干濕交替灌溉的控水效應(yīng)則為負(fù)效應(yīng),說(shuō)明適宜的水分控制能夠改善根際環(huán)境,過(guò)度的水分脅迫則惡化根系生態(tài)環(huán)境,不利于根系生長(zhǎng)代謝。輕度干濕交替灌溉耦合中氮處理土壤酶活性、微生物數(shù)量及有機(jī)酸總量耦合效應(yīng)最佳,說(shuō)明輕度干濕交替灌溉和中氮相互作用產(chǎn)生正效應(yīng),有利于根系生長(zhǎng)及地上部發(fā)育,進(jìn)一步觀察發(fā)現(xiàn),重施氮肥后通過(guò)輕度干濕交替灌溉能提高土壤酶活性及微生物數(shù)量,能夠促進(jìn)根系分泌,說(shuō)明氮肥起到部分的“以肥調(diào)水”的作用,而重干濕交替下施用氮肥耦合效應(yīng)為負(fù)值,說(shuō)明其加劇土壤干旱脅迫程度,降低根系分泌功能及惡化土壤環(huán)境。這提示在生產(chǎn)實(shí)踐中,通過(guò)輕度干濕交替灌溉耦合中氮(240 kg /hm2)調(diào)控,促進(jìn)根系有機(jī)酸的分泌,提高根系的代謝活性,為地上部的生長(zhǎng)發(fā)育創(chuàng)造良好的環(huán)境,有利于水稻產(chǎn)量的提高及資源的高效利用。
本試驗(yàn)是在盆栽條件下觀察水氮耦合的根際效應(yīng),雖然整個(gè)生育期都有大棚擋雨,對(duì)水分的管理較嚴(yán),能夠反映不同水氮耦合對(duì)根際環(huán)境的影響,但水稻生長(zhǎng)發(fā)育狀態(tài)與大田條件仍有一定的差異,大田條件下水氮耦合對(duì)水稻根際效應(yīng)的影響有待深入研究。
水稻根際環(huán)境及耦合效應(yīng)在不同水氮處理間存在明顯差異。中氮輕度干濕交替灌溉處理創(chuàng)造良好的根際環(huán)境,土壤酶活性較強(qiáng),微生物數(shù)量較多及根系分泌物中有機(jī)酸含量較高。重度干濕交替灌溉則降低土壤酶活性、微生物數(shù)量及根系分泌特性,降低“以肥調(diào)水”的效果。水稻根際土壤酶及微生物數(shù)量與主要生育期水稻根系分泌有機(jī)酸總量呈顯著或極顯著的正相關(guān),表明通過(guò)適宜的水氮耦合提高水稻根系分泌能力,協(xié)調(diào)地上地下生長(zhǎng),為水稻生長(zhǎng)創(chuàng)造良好的環(huán)境。
[1] 卜洪震,王麗宏,尤金成,等. 長(zhǎng)期施肥管理對(duì)紅壤稻田土壤微生物量碳和微生物多樣性的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(16):3340-3347.
Bo Hongzhen, Wang Lihong, You Jincheng, et al. Impact of long-term fertilization on the microbial biomass carbon and soil microbial communities in paddy red soil[J]. Scientia Agricultura Sinica, 2010, 43(16): 3340-3347. (in Chinese with English abstract)
[2] 馬曉霞,王蓮蓮,黎青慧,等. 長(zhǎng)期施肥對(duì)玉米生育期土壤微生物量碳氮及酶活性的影響[J]. 生態(tài)學(xué)報(bào),2012,32(17):5502-5511.
Ma Xiaoxia, Wang Lianlian, Li Qinghui, et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season[J]. Acta Ecologica Sinica, 2012, 32(17): 5502-5511. (in Chinese with English abstract)
[3] Ye Shaoping, Yang Yujie, Xin Guorong, et al. Studies of the Italian ryegrass–rice rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium mutiflorum L. rhizosphere[J]. Applied Soil Ecology, 2015, 90(6): 26-34.
[4] 夏雪,谷潔,車(chē)升國(guó),等. 施氮水平對(duì)塿土微生物群落和酶活性的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(8):1618-1627.
Xia Xue, Gu Jie, Che Shengguo, et al. Effects of nitrogen application rates on microbial community and enzyme activities in lou soil[J]. Scientia Agricultura Sinica, 2011, 44(8): 1618-1627. (in Chinese with English abstract)
[5] Yusuf A A, Abaidoo R C, Iwuafor E N , et al. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna[J]. Agriculture, Ecosystem and Environment, 2009, 129: 325-331.
[6] 陶磊,褚貴新,劉濤,等. 有機(jī)肥替代部分化肥對(duì)長(zhǎng)期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響[J]. 生態(tài)學(xué)報(bào),2014,34(21):6137-6146.
Tao Lei, Chu Guixin, Liu Tao, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield,soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21): 6137-6146. (in Chinese with English abstract)
[7] 徐國(guó)偉,王賀正,翟志華,等. 不同水氮耦合對(duì)水稻根系形態(tài)生理、產(chǎn)量與氮素利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):132-141.
Xu Guowei, Wang Hezheng, Zhai Zhihua, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 132-141. (in Chinese with English abstract)
[8] Tang H M, Xu Y L, Sun J M, et al. Soil enzyme activities and soil microbe population as influenced by long-term fertilizer management under an intensive cropping system[J]. Journal of Pure and Applied microbiology, 2014, 8(2): 15-23.
[9] Liu E K, Zhao B Q, Mei X R, et al. Effects of no-tillage management on soil biochemical characteristics in northern China[J]. Journal of Agricultural Science, 2010, 148(2): 217-223.
[10] 肖新,朱偉,肖靚,等. 適宜的水氮處理提高稻基農(nóng)田土壤酶活性和土壤微生物量碳氮[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(21):91-98.
Xiao Xin, Zhu Wei, Xiao Liang, et al. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 91-98. (in Chinese with English abstract)
[11] 趙亞麗,郭海斌,薛志偉,等. 耕作方式與秸稈還田對(duì)土壤微生物數(shù)量、酶活性及作物產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(6):1785-1792.
Zhao Yali, Guo Haibin, Xue Zhiwei, et al. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1785-1792. (in Chinese with English abstract)
[12] 武際,郭熙盛,魯劍巍,等. 不同水稻栽培模式下小麥秸稈腐解特征及對(duì)土壤生物學(xué)特性和養(yǎng)分狀況的影響[J]. 生態(tài)學(xué)報(bào),2013,33(2):565-575.
Wu Ji, Guo Xisheng, Lu Jianwei, et al. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation[J]. Acta Ecologica Sinica, 2013, 33(2): 565-575. (in Chinese with English abstract)
[13] 黃繼川,彭智平,于俊紅,等. 施用玉米秸稈堆肥對(duì)盆栽芥菜土壤酶活性和微生物的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(2):348-353.
Huang Jichuan, Peng Zhiping, Yu Junhong, et al. Impacts of applying corn-straw compost on microorganisms and enzyme activities in pot soil cultivated with mustard[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 348-353. (in Chinese with English abstract)
[14] 王菲,袁婷,谷守寬,等. 有機(jī)無(wú)機(jī)緩釋復(fù)合肥對(duì)土壤微生物量碳、氮和群落結(jié)構(gòu)的影響[J]. 生態(tài)學(xué)報(bào),2016,36(7):2044-2051.
Wang Fei, Yuan Ting, Gu Shoukuan, et al. Effects of organic and inorganic slow-release compound fertilizers on microbial biomass carbon and nitrogen, and microbial community structure in soil[J]. Acta Ecologica Sinica, 2016, 36(7): 2044-2051. (in Chinese with English abstract)
[15] 于會(huì)泳,宋曉麗,王樹(shù)聲,等. 低分子量有機(jī)酸對(duì)植煙土壤酶活性和細(xì)菌群落結(jié)構(gòu)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(24):4936-4947.
Yu Huiyong, Song Xiaoli, Wang Shusheng, et al. Effects of low molecular weight organic acids on soil enzymes activities and bacterial community structure[J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947. (in Chinese with English abstract)
[16] Yu H Y, Liang H B, Shen G M, et al. Effects of allelochemicals from tobacco root exudates on seed germination and seedling growth of tobacco[J]. Allelopathy Journal, 2014, 33(1): 107-120.
[17] 韋澤秀,梁銀麗,井上光弘,等. 水肥處理對(duì)黃瓜土壤養(yǎng)分、酶及微生物多樣性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2009,20(7):1678-1684.
Wei Zexiu, Liang Yinli, Inoue M, et al. Effect of different water and fertilizer supply on cucumber soil nutrient content, enzyme activity, and icrobial diversity[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1678-1684. (in Chinese with English abstract)
[18] 郭永盛,李魯華,危常州,等. 施氮肥對(duì)新疆荒漠草原生物量和土壤酶活性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊1):249-256.
Guo Yongsheng, Li Luhua, Wei Changzhou, et al. Effect of nitrogen fertilizer on biomass amount and soil enzymes activity of desert grassland in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 249-256. (in Chinese with English abstract)
[19] 米國(guó)全,袁麗萍,龔元石,等. 不同水氮供應(yīng)對(duì)日光溫室番茄土壤酶活性及生物環(huán)境影響的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(7):124-128.
Mi Guoquan, Yuan Liping, Gong Yuanshi, et al. Influences of different water and nitrogen supplies on soil biological environment in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(7): 124-128. (in Chinese with English abstract)
[20] 謝英荷,李延亮,洪堅(jiān)平,等. 不同水氮調(diào)控措施對(duì)旱地冬小麥產(chǎn)量形成及酶活性的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2013,19(3):339-403.
Xie Yinghe, Li Yanliang, Hong Jianping, et al. Effects of different water and nitrogen control schemes on yield of winter wheat and soil enzyme activity in dryland[J]. Chinese Journal of Applied Environment Biology, 2013, 19(3): 339-403. (in Chinese with English abstract)
[21] 王杰,李剛,修偉明,等. 氮素和水分對(duì)貝加爾針茅草原土壤酶活性和微生物量碳氮的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2014,31(3):237-245.
Wang Jie, Li Gang, Xiu Weiming, et al. Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in Stipa baicalensis steppe, inner mongolia of north china[J]. Journal of Agriculture Resources and Environment, 2014, 31(3): 237-245. (in Chinese with English abstract)
[22] Sunghyun K, Hyewon L, Insook L. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. Journal of Bioscience and Bioengineering, 2010, 109(1): 47-50.
[23] Zhou N, Liu P, Wang Z Y, et al. The effects of rapeseed root exudates on the forms of aluminum in aluminum stressed rhizosphere soil[J]. Crop Protection, 2011, 30(6): 631-636.
[24] Marzieh T, Mohsen J. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents[J]. Chemosphere, 2016, 155(7): 395-404.
[25] Takashi L, Tsuyoshi O, Li D H, et al. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus Camaldulensis Dehnh[J]. Phytochemistry, 2013, 94(10): 142-147.
[26] 關(guān)松蔭. 土壤酶及其研究法[M]. 北京:農(nóng)業(yè)出版社,1986.
[27] 姚槐應(yīng),黃昌勇. 土壤微生物生態(tài)學(xué)及其實(shí)驗(yàn)技術(shù)[M]. 北京:科學(xué)出版社,2006.
[28] 戢林,李廷軒,張錫洲,等. 水稻氮高效基因型根系分泌物中有機(jī)酸和氨基酸的變化特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(5):1046-1055.
Ji Lin, Li Tingxuan, Zhang Xizhou, et al. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1046-1055. (in Chinese with English abstract)
[29] 陳新紅. 土壤水分與氮素對(duì)水稻產(chǎn)量和品質(zhì)的影響及其生理機(jī)制[D]. 揚(yáng)州:揚(yáng)州大學(xué),2004.
Chen Xinhong. Effects of Soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism[D].Yangzhou:Yangzhou university, 2004. (in Chinese with English abstract)
[30] 樊小林,史正軍,吳平. 水肥(氮)對(duì)水稻根構(gòu)型參數(shù)的影響及其基因型差異[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2002,30(2):1-5.
Fan Xiaolin, Si Zhengjun, Wu ping. Effects of nitrogen fertilizer on parameters of rice (Oryza sativa L.) root architecture and their genotypic difference[J]. Journal of Northwest Sci-tech University of Agriculture and Forestry: Natural Science Edition, 2002, 30(2): 1-5. (in Chinese with English abstract)
[31] 徐國(guó)偉,呂強(qiáng),陸大克,等. 干濕交替灌溉耦合施氮對(duì)水稻根系性狀及籽粒庫(kù)活性的影響[J]. 作物學(xué)報(bào),2016,42(10):1495-1505.
Xu Guowei, Lü Qiang, Lu Dake, et al. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity[J]. Acta Agronomica Sinica, 2016, 42(10): 1495-1505. (in Chinese with English abstract)
[32] 吳林坤,林向民,林文雄. 根系分泌物介導(dǎo)下植物-土壤-微生物互作關(guān)系研究進(jìn)展與展望[J]. 植物生態(tài)學(xué)報(bào),2014,38(3):298-310.
Wu Linkun, Lin Xiangmin, Lin Wenxiong. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. (in Chinese with English abstract)
[33] 郭天財(cái),宋曉,馬冬云,等. 施氮量對(duì)冬小麥根際土壤酶活性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(1):110-114.
Guo Tiancai, Song Xiao, Ma Dongyun, et al. Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 110-114. (in Chinese with English abstract)
[34] 蔡曉紅,楊京紅,馬維娜,等. 稻田根際微生物生物量碳與水分、氮素影響效應(yīng)分析[J]. 浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2008,34(6):662-668.
Cai Xiaohong, Yang Jinghong, Ma Weina, et al. Effects of nitrogen supply levels and water schemes on rice rhizosphere microbial biomass carbon in rice development stage at paddy field[J]. Journal of Zhenjiang University: Agriculture & Life Science, 2008, 34(6): 662-668. (in Chinese with English abstract)
[35] 常二華,張慎鳳,王志琴,等. 結(jié)實(shí)期氮磷營(yíng)養(yǎng)水平對(duì)水稻根系和籽粒氨基酸含量的影響[J]. 作物學(xué)報(bào),2008,
34(4):612-618. Chang Erhua, Zhang Shenfeng, Wang Zhiqin, et al. Effect of nitrogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling[J]. Acta Agronomica Sinica, 2008, 34(4): 612-618. (in Chinese with English abstract)
[36] Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress.[J]. Journal of Environmental Quality, 2007, 36(3): 904-912.
[37] Huang C, Webb M J, Graham R D. Pot size affects expression of Mn efficiency in barley[J]. Plant & Soil, 1995, 178(2): 205-208.
[38] Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield[M]//Turner N C, Kramer P J. Adaption of Plant to Water and High Temperature Stress.
New York: John wiley, 1980: 341-352.
[39] Sandhua S S, Mahalb S S, Vashistb K K, et al. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India[J]. Agricultural Water Management, 2012, 104(1): 32-39.
[40] Sun Y J, Ma J, Sun Y Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2012, 127(1): 85-98.
[41] Li Y J, Chen X, Shamsi I H, et al. Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil[J]. Pedosphere, 2012, 22(5): 661-672.
Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice
Xu Guowei1,2, Lu Dake1, Sun Huizhong1, Wang Hezheng1, Li Youjun1
(1.,471003,; 2.,,225009,)
Soil moisture and nitrogen nutrient are the principal factors affecting rice (L.) production. Elucidation of their influences and coupling effects on grain yield of rice would have great significance for high yield and high efficiency. Domestic and foreign scholars have conducted extensive research on the interaction of water and fertilizer. The former focuses on the ground, such as crop growth development, physiological function, hormone change, nutrient absorption and utilization, water use efficiency and other aspects of the studies, few papers are for soil and root secretion characteristics, and their interaction and the conclusions are not consistent. The purposes of this study were to investigate the effects of water and nitrogen coupling on soil enzyme activity, microorganism quantity, root secretion and coupling effect.A mid-seasonrice cultivar of Xindao 20 was pot-grown. Three treatments of different nitrogen levels, i.e. 0N, MN (240kg/hm2) and HN (360 kg/hm2) and three irrigation regimes, i.e. submerged irrigation (0 kPa), alternate wetting and moderate drying (-20 kPa) and alternate wetting and severe drying (-40 kPa) were conducted in 2014 and 2015. Some indices, such as urease enzyme, sucrose enzyme, catalase enzyme, bacteria, fungi, actinomycetes quantity and total organic acid in root at different stages were investigated in the experiment. Results showed that there was a significant interaction between irrigation regimes and nitrogen levels, and no significant difference was observed between the 2 years. In the same nitrogen levels, urease enzyme, sucrose enzyme, catalase enzyme activity in soil at main growth stages were higher under the condition of alternate wetting and moderate drying compared with the submerged irrigation, and meanwhile bacteria, fungi and actinomycetes quantity in soil were also increased at main stages, and total content of organic acid was enhanced. So mild water stress and MN enhanced soil enzyme, microorganism and organic acid content, and formed the best mode in this paper, which was referred as the water-nitrogen coupling management model. The opposite result was observed under the condition of alternate wetting and severe drying. Soil enzyme, microorganism quantity and organic acid content in the root secretion at main stages were decreased significantly. In the same irrigation regime, soil enzyme and microorganism quantity at main growth stages were higher under the condition of MN treatment when compared with no nitrogen applied, and meanwhile total content of organic acid was enhanced significantly. The opposite result was observed under the condition of HN treatment, which indicated that heavy nitrogen application decreased soil enzyme and microorganism quantity, and organic acids of root secretion were also reduced significantly. Correlation analysis showed that there was significant or extremely significant positive correlation between soil enzyme, microorganism quantity and total organic acid content at main growth stages. Positive effects were observed in the effect of nitrogen fertilizer for soil enzyme activities, microbial quantity and total content of organic acid, and water stress and interaction effect were also positive under the condition of alternate wetting and moderate drying, while negative effect was observed under the condition of alternate wetting and severe drying. These results suggest increasing soil enzyme activity and microorganism quantity, and improving organic acids of root secretion through the appropriate regulation of water and nitrogen, will create a good rhizosphere environment for the growth of rice.
irrigation; nitrogen; microorganisms; rice; soil enzyme; organic acid content
10.11975/j.issn.1002-6819.2017.04.026
S511
A
1002-6819(2017)-04-0186-09
2016-6-30
2016-12-29
國(guó)家自然科學(xué)基金項(xiàng)目(U1304316);江蘇省作物栽培生理重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(027388003K11009);河南省教育廳科學(xué)技術(shù)研究重點(diǎn)項(xiàng)目(13A210266)。
徐國(guó)偉,男,漢族,博士,副教授,主要從事作物栽培生理研究。洛陽(yáng) 河南科技大學(xué)農(nóng)學(xué)院,471003。Email:gwxu2007@163.com
徐國(guó)偉,陸大克,孫會(huì)忠,王賀正,李友軍. 干濕交替灌溉與施氮耦合對(duì)水稻根際環(huán)境的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):186-194. doi:10.11975/j.issn.1002-6819.2017.04.026 http://www.tcsae.org
Xu Guowei, Lu Dake, Sun Huizhong, Wang Hezheng, Li Youjun. Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 186-194. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.026 http://www.tcsae.org