黃 劍 龐 慧 宋雨航 綜述 蔡 莉 審校
microRNA在乳腺癌耐藥中的作用
黃 劍 龐 慧 宋雨航 綜述 蔡 莉 審校
乳腺癌是危害全球女性健康的主要疾病,而乳腺癌患者對現(xiàn)有治療方法產(chǎn)生獲得性耐藥成為目前乳腺癌臨床治療所面臨的難題。微小RNA(miRNA)是一種內(nèi)源性的非編碼RNA,它參與調(diào)控多種生物學(xué)過程,包括細胞增殖、侵襲、轉(zhuǎn)移、上皮間質(zhì)轉(zhuǎn)化和耐藥等。獲得性耐藥包含多種復(fù)雜機制,可通過特定miRNA的異常表達影響細胞相關(guān)蛋白的表達、抗腫瘤藥物與相應(yīng)靶點的結(jié)合以及凋亡相關(guān)途徑引起乳腺癌耐藥。本文將重點關(guān)注在乳腺癌內(nèi)分泌治療、化療、分子靶向治療發(fā)生獲得性耐藥中表達異常的miRNA。相信miRNA能夠成為乳腺癌臨床診斷與治療以及對抗獲得性耐藥的生物標志物和新的治療靶點。
乳腺癌;miRNA;耐藥
乳腺癌是女性最常見的惡性腫瘤之一,位居全球女性第二位腫瘤致死原因。盡管早期發(fā)現(xiàn)和綜合治療的不斷完善顯著降低了乳腺癌的死亡率,然而仍然有一部分患者最終會發(fā)生復(fù)發(fā)和轉(zhuǎn)移[1]。乳腺癌作為一種全身性疾病,化療、內(nèi)分泌治療及靶向治療在綜合治療中占有及其重要的地位,而耐藥性的產(chǎn)生是影響乳腺癌患者治療療效及生存的主要原因[2]。盡管乳腺癌耐藥機制的研究已經(jīng)取得了一定的進展,我們?nèi)云惹行枰行У闹委煱悬c進而完善現(xiàn)有的治療策略,從而提高乳腺癌患者的總生存率[3]。
miRNA是一種內(nèi)源性非編碼短鏈RNA,存在于真核生物中,它是由具有發(fā)夾結(jié)構(gòu)的單鏈RNA前體加工而來的,首先原始miRNA轉(zhuǎn)錄本在細胞核中由Drosha與DGCR8組成的復(fù)合體作用下,剪切成為具有莖環(huán)結(jié)構(gòu)的miRNA前體[4]。而miRNA前體在Exp5的作用下從胞核運送到胞質(zhì),在胞質(zhì)中由RNA內(nèi)切酶III進一步作用,miRNA前體被剪切成大約22個核苷酸長度的雙鏈miRNA。成熟的miRNA與其互補序列結(jié)合形成雙螺旋結(jié)構(gòu),在解旋酶作用下,一條鏈立即被降解,另一條鏈選擇性結(jié)合到RNA誘導(dǎo)的基因沉默復(fù)合物(RISC)中,進而與目標靶mRNA結(jié)合引起靶mRNA降解或抑制其翻譯[5]。miRNA在細胞分化、增殖和凋亡等生理活動以及腫瘤發(fā)生發(fā)展等病理過程中起重要調(diào)控作用。在乳腺癌中,一系列miRNA被證實可作為促癌或抑癌基因進而調(diào)控乳腺癌進程,并且在乳腺癌細胞系研究中,發(fā)現(xiàn)多種miRNA與乳腺癌耐藥性密切相關(guān)[6]。
激素受體陽性乳腺癌約占所有類型乳腺癌的70%~80%,內(nèi)分泌治療是最重要的治療手段之一[7]。內(nèi)分泌治療是通過拮抗雌激素受體或降低雌激素水平進而抑制腫瘤細胞的生長。即使患者雌激素受體和孕激素受體均為陽性,仍約有30%的激素受體陽性患者存在原發(fā)的內(nèi)分泌治療耐藥,而幾乎所有初治有效的患者在應(yīng)用內(nèi)分泌藥物一段時間后也會出現(xiàn)治療無效,即繼發(fā)性耐藥。一旦發(fā)生耐藥,選擇性雌激素受體調(diào)節(jié)劑類藥物反而會促進腫瘤生長[8]。因此內(nèi)分泌治療耐藥仍是臨床治療所面臨的主要問題,miRNA在內(nèi)分泌耐藥機制中發(fā)揮重要調(diào)控作用。
1.1 他莫昔芬
他莫昔芬是一種選擇性雌激素受體調(diào)節(jié)劑,廣泛應(yīng)用于雌激素受體陽性的絕經(jīng)前女性內(nèi)分泌治療,其作用機制是通過與雌二醇競爭受體形成他莫昔芬-受體復(fù)合物,進而降低癌細胞的活性作用[9]。一些研究表明特定miRNA表達的異??赡茴A(yù)示著乳腺癌患者出現(xiàn)了他莫昔芬耐藥[10-11]。Miller等[12]發(fā)現(xiàn)高表達HER-2的乳腺癌細胞株中細胞周期調(diào)控因子的異常表達能導(dǎo)致他莫昔芬耐藥,其中miR-221和miR-222起到至關(guān)重要的作用。在他莫昔芬敏感細胞株中通過轉(zhuǎn)染使miR-221和miR-222高表達后,能夠負向調(diào)控細胞周期抑制因子p27kip1導(dǎo)致細胞株對他莫昔芬的藥物敏感性降低。其中p27kip1是miR-221和miR-222的靶基因,其過量表達能夠增加他莫西芬耐藥株的細胞毒性。除了miR-221和miR-222,還有多種miRNA對他莫昔芬耐藥具有調(diào)控作用。Cittelly等[13]發(fā)現(xiàn)在MCF-7/HER-2Δ16細胞株中抗凋亡蛋白Bcl-2的表達與miR-15a、miR-16的表達呈負相關(guān)。轉(zhuǎn)染miR-15a和miR-16后,Bcl-2表達顯著降低,細胞株對他莫昔芬的敏感性增強,而沉默miR-15a和miR-16基因使Bcl-2的表達顯著增加,進而提高了細胞的抗凋亡能力和細胞對他莫昔芬的耐藥性。還有研究表明miR-301高表達是淋巴結(jié)陰性的浸潤性導(dǎo)管癌的臨床不良預(yù)后因子。miR-301靶基因包括腫瘤抑制因子PTEN、轉(zhuǎn)錄因子Foxf2、凋亡蛋白BBC3等。miR-301通過與靶基因mRNA結(jié)合進而減少細胞增殖、侵襲和遷移,同時增加他莫昔芬藥物敏感性。盡管miR-301調(diào)控他莫昔芬耐藥的具體機制尚未明確,但推測他莫昔芬耐藥可能與miR-301/PTEN/Akt通路相關(guān)[14]。
1.2 芳香化酶抑制劑
芳香化酶抑制劑通過抑制體內(nèi)雌激素的生成阻止激素受體陽性的乳腺癌細胞生長。其中第三代芳香化酶抑制劑包括來曲唑、阿那曲唑和依西美坦,它們廣泛地應(yīng)用于雌激素受體陽性的絕經(jīng)后乳腺癌,然而來曲唑獲得性耐藥也是治療過程中面臨的問題[15]。Masri等[16]研究表明在來曲唑耐藥的MCF-7細胞株中,miR-128a表達明顯高于過表達芳香化酶基因的MCF-7細胞株,miR-128a能與轉(zhuǎn)化生長因子-β1型受體TGF-βR1 mRNA的3′-UTR靶向結(jié)合從而抑制TGF-β信號通路的活性,導(dǎo)致來曲唑耐藥細胞株中TGF-β活性受到抑制,因此抑制內(nèi)源性miR-128a能夠使來曲唑耐藥細胞株對TGF-β信號通路的活性增加。Vilquin等[17]首次發(fā)現(xiàn)在芳香化酶抑制劑敏感的乳腺癌細胞株中高表達miR-125b、miR-205或者敲除miR-424能夠?qū)е聛砬蚝桶⒛乔蚰退?,這些miRNA通過調(diào)控Akt/mTOR信號通路進而導(dǎo)致芳香化酶抑制劑耐藥。
1.3 氟維司群
氟維司群有別于他莫昔芬和芳香化酶抑制劑,是一種新型的ER拮抗劑,可以通過阻斷并降解ER,減少ER的表達水平起到抗腫瘤作用[18]。氟維司群用于經(jīng)輔助抗雌激素治療或者在抗雌激素治療過程中進展的絕經(jīng)后激素受體陽性的晚期乳腺癌患者,然而氟維司群的長期應(yīng)用同樣會導(dǎo)致獲得性耐藥[19]。Xin等[20]利用miRNA微陣列分析的方法發(fā)現(xiàn)在氟維司群敏感的MCF-7細胞株中14種miRNA表達下調(diào),這些miRNA參與調(diào)節(jié)了包括TGF-β、Wnt、MAPK信號通路在內(nèi)的13種信號通路。miR-221和miR-222在氟維司群敏感的乳腺癌細胞株中表達上調(diào),這兩種miRNA在細胞增殖和周期分布方面起到重要的調(diào)節(jié)作用,其相關(guān)靶基因能夠抑制與耐藥相關(guān)的多種信號通路的活性[21]。Yu等[22]發(fā)現(xiàn)自噬可能是導(dǎo)致他莫昔芬或者氟維司群內(nèi)分泌治療耐藥的主要原因,miR-214能夠通過抑制自噬進而增加乳腺癌細胞對于他莫昔芬或者氟維司群導(dǎo)致細胞凋亡的敏感性。通過RT-PCR發(fā)現(xiàn)在人乳腺癌組織標本中miR-214和UCP2呈負相關(guān),通過熒光素酶報告實驗證實UCP2是miR-214的靶基因,后續(xù)研究證實內(nèi)分泌耐藥可能由PI3K-Akt-mTOR信號通路的激活引起并且UCP2的過表達誘導(dǎo)自噬的發(fā)生。
乳腺癌是一種全身性疾病,化療在乳腺癌治療中占有重要地位,然而多藥耐藥性(MDR)是導(dǎo)致乳腺癌化療失敗的重要原因。已明確的與多藥耐藥機制相關(guān)的蛋白包括P糖蛋白、多藥耐藥相關(guān)蛋白、乳腺癌耐藥蛋白和肺耐藥相關(guān)蛋白,而特定的miRNA正是這些蛋白的關(guān)鍵調(diào)控因子[23]。
2.1 阿霉素
阿霉素在乳腺癌患者化療中的應(yīng)用非常廣泛,有研究表明在乳腺癌干細胞中高表達的miR-128能夠相應(yīng)地減少耐藥相關(guān)蛋白BMI-1和ABCC的表達,從而導(dǎo)致DNA損傷,降低細胞的存活率,促進細胞凋亡,增強阿霉素的敏感性[24]。Tryndyak等[25]發(fā)現(xiàn)在乳腺癌耐阿霉素細胞株(MCF-7/ADR)中表達上調(diào)的miR-200家族,能夠通過調(diào)控E鈣黏蛋白的轉(zhuǎn)錄進而使細胞轉(zhuǎn)化為侵襲性較弱的癌癥表型同時增加阿霉素治療的敏感性。同樣地,在MCF-7/ADR細胞株中miR-298和miR-326表達的減少導(dǎo)致P糖蛋白表達的增多,從而抑制阿霉素在細胞核中的作用。相反,高表達miR-298和miR-326可以促進阿霉素在細胞核中的聚集并發(fā)揮藥物毒性作用[26]。根據(jù)以上這些研究,miRNA在MCF-7/ADR細胞株中表達的下調(diào)似乎是常見的趨勢,而事實并不是完全如此,Zhong等[27]研究發(fā)現(xiàn)miR-100、miR-29a、miR-196a、miR-222和miR-30在MCF-7/ADR細胞株中的表達與親本MCF-7細胞株相比均有所增高,并且進一步研究證實了miR-29a和miR-222在乳腺癌阿霉素耐藥機制中發(fā)揮重要作用。
2.2 紫杉醇
在紫杉醇耐藥細胞株中高表達miR-125b可促進細胞凋亡,增加紫杉醇藥物的敏感性,通過熒光素酶報告實驗驗證Bak1是miR-125b的靶基因,miR-125b靶向結(jié)合于Bak1的3′-UTR區(qū)進而發(fā)揮調(diào)控作用,因此抑制miR-125b的表達或者增強Bak1的表達能夠恢復(fù)細胞對紫杉醇藥物的敏感性。由此推測miR-125b的高表達可能導(dǎo)致紫杉醇耐藥并誘發(fā)疾病的進展,因此miR-125b可能成為衡量乳腺癌治療有效性的生物標志物,同時也是反映紫杉醇治療敏感性的靶點[28]。Gu等[29]發(fā)現(xiàn)miR-451表達的升高可以負向調(diào)控Bcl-2的表達,進而影響Caspase-3的表達從而促進乳腺癌細胞的凋亡,這意味著miR-451可能影響乳腺癌紫杉醇耐藥。Sha等[30]發(fā)現(xiàn)miR-18a能夠通過抑制Dicer表達,進而影響細胞增殖和凋亡,增加三陰性乳腺癌細胞對紫杉醇的耐藥性。Zhao等[31]在人乳腺癌MCF-7/PR、SKBR-3/PR耐藥細胞轉(zhuǎn)染miR-21抑制劑,對親本細胞轉(zhuǎn)染miR-21模擬物,發(fā)現(xiàn)miR-21可能通過調(diào)控Bcl-2和Bax影響細胞的增殖和凋亡,進而參與了乳腺癌細胞對紫杉醇的耐藥。
乳腺癌治療已經(jīng)進入分類治療的時代,HER-2陽性乳腺癌占所有乳腺癌的20%~25%[32]。對于HER-2陽性的乳腺癌,抗HER-2靶向治療藥物改變了HER-2陽性乳腺癌患者的預(yù)后,影響了乳腺癌的診治模式,是乳腺癌藥物治療的重大突破。曲妥珠單抗已廣泛用于HER-2陽性乳腺癌患者的治療,而耐藥經(jīng)常在用藥約1年后出現(xiàn),進而增加腫瘤轉(zhuǎn)移的風(fēng)險[33]。研究發(fā)現(xiàn)miR-125b、miR-134、miR-193a-5p、miR-199b-5p、miR-331-3p、miR-342-5p和miR-744通過與HER-2陽性的乳腺癌細胞系的信使RNA的3′-UTR位點相結(jié)合進而調(diào)控HER-2的表達[34-35]。在曲妥珠單抗耐藥的HER-2陽性乳腺癌細胞株中miR-21表達升高伴隨著PTEN表達減少,抑癌基因PTEN能夠抑制腫瘤細胞侵襲、轉(zhuǎn)移和生長,利用反義寡核苷酸抑制miR-21的表達能使曲妥珠單抗耐藥細胞株恢復(fù)對曲妥珠單抗的敏感性[36]。
除了曲妥珠單抗,乳腺癌常見的靶向治療藥物還包括拉帕替尼、帕妥珠單抗等。研究表明miR-205可以下調(diào)HER-2并與HER-3相結(jié)合,進而增強拉帕替尼的藥物敏感性,這種增強的效果與敲除HER-3基因的效果相一致[37]。Venturutti等[38]闡述了miR-16可作為腫瘤抑制因子調(diào)控曲妥珠單抗和拉帕替尼的抗細胞增殖作用,并利用熒光素酶實驗驗證了細胞周期蛋白J和上游元件結(jié)合蛋白是miR-16的靶基因,miR-16可能成為克服HER-2陽性乳腺癌曲妥珠單抗和拉帕替尼耐藥的新治療靶點。Corcoran等[39]發(fā)現(xiàn)miR-630可以靶向作用于IGF1R mRNA 3′-UTR區(qū)進而調(diào)控HER-2陽性的乳腺癌細胞,降低細胞的侵襲能力,重新恢復(fù)拉帕替尼、來那替尼及阿法替尼的藥物敏感性。
miRNA在乳腺癌獲得性耐藥中發(fā)揮了至關(guān)重要的作用。隨著研究的不斷深入,我們將對miRNA和乳腺癌耐藥作用機制有更加全面而深入的理解。miRNA能夠通過介導(dǎo)多種蛋白進而參與調(diào)控多種信號通路,因此我們相信miRNA對于乳腺癌的臨床治療有重要意義。相信將來在乳腺癌臨床治療中能夠?qū)iRNA為基礎(chǔ)的靶向治療與現(xiàn)有的乳腺癌治療手段相結(jié)合,從而減少獲得性耐藥的發(fā)生,提高乳腺癌治療的有效性。
1 Ahmad A.Pathways to breast cancer recurrence[J].ISRN Oncol,2013,2013:290568.
2 Wu X,Somlo G,Yu Y,et al.De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer[J].J Transl Med,2012,10:42.
3 Garofalo M,Croce CM.MicroRNAs as therapeutic targets in chemoresistance[J].Drug Resist Updat,2013,16(3-5):47-59.
4 Di Leva G,Croce CM.Roles of small RNAs in tumor formation[J].Trends Mol Med,2010,16(6):257-267.
5 Lee Y,Ahn C,Han J,et al.The nuclear RNase III Drosha initiates microRNA processing[J].Nature,2003,425(6956):415-419.
6 Takahashi RU,Miyazaki H,Ochiya T.The roles of microRNAs in breast cancer[J].Cancers(Basel),2015,7(2):598-616.
7 Sabnis GJ,Goloubeva O,Chumsri S,et al.Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole[J].Cancer Res,2011,71(5):1893-1903.
8 Ma CX,Adjei AA,Salavaggione OE,et al.Human aromatase:gene resequencing and functional genomics[J].Cancer Res,2005,65(23):11071-11082.
9 Hayes EL,Lewis-Wambi JS.Mechanisms of endocrine resistance in breast cancer:an overview of the proposed roles of noncoding RNA[J].Breast Cancer Res,2015,17:40.
10 Iorio MV,Casalini P,Piovan C,et al.Breast cancer and microRNAs:therapeutic impact[J].Breast,2011,20(Suppl 3):63-70.
11 Lyng MB,Laenkholm AV,Sokilde R,et al.Global microRNA expression profiling of high-risk ER+ breast cancers from patients receiving adjuvant tamoxifen mono-therapy:a DBCG study[J].PLoS One,2012,7(5):e36170.
12 Miller TE,Ghoshal K,Ramaswamy B,et al.MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1[J].J Biol Chem,2008,283(44):29897-29903.
13 Cittelly DM,Das PM,Spoelstra NS,et al.Downregulation of miR-342 is associated with tamoxifen resistant breast tumors[J].Mol Cancer,2010,9:317.
14 Shi W,Gerster K,Alajez NM,et al.MicroRNA-301 mediates proliferation and invasion in human breast cancer[J].Cancer Res,2011,71(8):2926-2937.
15 Dunn C,Keam SJ.Letrozole:a pharmacoeconomic review of its use in postmenopausal women with breast cancer[J].Pharmacoeconomics,2006,24(5):495-517.
16 Masri S,Liu Z,Phung S,et al.The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells[J].Breast Cancer Res Treat,2010,124(1):89-99.
17 Vilquin P,Donini CF,Villedieu M,et al.MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer[J].Breast Cancer Res,2015,17:13.
18 Buzdar AU,Robertson JF.Fulvestrant:pharmacologic profile versus existing endocrine agents for the treatment of breast cancer[J].Ann Pharmacother,2006,40(9):1572-1583.
19 Di Leo A,Jerusalem G,Petruzelka L,et al.Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer[J].J Clin Oncol,2010,28(30):4594-4600.
20 Xin F,Li M,Balch C,et al.Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance[J].Bioinformatics,2009,25(4):430-434.
21 Rao X,Di Leva G,Li M,et al.MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways[J].Oncogene,2011,30(9):1082-1097.
22 Yu X,Luo A,Liu Y,et al.MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy[J].Mol Cancer,2015,14:208.
23 Pan ST,Li ZL,He ZX,et al.Molecular mechanisms for tumour resistance to chemotherapy[J].Clin Exp Pharmacol Physiol,2016,43(8):723-737.
24 Zhu Y,Yu F,Jiao Y,et al.Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5[J].Clin Cancer Res,2011,17(22):7105-7115.
25 Tryndyak VP,Beland FA,Pogribny IP.E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells[J].Int J Cancer,2010,126(11):2575-2583.
26 Bao L,Hazari S,Mehra S,et al.Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298[J].Am J Pathol,2012,180(6):2490-2503.
27 Zhong S,Li W,Chen Z,et al.MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells[J].Gene,2013,531(1):8-14.
28 Wang H,Tan G,Dong L,et al.Circulating MiR-125b as a marker predicting chemoresistance in breast cancer[J].PLoS One,2012,7(4):e34210.
29 Gu X,Li JY,Guo J,et al.Influence of miR-451 on drug resistances of paclitaxel-resistant breast cancer cell line[J].Med Sci Monit,2015,21:3291-3297.
30 Sha LY,Zhang Y,Wang W,et al.MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer[J].Eur Rev Med Pharmacol Sci,2016,20(11):2201-2208.
31 Zhao ZL,Cai Y,Wang YY,et al.Effects of miRNA-21 on paclitaxel-resistance in human breast cancer cells[J].Zhejiang Da Xue Xue Bao Yi Xue Ban,2015,44(4):400-409.
32 Brufsky A.Trastuzumab-based therapy for patients with HER2-positive breast cancer:from early scientific development to foundation of care[J].Am J Clin Oncol,2010,33(2):186-195.
33 Baselga J,Gelmon KA,Verma S,et al.Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy[J].J Clin Oncol,2010,28(7):1138-1144.
34 Scott GK,Goga A,Bhaumik D,et al.Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b[J].J Biol Chem,2007,282(2):1479-1486.
35 Leivonen SK,Sahlberg KK,Makela R,et al.High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth[J].Mol Oncol,2014,8(1):93-104.
36 Gong C,Yao Y,Wang Y,et al.Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer[J].J Biol Chem,2011,286(21):19127-19137.
37 Iorio MV,Casalini P,Piovan C,et al.MicroRNA-205 regulates HER3 in human breast cancer[J].Cancer Res,2009,69(6):2195-2200.
38 Venturutti L,Cordo Russo RI,Rivas MA,et al.MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1[J].Oncogene,2016,35(48):6189-6202.
39 Corcoran C,Rani S,Breslin S,et al.miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer[J].Mol Cancer,2014,13:71.
(收稿:2016-12-28)
The role of microRNA in drug resistance of breast cancer
HUANGJian,PANGHui,SONGYuhang,CAILi
The Fourth Department of Medical Oncology,Harbin Medical University Cancer Hospital,Harbin 150081,China
Breast cancer is a major disease which threatens the health of women around the world.Breast cancer patients have acquired resistance to existing treatment methods become the current clinical problems.MicroRNA(miRNA)is an endogenous non-coding RNA that participates in the regulation of a variety of biological processes,including cell proliferation,invasion,metastasis,epithelial interstitial transformation and drug resistance.Acquired resistance includes a variety of complex mechanisms that can affect the expression of cell-associated proteins through the abnormal expression of specific microRNAs,the binding of antineoplastic agents to the corresponding target,and the pathways associated with apoptosis.This article will focus on the expression of abnormal microRNA in acquired drug resistance which was caused by endocrine therapy,chemotherapy and molecular targeted therapy of breast cancer.miRNAs are considered as promising biomarkers and targets for diagnosis,treatments for acquired drug resistance of breast cancer.
Breast cancer;microRNA;Drug resistance
哈爾濱醫(yī)科大學(xué)附屬腫瘤醫(yī)院內(nèi)四科(哈爾濱 150081)
黃劍,女,(1990-),碩士研究生,從事乳腺癌耐藥機制及治療方向的研究。
蔡莉,E-mail:caiwenxin76@163.com
R737.9
A
10.11904/j.issn.1002-3070.2017.03.017