汪 帥,孫圖南
·前沿進(jìn)展·
線粒體靶向藥物治療缺血性心臟病的研究進(jìn)展
汪 帥,孫圖南
缺血性心臟病是全球范圍內(nèi)導(dǎo)致人類(lèi)死亡的主要疾病之一。溶栓和經(jīng)皮冠狀動(dòng)脈介入術(shù)是目前治療缺血性心臟病的主要方法,可及時(shí)恢復(fù)心肌灌注、避免心肌梗死。研究證實(shí),在心肌缺血再灌注過(guò)程中采取一定保護(hù)措施可有效減輕心肌缺血再灌注損傷。線粒體功能紊亂是心肌缺血及再灌注損傷的重要病理學(xué)基礎(chǔ),故線粒體可作為抗心肌缺血再灌注損傷的重要靶點(diǎn)。盡管實(shí)驗(yàn)室研究已發(fā)現(xiàn)多種線粒體靶向藥物可有效減輕心肌缺血再灌注損傷,但目前順利通過(guò)臨床試驗(yàn)的藥物仍較少,線粒體作為抗心肌缺血再灌注損傷的重要靶點(diǎn)仍未被充分利用。本文主要綜述了線粒體靶向藥物治療缺血性心臟病的研究進(jìn)展。
缺血性心臟??;線粒體;靶向治療;綜述
汪帥,孫圖南.線粒體靶向藥物治療缺血性心臟病的研究進(jìn)展[J].實(shí)用心腦肺血管病雜志,2017,25(3):115-118.[www.syxnf.net]
WANG S,SUN T N.Progress on mitochondrion-targeted drugs in treating ischemic heart disease[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease,2017,25(3):115-118.
缺血性心臟病是人類(lèi)健康的“主要?dú)⑹帧保M管目前的治療措施已使缺血性心臟病患者病死率明顯降低,但如進(jìn)一步采取保護(hù)措施還可以改善患者預(yù)后。線粒體功能紊亂是心肌缺血及再灌注損傷的重要病理學(xué)基礎(chǔ),故線粒體可以作為抗心肌缺血損傷的治療靶點(diǎn)。盡管實(shí)驗(yàn)室研究已發(fā)現(xiàn)多種線粒體靶向藥物可以減輕心肌缺血及再灌注損傷,但目前順利通過(guò)臨床試驗(yàn)的藥物仍較少。本文主要綜述了線粒體靶向藥物治療缺血性心臟病的研究進(jìn)展。
正常情況下,線粒體約占心肌細(xì)胞體積的30%。當(dāng)線粒體中三羧酸循環(huán)產(chǎn)生的還原當(dāng)量進(jìn)入氧化呼吸鏈后可產(chǎn)生H+,進(jìn)而形成跨膜電位,H+順濃度梯度通過(guò)ATP合酶復(fù)合體時(shí)可驅(qū)動(dòng)ATP合成,為心肌收縮提供能量。心肌有多種能量底物,包括葡萄糖、脂肪酸、乳酸等,通常情況下以其中一種能量底物為主提供能量,且該能量底物會(huì)隨著底物可利用度及機(jī)體生理節(jié)律而發(fā)生改變[1]。生命初期,心肌主要依賴(lài)葡萄糖或乳酸提供能量;出生后約1周,心肌主要能量底物轉(zhuǎn)變?yōu)橹舅醄2];至成年階段,心肌主要能量底物仍然為脂肪酸,且此時(shí)由葡萄糖氧化提供的能量?jī)H占所需能量的很小部分。
冠狀動(dòng)脈阻塞是導(dǎo)致缺血性心臟病的主要原因,冠狀動(dòng)脈短暫性阻塞及心肌缺血再灌注會(huì)影響心肌結(jié)構(gòu)及功能,且在此過(guò)程中線粒體受損;冠狀動(dòng)脈永久性阻塞則可引起心肌梗死,進(jìn)一步導(dǎo)致心肌重構(gòu)及心力衰竭。心肌缺血再灌注后線粒體功能發(fā)生紊亂,其主要表現(xiàn)如下:(1)線粒體鈣超載;(2)活性氧大量產(chǎn)生;(3)心磷脂氧化,膜蛋白功能紊亂;(4)呼吸復(fù)合物和腺苷酸轉(zhuǎn)移酶受抑制;(5)線粒體通透性轉(zhuǎn)換孔(mitochondrial permeability transition pore,MPTP)開(kāi)放,細(xì)胞色素C等促凋亡物質(zhì)釋放;(6)質(zhì)子滲漏增加等[3]。
心肌缺血可分為可預(yù)見(jiàn)的心肌缺血和不可預(yù)見(jiàn)或難以預(yù)見(jiàn)的心肌缺血,其中可預(yù)見(jiàn)的心肌缺血包括經(jīng)皮冠狀動(dòng)脈介入術(shù)或心臟外科手術(shù)過(guò)程中發(fā)生的心肌缺血,不可預(yù)見(jiàn)或難以預(yù)見(jiàn)的心肌缺血包括急性心肌梗死等。臨床上對(duì)于以上兩種心肌缺血采取的防治措施不盡相同。
對(duì)于可預(yù)見(jiàn)的心肌缺血,術(shù)前或術(shù)中采取相應(yīng)措施可以減輕心肌損傷,如心臟手術(shù)過(guò)程中應(yīng)用低溫、心臟停搏法、β-受體阻斷劑等;此外,缺血預(yù)處理也可作為心臟保護(hù)措施[4]。缺血預(yù)處理是在長(zhǎng)時(shí)間缺血前實(shí)施短時(shí)間缺血再灌注循環(huán),旨在縮小心肌梗死面積及改善心臟功能;但該措施需要重復(fù)阻斷大動(dòng)脈,故可能導(dǎo)致大動(dòng)脈損傷。臨床研究還發(fā)現(xiàn),短暫阻塞遠(yuǎn)端動(dòng)脈也具有心臟保護(hù)作用[5]。雖然缺血預(yù)處理的保護(hù)機(jī)制十分復(fù)雜,但已明確線粒體在其中發(fā)揮著重要作用。
對(duì)于不可預(yù)見(jiàn)或難以預(yù)見(jiàn)的心肌缺血,臨床主要治療目的是預(yù)防缺血性心臟病,包括采用他汀類(lèi)藥物延緩粥樣硬化形成、采用抗心絞痛藥物提高短暫缺血區(qū)血流灌注等。但突發(fā)的急性心肌梗死不能采用預(yù)處理方法,目前其主要治療措施是經(jīng)皮冠狀動(dòng)脈介入術(shù)或溶栓治療以早期恢復(fù)血流[6]。值得注意的是,缺血后重復(fù)進(jìn)行簡(jiǎn)短再灌注也可以對(duì)心臟產(chǎn)生保護(hù)作用,稱(chēng)為缺血后處理。臨床研究已證實(shí),將缺血后處理用于經(jīng)皮冠狀動(dòng)脈介入術(shù)可以縮小心肌梗死面積,其心臟保護(hù)機(jī)制可能與促進(jìn)線粒體鉀通道開(kāi)放并抑制MPTP開(kāi)放有關(guān)[7]。
目前,很多實(shí)驗(yàn)室研究結(jié)果顯示效果良好的線粒體靶向藥物未能通過(guò)臨床試驗(yàn),原因可能為動(dòng)物模型不適宜、患者本身存在糖尿病等危險(xiǎn)因素、不可預(yù)知的藥物間相互作用、缺血組織對(duì)藥物吸收差等。除此之外,很多心臟保護(hù)藥物可能阻斷了內(nèi)源性保護(hù)途徑,如缺血預(yù)處理需要活性氧的產(chǎn)生,而活性氧可以抵消缺血預(yù)處理的心臟保護(hù)作用[8]。
4.1 MPTP 目前,學(xué)術(shù)界對(duì)于MPTP的分子結(jié)構(gòu)仍存在爭(zhēng)議。在轉(zhuǎn)基因動(dòng)物模型中已證實(shí)MPTP的主要成分是腺苷酸轉(zhuǎn)移酶、磷酸載體及親環(huán)素D(CypD)[9-10],其他參與MPTP組成或與其調(diào)節(jié)相關(guān)的蛋白質(zhì)包括己糖激酶Ⅱ[11]和線粒體轉(zhuǎn)運(yùn)蛋白[12]。心肌缺血再灌注會(huì)導(dǎo)致MPTP開(kāi)放,引起線粒體去極化、ATP合成中斷、Ca2+釋放及線粒體基質(zhì)腫脹,進(jìn)一步發(fā)展會(huì)造成線粒體外膜破裂、促凋亡物質(zhì)(如細(xì)胞色素C)釋放等,進(jìn)而導(dǎo)致心肌損傷[13]。研究發(fā)現(xiàn),部分作用于MPTP的藥物具有心臟保護(hù)作用,首先被發(fā)現(xiàn)能抑制MPTP開(kāi)放的藥物是環(huán)孢霉素A。環(huán)孢霉素A通過(guò)與CypD結(jié)合而抑制MPTP開(kāi)放,進(jìn)而減輕心肌缺血再灌注損傷。PIOT等[14]前期研究發(fā)現(xiàn),經(jīng)皮冠狀動(dòng)脈介入術(shù)前應(yīng)用環(huán)孢霉素A可以減輕心肌梗死;其后續(xù)研究發(fā)現(xiàn),上述心臟保護(hù)作用至少持續(xù)6個(gè)月,且應(yīng)用環(huán)孢霉素A治療的患者左心室收縮末期容積明顯縮小[15]。臨床研究顯示,高膽固醇血癥會(huì)降低缺血后處理對(duì)心肌的保護(hù)作用,但應(yīng)用環(huán)孢霉素A阻斷MPTP可恢復(fù)心肌保護(hù)作用[16]。目前,臨床已開(kāi)發(fā)了具有線粒體特異性的環(huán)孢霉素A,其與CypD的親和力更高[17],但近期一項(xiàng)國(guó)際多中心臨床研究卻發(fā)現(xiàn),ST段抬高型心肌梗死患者行經(jīng)皮冠狀動(dòng)脈介入術(shù)前應(yīng)用環(huán)孢霉素A不能改善患者預(yù)后,故環(huán)孢霉素A的心臟保護(hù)作用仍值得商榷[18]。
4.2 乙醛脫氫酶2(aldehyde dehydrogenase isoform 2,ALDH2) 脂質(zhì)過(guò)氧化作用在心血管疾病發(fā)病過(guò)程中具有重要作用,其主要產(chǎn)物是醛類(lèi),且醛類(lèi)可以抑制代謝相關(guān)酶類(lèi)和呼吸鏈復(fù)合體,進(jìn)而開(kāi)放MPTP。ALDH2是一種可以將線粒體中有毒醛類(lèi)清除的酶類(lèi),其是心肌缺血再灌注損傷中保護(hù)線粒體的一個(gè)新的靶點(diǎn)。ALDH2高表達(dá)或應(yīng)用ALDH2激活劑可以降低心肌細(xì)胞中醛類(lèi)水平,進(jìn)而縮小梗死面積、改善缺血后心臟功能[19]。α-硫辛酸是一種天然二巰基化合物,其作為ALDH2輔助因子能增強(qiáng)ALDH2活性[20]。HE等[21]研究結(jié)果顯示,α-硫辛酸通過(guò)增強(qiáng)ALDH2活性而減少心肌細(xì)胞凋亡,從而改善心功能;此外,α-硫辛酸還能降低缺血再灌注后心律失常發(fā)生率[22]。
4.3 再灌注損傷補(bǔ)救激酶(reperfusion injury salvage kinase,RISK)通路 一項(xiàng)有關(guān)缺血再灌注損傷的研究發(fā)現(xiàn),MPTP在心肌缺血時(shí)處于關(guān)閉狀態(tài),而在心肌缺血再灌注早期則處于開(kāi)放狀態(tài)[23]。研究發(fā)現(xiàn),RISK通路能調(diào)節(jié)MPTP開(kāi)放并抑制糖原合成酶激酶3β(glycogen synthase kinase-3β,GSK-3β)磷酸化[24],從而減輕GSK-3β對(duì)MPTP的磷酸化作用。以往研究發(fā)現(xiàn),缺血預(yù)處理和缺血后處理的心肌保護(hù)作用均與RISK通路有關(guān)[25-26]。此外,使用GSK-3β抑制劑SB-216763可以改善缺血再灌注后心臟功能[27]。許多胞外信號(hào)可以通過(guò)受體介導(dǎo)方式激活RISK通路,一些藥物也是通過(guò)激活RISK通路而發(fā)揮心臟保護(hù)作用,如他汀類(lèi)藥物。近期一項(xiàng)研究表明,匹伐他汀可以誘導(dǎo)GSK-3β磷酸化,進(jìn)而抑制心肌缺血再灌注所致的炎癥及心肌細(xì)胞凋亡[28]。
4.4 氧化呼吸鏈 在心肌缺血再灌注過(guò)程中,由于缺乏氧(O2)作為呼吸鏈的電子受體而導(dǎo)致活性氧大量產(chǎn)生。研究發(fā)現(xiàn),一些呼吸鏈復(fù)合體是活性氧產(chǎn)生過(guò)程中的重要物質(zhì)[29-30],如復(fù)合體Ⅰ抑制劑魚(yú)藤酮[31]、復(fù)合體Ⅱ抑制劑二氮嗪、復(fù)合體Ⅲ抑制劑抗霉素A及復(fù)合體Ⅳ抑制劑CO等,而應(yīng)用呼吸鏈抑制劑可以減輕心肌缺血再灌注損傷,其心肌保護(hù)機(jī)制與抑制活性氧爆發(fā)和鈣超載有關(guān)。但呼吸鏈復(fù)合體藥物的神經(jīng)方面不良反應(yīng)限制了其臨床應(yīng)用。此外,采用異戊巴比妥治療心肌缺血可以保護(hù)心臟[32],這與其對(duì)復(fù)合體Ⅰ的抑制作用有關(guān)。除此之外,呼吸鏈解耦聯(lián)劑同樣具有心臟保護(hù)作用,其機(jī)制可能與抑制活性氧產(chǎn)生及鈣超載有關(guān)[33]。
線粒體是缺血性心臟病藥物研發(fā)的一個(gè)重要靶點(diǎn),雖然多種實(shí)驗(yàn)室研究中表現(xiàn)良好的線粒體靶向藥物未通過(guò)臨床試驗(yàn),但仍有很多有前景的藥物值得探索。由于線粒體功能紊亂在心肌缺血損傷過(guò)程中發(fā)揮著重要作用,故線粒體靶向藥物可能成為人類(lèi)抗缺血性心臟病的一把“利劍”。
[1]GASPAR J A,DOSS M X,HENGSTLER J G,et al.Unique metabolic features of stem cells,cardiomyocytes,and their progenitors[J].Circ Res,2014,114(8):1346-1360.DOI:10.1161/CIRCRESAHA.113.302021.
[2]PORTER G A Jr,HOM J,HOFFMAN D,et al.Bioenergetics,mitochondria,and cardiac myocyte differentiation [J].Prog Pediatr Cardiol,2011,31(2):75-81.
[3]CHEN Y R,ZWEIER J L.Cardiac mitochondria and reactive oxygen species generation [J].Circ Res,2014,114(3):524-537.DOI:10.1161/CIRCRESAHA.114.300559.
[4]HEUSCH G.Molecular basis of cardioprotection:signal transduction in ischemic pre-,post-,and remote conditioning[J].Circ Res,2015,116(4):674-699.DOI:10.1161/CIRCRESAHA.116.305348.
[5]HEUSCH G,BOTKER H E,PRZYKLENK K,et al.Remote ischemic conditioning[J].J Am Coll Cardiol,2015,65(2):177-195.DOI:10.1016/j.jacc.2014.10.031.
[6]PEIYUAN H,JINGANG Y,HAIYAN X,et al.The Comparison of the Outcomes between Primary PCI,F(xiàn)ibrinolysis,and No Reperfusion in Patients≥75 Years Old with ST-Segment Elevation Myocardial Infarction:Results from the Chinese Acute Myocardial Infarction(CAMI)Registry[J].PLoS One,2016,11(11):e0165672.DOI:10.1371/journal.pone.0165672.
[7]OKORIE M I,BHAVSAR D D,RIDOUT D,et al.Postconditioning protects against human endothelial ischaemia-reperfusion injury via subtype-specific KATP channel activation and is mimicked by inhibition of the mitochondrial permeability transition pore[J].Eur Heart J,2011,32(10):1266-1274.DOI:10.1093/eurheartj/ehr041.
[8]TANG X L,TAKANO H,RIZVI A,et al.Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits[J].Am J Physiol Heart Circ Physiol,2002,282(1):H281-291.
[9]KOKOSZKA J E,WAYMIRE K G,LEVY S E,et al.The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore[J].Nature,2004,427(6973):461-465.
[10]BASSO E,F(xiàn)ANTE L,F(xiàn)OWLKES J,et al.Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D[J].J Biol Chem,2005,280(19):18558-18561.
[11]HALESTRAP A P,PEREIRA G C,PASDOIS P.The role of hexokinase in cardioprotection - mechanism and potential for translation[J].Br J Pharmacol,2015,172(8):2085-2100.DOI:10.1111/bph.12899.
[12]REPALLI J.Translocator protein(TSPO)role in aging and Alzheimer′s disease[J].Curr Aging Sci,2014,7(3):168-175.
[13]BERNARDI P,DI LISA F.The mitochondrial permeability transition pore:molecular nature and role as a target in cardioprotection[J].J Mol Cell Cardiol,2015,78:100-106.DOI:10.1016/j.yjmcc.2014.09.023.
[14]PIOT C,CROISILLE P,STAAT P,et al.Effect of cyclosporine on reperfusion injury in acute myocardial infarction[J].N Engl J Med,2008,359(5):473-481.DOI:10.1056/NEJMoa071142.
[15]MEWTON N,CROISILLE P,GAHIDE G,et al.Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction[J].J Am Coll Cardiol,2010,55(12):1200-1205.DOI:10.1016/j.jacc.2009.10.052.
[16]WU N,LI W N,SHU W Q,et al.Blocking the mitochondrial permeability transition pore with cyclosporine-A can restore cardioprotection of ischemic postconditioning in hypercholesterolemic rat heart[J].Eur Rev Med Pharmacol Sci,2015,19(3):446-454.
[17]DUBE H,SELWOOD D,MALOUITRE S,et al.A mitochondrial-targeted cyclosporin A with high binding affinity for cyclophilin D yields improved cytoprotection of cardiomyocytes [J].Biochem J,2012,441(3):901-907.DOI:10.1042/BJ20111301.
[18]CUNG T T,MOREL O,CAYLA G,et al.Cyclosporine before PCI in Patients with Acute Myocardial Infarction [J].N Engl J Med,2015,373(11):1021-1031.DOI:10.1056/NEJMoa1505489.
[19]CHEN C H,BUDAS G R,CHURCHILL E N,et al.Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J].Science,2008,321(5895):1493-1495.DOI:10.1126/science.1158554.
[20]LI R J,JI W Q,PANG J J,et al.Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome[J].Tohoku J Exp Med,2013,229(1):45-51.
[21]HE L,LIU B,DAI Z,et al.Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation [J].Eur J Pharmacol,2012,678(1/3):32-38.DOI:10.1016/j.ejphar.2011.12.042.
[22]DUDEK M,KNUTELSKA J,BEDNARSKI M,et al.Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts[J].Pharmacol Rep,2014,66(3):499-504.DOI :10.1016/j.pharep.2013.11.001.
[23]ONG S B,SAMANGOUEI P,KALKHORAN S B,et al.The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury[J].J Mol Cell Cardiol,2015,78:23-34.DOI:10.1016/j.yjmcc.2014.11.005.
[24]LI H,ZHANG C,SUN W,et al.Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes[J].Cell Biosci,2015,5:43.DOI:10.1186/s13578-015-0035-9.
[25]GOMEZ L,PAILLARD M,THIBAULT H,et al.Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion[J].Circulation,2008,117(21):2761-2768.DOI:1 0.1161/CIRCULATIONAHA.107.755066.
[26]FULLMER T M,PEI S,ZHU Y,et al.Insulin suppresses ischemic preconditioning-mediated cardioprotection through Akt-dependent mechanisms[J].J Mol Cell Cardiol,2013,64:20-29.DOI:10.1016/j.yjmcc.2013.08.005.
[27]TONG H,IMAHASHI K,STEENBERGEN C,et al.Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase--dependent pathway is cardioprotective[J].Circ Res,2002,90(4):377-379.
[28]NAGAOKA K,MATOBA T,MAO Y,et al.A New Therapeutic Modality for Acute Myocardial Infarction:Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model[J].PLoS One,2015,10(7):e0132451.
[29]LINDSAY D P,CAMARA A K,STOWE D F,et al.Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexesⅠand Ⅲ[J].Front Physiol,2015,6:58.DOI:10.3389/fphys.2015.00058.
[30]CHOUCHANI E T,PELL V R,GAUDE E,et al.Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J].Nature,2014,515(7527):431-435.DOI:10.1038/nature13909.
[31]LESNEFSKY E J,CHEN Q,MOGHADDAS S,et al.Blockade of electron transport during ischemia protects cardiac mitochondria[J].J Biol Chem,2004,279(46):47961-47967.DOI:10.1016/j.trsl.2012.01.024.
[32]TANAKA-ESPOSITO C,CHEN Q,LESNEFSKY E J.Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts [J].Transl Res,2012,160(3):207-216.
[33]BRENNAN J P,SOUTHWORTH R,MEDINA R A,et al.Mitochondrial uncoupling,with low concentration FCCP,induces ROS-dependent cardioprotection independent of KATP channel activation[J].Cardiovasc Res,2006,72(2):313-321.
(本文編輯:謝武英)
Progress on Mitochondrion-targeted Drugs in Treating Ischemic Heart Disease
WANGShuai,SUNTu-nan
TheFirstStudentBrigade,theFourthMilitaryMedicalUniversity,Xi′an710032,ChinaCorrespondingauthor:SUNTu-nan,E-mail:tunansun@126.com
Ischemic heart disease is one of major diseases that leading to human death in global.Thrombolysis and percutaneous coronary intervention are the main therapeutic strategies for ischemic heart disease at present,which can timely recover the myocardial perfusion and avoid myocardial infarction.Many studies confirmed that,some protective measures during myocardial ischemia reperfusion can effectively relive the myocardial ischemia reperfusion injury.Mitochondrial dysfunction is involved in myocardial ischemia and myocardial ischemia reperfusion injury,thus can be served as a target for treating myocardial ischemia reperfusion injury.Laboratory studies showed that,a variety of mitochondrion-targeted drugs can effectively relive the myocardial ischemia reperfusion injury,but most mitochondrion-targeted drugs can not get through the clinical trials,meaning mitochondrion-targeted drugs still have huge developing space.This paper reviewed the progress on mitochondrion-targeted drugs in treating ischemic heart disease.
Ischemic cardiac disease;Mitochondrion;Targeted therapy;Review
孫圖南,E-mail:tunansun@126.com
R 542.2
A
10.3969/j.issn.1008-5971.2017.03.030
2016-12-15;
2017-03-10)
710032陜西省西安市,第四軍醫(yī)大學(xué)學(xué)員一旅