高維忠
【Abstract】In this paper, the author introduced the related concepts and basic principle of the all pass filter which can adjust the audio signal phase.
【Key Words】all pass filter; phase; phase difference; amplitude; phase frequency characteristic; group delay
近年來,利用全通濾波器來改善音色的文章屢見不鮮,如利用全通濾波器調(diào)整相位以及用全通濾波器來補償兩個聲波間相位差等。鑒于此,筆者就全通濾波器的原理談一些個人的認識,以供參考。
1 相位和相位差
聲頻行業(yè)的許多技術(shù)人員都希望通過在擴聲系統(tǒng)中加入全通濾波器來調(diào)整相位關(guān)系,從而彌補由于相位問題而引起的聲音缺陷。然而,前提是必須了解“相位”和“相位差”這兩個基本概念。
聲頻信號具有頻率、幅度、聲速、相位、聲程等相關(guān)特性,其可聽聲波的頻率范圍(即“聲頻范圍”)是20 Hz到20 kHz。但是,絕大多數(shù)聲音不是單一頻率的正弦波信號,而是由許多頻率的正弦波信號組合而成的,其中最主要的就是聲音的基音(基波),還有很多個諧音(諧波),這些諧音的頻率是基音頻率的不同整數(shù)倍,例如2倍、3倍、4倍……n倍,通常可以稱為二次諧波、三次諧波、四次諧波等等,最后組成“復(fù)合”的聲音幅度時間曲線,也就是波形圖。如圖1所示是正弦波交流電的波形,橫軸是時間軸(t),縱軸是電壓軸(U),其中電壓瞬時值用小寫的u表示,Um為最大值,也稱峰值,圖示u1和u2兩個正弦波,ψ是u1和u2兩個正弦波之間的相位差,T是周期,一個周期T中包含2π弧度的角度,或者說是360°角度。實際上,聲波正弦波的波形也是這樣的,只不過將縱軸的幅度用聲壓來代替電壓而已,正弦波聲波的波形圖見圖2,圖中橫軸是時間軸(t),縱軸是聲壓軸(p)。在電聲設(shè)備中傳輸和處理的聲頻信號是電信號,最后經(jīng)過揚聲器的換能后輻射出來就是聲信號了。
那么就聲波的波長λ來說,可以從20 Hz時的波長17 m逐步減小到20 kHz時的波長1.7 cm。不同周期的聲波對應(yīng)不同的波長。而人們平時聽到的聲音中包含了許多頻率成分,這些頻率成分是指正弦波或者叫純音,也就是前面說的可聞聲頻率范圍內(nèi)的正弦波頻率。如圖3所示,是聲音信號中某個片段的波形圖和頻譜圖,聲波信號中包含較寬頻帶的正弦波。圖4是音樂片段信號的波形圖和頻譜圖,這里的頻譜圖是以1/3倍頻程帶寬來顯示的。從圖3和圖4可以看出,該信號實際上是由很多不同強度和不同相位差的頻率的正弦波組合而成的。
對于單個聲源,存在相位問題。但聲波從聲源輻射出來后,總要在媒質(zhì)中向遠處傳播的,離開聲源的距離不同,聲波的相位移就不同。因為聲波在空氣中是以約340 m/s的速度傳輸?shù)模ㄟ@里不研究空氣溫度變化等因素對聲速造成的變化),其實在不同距離處只是在不同時間聽到該聲音,各頻率(基波和各次諧波)之間的相位關(guān)系沒有改變,理論上并不影響音色。
2 相位失真
一般來說,大家認為信號的相位失真在聽感上是基本聽不出來的,或者說基本不影響聽感的,所以,一直沒有將相位失真作為對擴聲設(shè)備的技術(shù)指標(biāo)之一來進行考量。實際上,聲頻電信號在音響設(shè)備中傳輸會帶來一定的相位失真,尤其是設(shè)備的頻率帶寬不足的情況下,電路本身對不同頻率(基波和各次諧波)的信號會產(chǎn)生不同附加相移,從而引起信號的相位失真。如果設(shè)備中對聲頻信號處理中用上了(高通、低通、帶通、帶阻)濾波器或頻率均衡器(其實就是利用帶通濾波器來達到目的的)來調(diào)整信號的幅頻特性,那么產(chǎn)生的附加相移就會更嚴(yán)重,尤其是在截止頻率附近,其相位失真更嚴(yán)重。在空間傳輸過程中,不同頻率的聲波移動相同的距離,產(chǎn)生的相位移是不同的,相移與頻率成正比,例如傳輸距離為3.4 m,對于50 Hz的聲波來說是移動了半個波長(1π弧度,或者說180°),對于100 Hz的聲波來說是移動了1個波長(2π弧度,或者說360°),而對200 Hz的聲波來說是移動了2個波長(4π弧度,或者說720°)。只有這樣才能使聲音信號經(jīng)過傳輸后的波形不發(fā)生變化,即保持原來的音色。
3 相位補償
相位補償包括兩個方面:
(1)補償?shù)氖悄膬蓚€聲音源傳過來的聲波之間的相位差
一般來說,兩只揚聲器產(chǎn)生的聲音之間的相位差與聽音位置到這兩只揚聲器的距離有關(guān)。如果聽音位置到兩只揚聲器的距離完全相等,則理論上應(yīng)該同時聽到兩只揚聲器所發(fā)出的同一聲音。從相位角度考慮,則是同相位的聲音。如果聽音位置與兩只揚聲器的距離不等,那么在聽音位置就會先聽到距離近的揚聲器所產(chǎn)生的聲音,后聽到距離遠的揚聲器所產(chǎn)生的聲音,這種現(xiàn)象是普遍存在的。兩只揚聲器的聲波在聽音位置由于存在時間差而先后到達,出現(xiàn)各個頻率上不一致的相移(這是必然的,因為頻率不同,波長就不同,相位差也不同),引起聲波的干涉現(xiàn)象,造成梳狀濾波器效應(yīng)而改變音色。不同聽音位置上兩個聲音中由于聲波傳輸距離的不同,各頻率產(chǎn)生了很多不同聲波的相位差,所以,要絕對地、完全地補償這種相位差是不可能的。
同一全頻帶揚聲器中高頻揚聲器單元和低頻揚聲器單元由于安裝位置造成振膜不在同一平面上,由前后位置的不同而引起的相位差問題,也許值得考慮,但是既然一只單元產(chǎn)生高頻聲波,另一只單元產(chǎn)生低頻聲波,那么牽涉到相位差問題的只是在分頻點附近。隨著頻率偏離分頻點,揚聲器的兩只高低音單元所產(chǎn)生的聲壓大小不同,相互干涉的影響程度減小,偏離分頻點越遠,兩個單元產(chǎn)生的聲壓相差就越大,那么干涉造成的影響就越小。
另外,低音揚聲器單元的振動系統(tǒng)質(zhì)量比較大,慣性也比較大,或者說瞬態(tài)特性比較差,也會引起分頻點附近高音單元和低音單元產(chǎn)生的聲波出現(xiàn)相位差問題。當(dāng)然,如果彌補到高音單元和低音單元的聲波同時到達揚聲器表面位置,情況會更好,所以不妨引入延遲來補償,這里補償?shù)氖菚r間差,而不是相位差(因為頻率不同相位差也是不同的)。
(2)補償哪個頻率出現(xiàn)的相位差
全通濾波器并不能對某個頻率的相移單獨進行改變,例如僅僅對某個頻率的相移增大多少度或減少多少度是無法實現(xiàn)的。全通濾波器產(chǎn)生“群延遲”,可以作為延遲器來使用,會產(chǎn)生所謂的“線性相移”(實際上全通濾波器的相位移并不能完全呈現(xiàn)線性變化的,見本文后面說明),即隨著頻率的升高,相位移也線性地增大。
4 全通濾波器
全通濾波器(APF -All Pass Filter),延遲最大平坦的濾波器,也叫貝塞爾(Bessel)濾波器,也叫湯姆遜(Thomson)濾波器。全通濾波器又稱線性相移濾波器、相位均衡器。只有衰減隨頻率變化的幅度特性(幅頻特性)還不能完全說明濾波器的傳輸特性。在使用脈沖信號的各種通信領(lǐng)域,濾波器設(shè)計者必須考慮很多因素,例如延遲、上升時間、超量、衰減率、瞬態(tài)振蕩等等。理想的情況是平坦延遲,意味著通過濾波器的各種頻率均延遲一樣的時間,因而不發(fā)生散射影響,使輸出脈沖保持輸入的原形。全通濾波器的相位響應(yīng)(相頻特性)基本呈現(xiàn)線性狀態(tài),也稱相位均衡器,具有一定的“群延遲”, (根據(jù)定義,相移的導(dǎo)數(shù)叫群延遲,)通??梢宰鳛檠舆t器用。全通濾波器具有平坦的幅頻響應(yīng),也就是說全通濾波器并不衰減任何頻率的信號。
全通濾波器雖然并不改變輸入信號的幅頻特性,但它會改變輸入信號的相位。利用這個特性,全通濾波器可以用做延時器、延遲均衡等。但是延遲時間一般不長,并且還隨著選定的極點角頻率ωx升高,延遲時間也相應(yīng)地變短,即便采用多級二階全通濾波器級聯(lián)起來,也不能構(gòu)成很長時間的延遲,所以,對于后排補聲揚聲器與主揚聲器之間的聲程差補償?shù)难舆t,一般采用專門的延時器來完成。目前,數(shù)字延時器的延時技術(shù)是將模擬音頻信號轉(zhuǎn)換成數(shù)字信號,然后存放到存儲器中,只要設(shè)定了需要延時多長時間,經(jīng)過這個需要的延遲時間再次從存儲器中將信號調(diào)出來即可,所以,延時過程中基本不產(chǎn)生失真,并且設(shè)置的延時時間可以很長。
4.1 全通濾波器傳輸函數(shù)
如果將二階傳遞函數(shù)典型式的零點移到s平面右半部與極點依jΩ軸對稱存在時(如圖5所示),則傳遞函數(shù)表示式為
從(公式3)可見,全通濾波器在所有頻率上的振幅特性均為1,即在所有頻率上的輸出幅度均等于輸入幅度。
由(公式4)可知:ω=0時,φ=0;ω=ωx時,φ=-180;ω=∞時,φ=-360。
同時從(公式4)可知相頻特性和Qx有關(guān),Qx越小,則曲線在ω位于0附近的斜率越大(指絕對值,下同),而在ωx附近的斜率越小。反之,Qx越大,則曲線在ω位于0附近的斜率越小,而在ωx附近的斜率越大。相頻特性見圖6。
4.2 群延遲
4.3 全通濾波器的特性
從(公式4)看出全通濾波器的傳遞函數(shù)的相頻特性是非線性的。從(公式6)更進一步看到ω變化時也在變化,不為常數(shù)。這說明相頻特性的斜率在隨ω變化。這顯然是所不希望的。但可以找出在一定的頻率范圍內(nèi)使其相頻特性近似于一根直線的最佳Qx值。其相頻特性曲線和直線間的誤差可被控制在一定的允許范圍內(nèi)。接近所謂相頻特性是線性的,也就是群延遲為接近一常數(shù)。結(jié)合前面的分析,令兩個特定點上的斜率相等,以求出合適的Qx時相頻特性在ω=0及ω=ωx這兩點的斜率相等。然而,這兩點上的斜率相等并不代表在這兩點之間的任意點上的斜率也相等,具體數(shù)據(jù)見表1。
而真正理想的全通濾波器特性應(yīng)如圖8所示。但是實際上做不到,存在一定的誤差。
為了更直觀地看出相頻特性曲線的形狀,需計算不同Qx值時的相頻特性,以便尋找最佳的Qx值。表1是在Qx=0.707時的值,從中看出ω/ωx在0.1到0.6區(qū)間斜率逐漸增長,ω/ωx從0.7以后逐漸減小,直至ω/ωx為1時才稍小于ω/ωx為0.1時的斜率。按照這種規(guī)律,頻率越高則相移比線性值滯后得越多(因為差值在逐步積累)。前面已經(jīng)說明過Qx值與相頻特性的關(guān)系,Qx值越小,則頻率低端的相頻曲線斜率增大(絕對值,全文都如此),高端則減小。根據(jù)分析和計算得到Qx=0.645時,ω/ωx從0.1到1.15區(qū)間相頻特性的線性度較好,各頻率時的相移與真正直線時的誤差小于±7°,這個相位誤差造成的聲波干涉引起的梳狀濾波器效應(yīng)的影響應(yīng)該是非常小了,具體數(shù)值見表2。有了上述結(jié)論,便可以設(shè)計具體的相移器了。
5 結(jié)論
從上面分析可知,在音頻系統(tǒng)中使用全通濾波器,主要是利用其群延遲特性構(gòu)成一定時間的延時器,使兩個不同聲源產(chǎn)生的聲波能夠同時到達某一位置(例如全頻帶揚聲器中高低音單元產(chǎn)生的聲波同時達到揚聲器前表面),盡量減小由于兩個聲波先后到達某個位置而引起聲波的干涉,造成梳狀濾波器效應(yīng)而影響音色。但是,絕不能通過全通濾波器來改變信號在某個頻率上兩個聲源的聲波存在的相位差。
進一步探討,如何知道某兩個聲波在哪個頻率上有多少角度的相位差的,既然不知道這些數(shù)據(jù),又如何談利用全通濾波器來改變相位以達到將兩個聲波的相位差消除的問題呢?還有就是前面的分析已經(jīng)證明全通濾波器并不是真正的線性相位移,只能說是接近于線性相位移,所以,使用全通濾波器后,由于新增了附加的非線性相位移,反而將原節(jié)目信號構(gòu)成的各頻率之間的原始相位關(guān)系搞亂了,反而變得不符合原始信號的原狀。事實上,常用改變幅頻特性的高通濾波器、低通濾波器、帶通濾波器、帶阻濾波器(陷波濾波器)及頻率均衡器,其實際傳輸特性中的幅頻特性在通帶內(nèi)也只是理論上大致平坦,實際上是有波動的,例如切比雪夫濾波器就明確地規(guī)定了通帶內(nèi)有0.5 dB和1 dB波動的零極點位置的數(shù)據(jù);并且,規(guī)定幅頻特性-3 dB頻率點作為濾波器截止頻率點;證明在通帶內(nèi)的增益不是完全平坦的。所以,無論使用濾波器來調(diào)節(jié)幅頻特性,還是使用相位均衡器來作為延遲器,都會帶來幅度或者相位的非線性變化。