應(yīng)詩家,戴子淳,郭佳佳,施振旦
(江蘇省農(nóng)業(yè)科學(xué)院畜牧研究所動物品種改良和繁育重點(diǎn)實(shí)驗(yàn)室,南京 210014)
LPS對鵝等級卵泡基質(zhì)層TLR家族基因表達(dá)的影響
應(yīng)詩家,戴子淳,郭佳佳,施振旦
(江蘇省農(nóng)業(yè)科學(xué)院畜牧研究所動物品種改良和繁育重點(diǎn)實(shí)驗(yàn)室,南京 210014)
【目的】研究鵝卵泡基質(zhì)層TLR家族基因表達(dá)譜及其對LPS不同處理時間后的反應(yīng)性?!痉椒ā吭诖笕荷B(yǎng)條件下,實(shí)時觀察鵝產(chǎn)蛋過程,分別在產(chǎn)蛋后8和2 h以及產(chǎn)前4、16和28 h注射LPS,并在產(chǎn)蛋后8h屠宰,即LPS作用0、6、12、24和36 h,每個時間點(diǎn)各5只鵝。屠宰時,取卵巢,觀察卵泡外觀形態(tài),并分離F1 -F5級卵泡基質(zhì)層。試驗(yàn)鵝自由飲水、自由采食、自然光照。LPS處理0、24和36 h的單個F1-F5級卵泡基質(zhì)層或卵泡用于基因表達(dá)分析,而其他LPS處理的每只鵝等級卵泡基質(zhì)層RNA等質(zhì)量混合后用于基因表達(dá)分析。采用普通PCR方法檢測10種鳥類TLR家族基因的在鵝等級卵泡基質(zhì)層的表達(dá)譜,其中以脾臟組織為陽性對照,以不加cDNA模板為陰性對照。根據(jù)RT-PCR的表達(dá)譜結(jié)果,采用Real-time PCR檢測不同等級卵泡基質(zhì)層TLRs表達(dá)水平以及不同LPS處理時間對基質(zhì)層TLRs表達(dá)水平的影響。對不同等級卵泡和不同LPS處理時間對基質(zhì)層TLRs表達(dá)的數(shù)據(jù),采用單因子方差分析,Duncan法多重比較;對變性卵泡與對照組基質(zhì)層TLRs表達(dá)水平的數(shù)據(jù),采用 T檢驗(yàn)分析?!窘Y(jié)果】(1)已公開的10種鳥類TLR家族基因,如TLRs 1A、1B、2A、2B、3、4、5、7、15和21基因均在等級卵泡基質(zhì)層組織中表達(dá)。(2)隨等級卵泡生長,TLRs 2A和15表達(dá)水平逐漸升高;F1級卵泡基質(zhì)層TLR2A表達(dá)水平顯著高于F3、F4和F5級卵泡,TLR15表達(dá)水平顯著高于F5級卵泡;其他TLR家族基因,如TLRs 1A、1B、2B、3、4、5、7和21在不同等級卵泡基質(zhì)層中的表達(dá)水平差異不顯著。(3)在LPS處理0、6和12 h時,等級卵泡外觀形態(tài)無明顯變化,但在LPS處理24 h時,3只鵝的等級卵泡呈深黃色膠凍狀變性;在LPS處理36 h時,全部試驗(yàn)鵝等級卵泡呈深黃色膠凍狀變性。(4)與對照組(LPS處理0 h)相比,TLRs 2A、4和5表達(dá)水平在LPS處理12和24 h時顯著升高,TLR2B表達(dá)水平在LPS處理24 h時顯著升高,TLRs 7和15表達(dá)水平在LPS處理6 - 24 h期間均顯著升高,而TLRs 1A、1B、3和21表達(dá)水平在LPS處理6 - 24 h期間差異不顯著。(5)與等級卵泡基質(zhì)層相比,在LPS處理24和36 h的變性卵泡中,TLRs 1A、2A、2B、4、5、7和15表達(dá)水平顯著升高,TLR3表達(dá)水平顯著降低,而在LPS處理36 h的變性卵泡中,TLRs 1B和21表達(dá)水平顯著升高?!窘Y(jié)論】已發(fā)現(xiàn)的10種鳥類TLR家族基因均在種鵝等級卵泡基質(zhì)層表達(dá),且隨LPS作用時間延長,等級卵泡形態(tài)結(jié)構(gòu)發(fā)生變化,但TLRs表達(dá)水平逐漸升高。
種鵝;等級卵泡;內(nèi)毒素脂多糖(LPS);TLRs
【研究意義】由于種鵝的喜水習(xí)性和水面交配行為,養(yǎng)殖水體中病原微生物及其釋放的內(nèi)毒素(lipopolysaccharide, LPS)易影響水禽繁殖性能[1-2]。禽類等級卵泡基質(zhì)層富含血管組織,對卵泡細(xì)胞營養(yǎng)供應(yīng)、卵黃沉積和內(nèi)分泌調(diào)節(jié)具有關(guān)鍵性作用,但也是病原微生物侵染卵泡的優(yōu)先部位。TLR家族基因是一類病原模式識別受體基因,其通過識別病原相關(guān)分子模式,激活胞內(nèi)信號級聯(lián)反應(yīng),誘導(dǎo)炎性因子生成,啟動非特性免疫反應(yīng),清除病原微生物[3-5]。因此,開展鵝等級卵泡基質(zhì)層 TLR家族基因表達(dá)及其對LPS的反應(yīng)性研究,對探究禽類卵泡抵御病原微生物侵染的分子調(diào)控機(jī)制、維持水禽卵泡功能和繁殖性能穩(wěn)定具有重要的作用?!厩叭搜芯窟M(jìn)展】目前為止,鳥類共發(fā)現(xiàn)10種TLR家族基因,如TLRs 1A, 1B, 2A, 2B, 3, 4, 5, 7, 15和21,其識別廣泛的病原微生物及其代謝產(chǎn)物,包括細(xì)菌、病毒和真菌等[6-10]。SUBEDI等報(bào)道雞卵泡顆粒層表達(dá)TLRs 2, 4, 5和7,膜層表達(dá)TLRs 4和5[11];除TLRs 1A和2B,其他TLRs家族基因均在雞卵巢中表達(dá)[12]。此外,9種TLRs家族基因在雞陰道[13]、精子[14]、附睪[15]和睪丸[14]組織中表達(dá)。體內(nèi)外試驗(yàn)均表明細(xì)菌LPS促進(jìn)TLRs 2和4表達(dá)[6,11,16-17],并且,LPS促進(jìn)雞睪丸間質(zhì)細(xì)胞TLRs 1A、2B、4、7、15和 21基因表達(dá)?!颈狙芯壳腥朦c(diǎn)】目前,鵝部分 TLR家族成員,如 TLR21[18]、TLR7[19-20]、TLR5[21]和 TLR2A[22]全長和組織表達(dá)已見報(bào)道,但其他TLRs信息甚少,而且也不清楚其在鵝等級卵泡基質(zhì)層中的表達(dá)情況。此外,不同LPS處理時間對鵝等級卵泡生長和 TLR家族基因表達(dá)的影響研究更少?!緮M解決的關(guān)鍵問題】本試驗(yàn)研究 10種鳥類 TLR家族基因在鵝等級卵泡基質(zhì)層中的表達(dá)譜及其對LPS不同作用時間的反應(yīng)性,為病原微生物抑制水禽產(chǎn)蛋性能和等級卵泡免疫保護(hù)的分子調(diào)控機(jī)制提供參考。
動物飼養(yǎng)和屠宰試驗(yàn)于2015年4—5月在揚(yáng)州朝天歌農(nóng)牧科技有限公司鵝場進(jìn)行;分子相關(guān)試驗(yàn)在江蘇省農(nóng)業(yè)科學(xué)院動物品種改良和繁育重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
1.1 試驗(yàn)試劑
大腸桿菌源LPS(055:B5)購自西格瑪奧德里奇(上海)貿(mào)易有限公司;RNA抽提試劑盒購自天根生化科技(北京)有限公司;Taq PCR Master Mix購自上海翊圣生物科技有限公司;50 bp Maker和PrimeScript RT Master Mix購自寶生物工程(大連)有限公司;FastStart Universal SYBR Green Master購自羅氏診斷產(chǎn)品(上海)有限公司。
1.2 試驗(yàn)設(shè)計(jì)
種鵝處于產(chǎn)蛋高峰期時(產(chǎn)蛋率 > 45 %),在2 000只約540日齡種鵝的大群散養(yǎng)條件下,在舍內(nèi)放置設(shè)有實(shí)時監(jiān)控系統(tǒng)的產(chǎn)蛋箱,通過網(wǎng)絡(luò)遠(yuǎn)程監(jiān)測種鵝產(chǎn)蛋過程。產(chǎn)蛋時標(biāo)記種鵝,產(chǎn)蛋后8 和2 h采用1mL注射器翅靜脈注射LPS(1.5 mg·kg-1BW);由于種鵝產(chǎn)蛋間隔約48 h[23],因此,產(chǎn)蛋后44、32和20 h分別作為下一個產(chǎn)蛋前4、16和28 h的LPS注射時間點(diǎn),每個時間點(diǎn)各 5只鵝。所有試驗(yàn)鵝均在產(chǎn)蛋后8 h屠宰,從而建立LPS作用0、6、12、24和36 h的試驗(yàn)?zāi)P?。屠宰時,取等級卵泡,并觀察外觀形態(tài)。
1.3 飼養(yǎng)管理
采用“室內(nèi)地面+室外運(yùn)動場+人工水池”方式養(yǎng)殖種鵝。舍內(nèi)放有料盤,舍外設(shè)有飲水器。試驗(yàn)鵝自由飲水、自由采食、自然光照。
1.4 等級卵泡處理
屠宰5 min內(nèi),取卵巢,用眼科剪分離F1 - F5級卵泡,并放入冰預(yù)冷的D-PBS中,參考文獻(xiàn)[24]報(bào)道的方法,用眼科鑷去除血管后分離卵泡基質(zhì)層,液氮保存。對于膠凍狀變性的卵泡,不能分離基質(zhì)層,直接液氮保存。
1.5 總RNA提取和反轉(zhuǎn)錄
采用天根試劑盒說明書提取等級卵泡基質(zhì)層或變性卵泡總RNA。RNA質(zhì)量檢測合格后,參照TakaRa反轉(zhuǎn)錄試劑盒說明,合成cDNA第一鏈,-20 ℃保存?zhèn)溆?。其中,LPS處理0 h的單個F1—F5級卵泡基質(zhì)層進(jìn)行反轉(zhuǎn)錄;LPS處理6和12 h的等級卵泡基質(zhì)層RNA等質(zhì)量混合后再反轉(zhuǎn)錄;LPS處理24和36 h時試驗(yàn)鵝等級卵泡呈膠凍狀變性,直接單獨(dú)提取 RNA后反轉(zhuǎn)錄,未變性的單個卵泡基質(zhì)層提取 RNA后再反轉(zhuǎn)錄。RNA反轉(zhuǎn)錄體系為10 μL:2 μL 5×Prime Script Buffer, 8 μL RNA(< 500 ng)。反轉(zhuǎn)錄程序:37 ℃ 15 min, 85 ℃ 5 s, 4 ℃ 保存。
1.6 RT-PCR反應(yīng)和測序
根據(jù)GenBank登錄號,利用Primer Premier 5.0軟件設(shè)計(jì)兼并引物,引物信息見表 1,由上海英駿生物技術(shù)有限公司合成。由于目前鳥類10種TLR家族基因是否都在鵝等級卵泡基質(zhì)層組織表達(dá)不清楚,因此,采用RT-PCR的方法檢測了10種鳥類TLR家族基因的在基質(zhì)層的表達(dá)譜,其中以脾臟組織為陽性對照[11],以不加cDNA模板為陰性對照。
PCR反應(yīng)體系為20 μL:2 × Taq PCR Master Mix 10 μL, ddH2O 8 μL, 上游和下游引物各0.5 μL, RT產(chǎn)物1μL。反應(yīng)程序:95 ℃預(yù)變性5 min;95 ℃變性30s,57/60 ℃退火30s,72 ℃延伸30s,35個循環(huán);72 ℃延伸7 min,4 ℃保存。PCR產(chǎn)物用2.5 %瓊脂糖凝膠電泳初步鑒定,由上海生工生物工程股份有限公司測序。
1.7 qRT-PCR
根據(jù)RT-PCR的表達(dá)譜結(jié)果,采用Real-time PCR檢測不同等級卵泡基質(zhì)層 TLRs表達(dá)水平以及不同LPS處理時間對基質(zhì)層 TLRs表達(dá)的影響。Real-time PCR反應(yīng)體系為20 μL:1 μL RT產(chǎn)物,上游和下游引物各0.6 μL,7.8 μL ddH2O,10 μL FastStart Universal SYBR Green Master(ROX)。反應(yīng)程序:50 ℃ 2 min,95 ℃預(yù)變性10 min;PCR循環(huán):95 ℃變性15 s,57/ 60 ℃退火30 s,72 ℃ 延伸30 s,讀板,共35個循環(huán)。以管家基因β-actin為內(nèi)參,每個樣品重復(fù)3次,取平均Ct值進(jìn)行計(jì)算,所得試驗(yàn)數(shù)據(jù)按2-△△Ct結(jié)果統(tǒng)計(jì)分析。
1.8 數(shù)據(jù)分析
采用SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)結(jié)果以“平均值 ± 標(biāo)準(zhǔn)誤”(Mean ± SE)表示。不同等級卵泡基質(zhì)層和不同LPS處理時間對基質(zhì)層TLRs表達(dá)的數(shù)據(jù)采用單因子方差分析,Duncan法多重比較。對變性卵泡與LPS處理0和24 h基質(zhì)層TLRs表達(dá)水平的數(shù)據(jù),采用T檢驗(yàn)分析。
2.1 等級卵泡基質(zhì)層TLR家族基因表達(dá)譜
等級卵泡基質(zhì)層TLR家族基因表達(dá)譜見圖1。以
脾臟為陽性對照,擴(kuò)增等級卵泡基質(zhì)層TLRs 1A、1B、2A、2B、3、4、5、7、15和21基因,與欲擴(kuò)增目的片段大小一致。通過測序,并與GenBank已登錄(表1)的序列比對,同源性為97%以上,表明PCR擴(kuò)增片段為目的基因片段。并且,結(jié)果顯示,已公開的10種鳥類 TLR家族基因均在等級卵泡基質(zhì)層組織中表達(dá)。
表1 RT-PCR和qRT-PCR引物Table 1 Primer pairs used for RT-PCR and qRT-PCR
圖1 等級卵泡基質(zhì)層TLR家族基因表達(dá)譜Fig. 1 Expressions of TLRs in stroma of hierarchical follicles
2.2 不同等級卵泡基質(zhì)層TLR家族基因表達(dá)
不同等級卵泡基質(zhì)層 TLR家族基因表達(dá)水平見圖2。隨等級卵泡生長,TLRs 2A表達(dá)水平逐漸升高。F1級卵泡基質(zhì)層TLR2A表達(dá)水平顯著高于F3、F4和F5級卵泡,TLR15表達(dá)水平顯著高于F5級卵泡。其他TLR家族基因,如TLRs 1A、1B、2B、3、4、5、7和21的表達(dá)水平在不同等級卵泡基質(zhì)層中差異不顯著。
圖2 不同等級卵泡基質(zhì)層TLR家族基因表達(dá)Fig. 2 Changes in the expression of TLRs in follicular stroma during follicle growth
2.3 不同 LPS處理時間對鵝等級卵泡形態(tài)結(jié)構(gòu)的影響
不同LPS處理時間對鵝等級卵泡形態(tài)結(jié)構(gòu)的影響見圖3。在LPS處理0、6和12 h時,等級卵泡形態(tài)無明顯變化,但在LPS處理24 h時,3只鵝等級卵泡呈深黃色膠凍狀變性,在LPS處理36 h時,全部試驗(yàn)鵝等級卵泡呈深黃色膠凍狀變性。
2.4 不同LPS處理時間對鵝等級卵泡基質(zhì)層TLRs表達(dá)的影響
不同LPS處理時間對鵝等級卵泡基質(zhì)層TLRs表達(dá)的影響見圖4。在10種TLR家族基因中,6種基因在LPS處理后顯著升高。與對照組(LPS處理0h)相比,TLRs 2A、4和5基因表達(dá)水平在LPS處理12和24 h時顯著升高;TLR2B在LPS處理24 h時顯著升高;TLRs 7和15在LPS處理6—24 h期間均顯著升高;而TLRs 1A、1B、3和21在LPS處理6—24 h期間差異不顯著。
2.5 等級卵泡基質(zhì)層與變性卵泡組織 TLR家族基因差異表達(dá)
等級卵泡基質(zhì)層與變性卵泡組織TLR家族基因差異表達(dá)見圖5。與等級卵泡基質(zhì)層相比,在LPS處理24和36 h的變性卵泡中,TLRs 1A、2A、2B、4、5、7和15基因表達(dá)水平顯著升高,TLR3表達(dá)水平顯著降低;在LPS處理36 h的變性卵泡中,TLRs 1B和21表達(dá)水平顯著升高。
圖 3 LPS處理不同時間對鵝等級卵泡形態(tài)結(jié)構(gòu)的影響Fig. 3 The time course effect of LPS treatment on follicle morphology
圖4 LPS處理不同時間對鵝等級卵泡基質(zhì)層和變性卵泡TLRs表達(dá)的影響Fig. 4 Time course effect of LPS on TLRs mRNA expression in follicular stroma
禽類卵泡是病原微生物偏好侵染組織,因而易造成產(chǎn)蛋性能下降和蛋源食品安全風(fēng)險(xiǎn)[25]。TLRs能識別廣泛的病原微生物,誘導(dǎo)炎性因子生成,啟動宿主免疫反應(yīng),抵御病原微生物侵害[3-5]。TLR家族包含10個成員,識別相應(yīng)的病原相關(guān)分子模式。TLRs 2A, 3, 4, 5、7和21分別識別革蘭氏陽性菌肽聚糖、雙鏈RNA、革蘭氏陰性菌脂多糖、細(xì)菌鞭毛蛋白、單鏈RNA和細(xì)菌DNA CpG島序列[7-10],而TLR15是禽類特異的識別病原相關(guān)分子模式的受體[12]。本試驗(yàn)中,10種TLR家族基因均在鵝等級卵泡基質(zhì)層中表達(dá),表明雖然由于種鵝的喜水習(xí)性造成病原微生物侵染卵巢的風(fēng)險(xiǎn),但等級卵泡能有效的識別各種病原微生物,進(jìn)而清除病原微生物,維持卵泡功能。
圖5 等級卵泡基質(zhì)層與變性卵泡組織TLRs差異表達(dá)Fig. 5 Differential expression of TLRs between follicular stroma and denatured hierarchical follicle
此外,在雞卵巢中,TLRs 2、4、5和7基因在卵泡膜層表達(dá),而TLRs 4和5基因在卵泡顆粒層表達(dá)[11];TLRs 1B、2、3、4、5和7基因均在輸卵管傘部、峽部、膨大部、子宮部和陰道部表達(dá)[26]。在 10種TLRs中,8種TLRs家族基因在未成熟卵泡組織中表達(dá)[12],9種TLRs基因在雞陰道、睪丸、附睪和精子中表達(dá)[13-15]。筆者先前的研究發(fā)現(xiàn)10種TLR家族基因均在種鵝輸卵管各功能部位表達(dá)[27]。由于面臨病原微生物侵染的威脅不同,因此,本試驗(yàn)的結(jié)果進(jìn)一步表明TLR家族基因表達(dá)依賴于禽類生殖道不同的細(xì)胞和組織類型[6, 11-14, 28]。
卵泡基質(zhì)層富含血管組織,且卵黃沉積能力大,易使血液病原微生物進(jìn)入卵泡細(xì)胞。隨著禽類卵泡生長,等級卵泡基質(zhì)層血流量逐漸增加,造成大卵泡積聚異源分子數(shù)量多于小卵泡,大卵泡面臨病原微生物侵染的風(fēng)險(xiǎn)更高。本試驗(yàn)中,隨卵泡生長,基質(zhì)層TLRs 2A和15基因表達(dá)逐漸升高。TLRs 2A和15基因是禽類識別病原微生物重要的病原相關(guān)識別受體[7-10]。因此,本試驗(yàn)的結(jié)果表明大卵泡對病原的識別能力更敏感,具有更強(qiáng)的抵御病原侵染的能力。此外,大量的研究表明TLRs信號通路可能參與動物卵泡內(nèi)分泌功能[11,29-31],而且這種作用機(jī)制是由于TLR介導(dǎo)生成的炎性因子直接作用于卵泡。在禽類等級卵泡中,隨卵泡生長,P4合成能力增強(qiáng)、E2合成能力減弱[24,32-33]。因此,TLRs 2A和15可能與種鵝卵泡生長密切相關(guān)或者其表達(dá)受卵泡類固醇激素的調(diào)控,但該推論需要進(jìn)一步試驗(yàn)驗(yàn)證。
由于種鵝的親水習(xí)性,國內(nèi)普通采用依賴水面的養(yǎng)殖模式,該模式造成糞便及其中的腸桿菌直接進(jìn)入養(yǎng)殖水體。隨著養(yǎng)殖密度增加和養(yǎng)殖時間延長,養(yǎng)殖水體中的細(xì)菌利用糞便中的氮磷等營養(yǎng)物質(zhì)不斷增殖并在死亡后釋放LPS[1-2]。細(xì)菌和LPS通過種鵝交配或飲水進(jìn)入種鵝卵巢器官,輕則影響卵巢功能、降低產(chǎn)蛋性能,重則造成卵泡閉鎖,甚至造成大腸桿菌和沙門氏菌性卵黃腹膜炎。本試驗(yàn)中,在LPS處理24 h,3只試驗(yàn)鵝等級卵泡出現(xiàn)不規(guī)則深黃色變性狀態(tài),而在LPS處理36 h后,全部試驗(yàn)鵝出現(xiàn)該變性狀態(tài),表明隨LPS作用時間延長,等級卵泡形態(tài)結(jié)構(gòu)逐漸改變,卵泡生長和排卵受到抑制。本試驗(yàn)建立一種LPS體外試驗(yàn)?zāi)P停兄谶M(jìn)一步研究LPS影響種鵝卵泡發(fā)育的分子機(jī)制。
TLRs 2和4是細(xì)菌LPS的病原識別模式受體,外源性LPS促進(jìn)禽類生殖道,如輸卵管[13,16,26]、卵巢[11,34]和睪丸[14,17]等組織TLRs 2和4基因表達(dá)。與此研究結(jié)果一致,本試驗(yàn)結(jié)果顯示 LPS促進(jìn)種鵝卵泡基質(zhì)層TLRs 2和4基因表達(dá)。雖然TLRs 5、7和15基因識別各自相應(yīng)的病原相關(guān)分子模式,但本試驗(yàn)結(jié)果發(fā)現(xiàn)LPS促進(jìn)TLRs 5、7和15基因表達(dá)水平。由于TLRs結(jié)合相應(yīng)配體后能誘導(dǎo)炎性因子生成,進(jìn)而啟動非特異性免疫反應(yīng),抵御病原微生物侵染。因此,本試驗(yàn)結(jié)果表明,LPS不僅通過其受體TLRs 2和4啟動等級卵泡基質(zhì)層免疫反應(yīng),而且能通過促進(jìn)其他TLRs,如TLRs 5、7和15基因表達(dá)增強(qiáng)宿主免疫反應(yīng),進(jìn)而加速清除病原微生物。
本試驗(yàn)中,TLRs 2A、4和 5基因表達(dá)水平在LPS處理12 h時開始顯著提高,TLR2B基因表達(dá)水平在LPS處理24 h時顯著升高,TLRs 7和15基因表達(dá)水平在LPS處理6 h時顯著升高,而TLRs 1A、1B、3和21基因表達(dá)水平在LPS處理0 – 24 h期間差異不顯著。因此,種鵝等級卵泡基質(zhì)層TLR家族對外源LPS的敏感性由強(qiáng)到弱依次為TLRs 7和15;TLRs 2A、4和5;TLR2B;TLRs 1A、1B、3和21。TLR7基因特異性識別病毒[7-10],而TLR15是禽類特異的識別病原的受體[12],因此,在復(fù)雜的機(jī)體環(huán)境下,進(jìn)入血液的LPS,可能降低了機(jī)體病原抵抗力,增加了病毒分子或其它異源分子進(jìn)入等級卵泡的機(jī)率,造成其識別模式受體TLRs 7和15的表達(dá)上升,而且,TLRs 7和15對其病原相關(guān)分子模式的敏感性可能高于TLRs 2和4對LPS的敏感性。
在LPS或沙門氏菌侵染后,雞等級卵泡顆粒細(xì)胞比等級前卵泡顆粒細(xì)胞具有更高的免疫反應(yīng)性[34]。TLRs識別病原相關(guān)分子模式后誘導(dǎo)炎性反應(yīng),但過度炎癥反應(yīng)造成組織損傷[35-37]。炎性因子和趨化因子在禽類卵泡組織中表達(dá),而且在LPS侵染后其表達(dá)水平顯著提高[17,38-39]。本試驗(yàn)中,在LPS處理24 h后,種鵝等級卵泡發(fā)生深黃色不規(guī)則的膠凍狀變性,然而,其TLRs表達(dá)水平顯著高于未經(jīng)LPS處理的基質(zhì)層組織,說明隨LPS處理時間延長,等級卵泡細(xì)胞炎性反應(yīng)能力增強(qiáng),但過度增強(qiáng)的炎性反應(yīng)可能影響的卵泡形態(tài)結(jié)構(gòu)。TLR3主要識別雙鏈RNA 病毒[40]。與卵巢[12-13]和睪丸[28]組織對 LPS的反應(yīng)性類似,本試驗(yàn)中變性的等級卵泡 TLR3表達(dá)顯著低于未經(jīng)LPS處理的基質(zhì)層組織,說明等級卵泡在LPS過度刺激后,其識別雙鏈RNA病毒的能力降低。
已發(fā)現(xiàn)的10種雞TLR家族基因均在種鵝等級卵泡基質(zhì)層表達(dá);隨卵泡生長,TLRs 2A和15基因表達(dá)水平顯著升高;隨LPS處理時間延長,等級卵泡基質(zhì)層TLRs 2A、2B、4、5、7和15基因表達(dá)顯著升高;在內(nèi)毒素處理24和36h時,等級卵泡形態(tài)結(jié)構(gòu)發(fā)生改變,但其TLR家族基因表達(dá)水平顯著升高。
[1] YANG X W, LIU L, JANG D L, WANG C L, SUN A D, SHI Z D. Improving geese production performance in “Goose-Fish” production system by competitive reduction of pathogenic bacteria in pond water. Journal of Integrative Agriculture, 2012, 11(6): 993-1001.
[2] JIANG D L, LIU L, WANG C L, CHEN F, SUN A D, SHI Z D. Raising on water stocking density reduces geese reproductive performances via water bacteria and lipopolysaccharide contaminations in "Geese-Fish" production system. Journal of Integrative Agriculture, 2011, 10(9): 1459-1466.
[3] ROEDER A, KIRSCHNING C J, RUPEC R A, SCHALLER M, WEINDL G, KORTING H C. Toll-like receptors as key mediators in innate antifungal immunity. Medical Mycology, 2004, 42(6): 485-498.
[4] AKIRA S, TAKEDA K, KAISHO T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2001, 2(8): 675-680.
[5] KAISHO T, AKIRA S. Toll-like receptor function and signaling. Journal of Allergy and Clinical Immunology, 2006, 117(5): 979-987.
[6] MICHAILIDIS G, ANASTASIADOU M, GUIBERT E, FROMENT P. Activation of innate immune system in response to lipopolysaccharide in chicken Sertoli cells. Reproduction, 2014, 148(3): 259-270.
[7] IQBAL M, PHILBIN V J, SMITH A L. Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Veterinary Immunology and Immunopathology, 2005, 104(1-2): 117-127.
[8] HONSTETTRE A, GHIGO E, MOYNAULT A, CAPO C, TOMAN R, AKIRA S, TAKEUCHI O, LEPIDI H, RAOULT D, MEGE J L. Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. Journal of Immunology, 2004, 172(6): 3695-3703.
[9] BROWNLIE R, ALLAN B. Avian toll-like receptors. Cell and Tissue Research, 2011, 343(1): 121-130.
[10] KEESTRA A M, DE ZOETE M R, BOUWMAN L I, VAN PUTTEN J P. Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. Journal of Immunology, 2010, 185(1): 460-467.
[11] SUBEDI K, ISOBE N, NISHIBORI M, YOSHIMURA Y. Changes in the expression of toll-like receptor mRNAs during follicular growth and in response to lipopolysaccharide in the ovarian follicles of laying hens. Journal of Reproduction and Development, 2007, 53(6): 1227-1235.
[12] MICHAILIDIS G, THEODORIDIS A, AVDI M. Transcriptional profiling of Toll-like receptors in chicken embryos and in the ovary during sexual maturation and in response to Salmonella enteritidis infection. Animal Reproduction Science, 2010, 122(3-4): 294-302.
[13] MICHAILIDIS G, THEODORIDIS A, AVDI M. Effects of sexual maturation and Salmonella infection on the expression of Toll-like receptors in the chicken vagina. Animal Reproduction Science, 2011, 123(3-4): 234-241.
[14] DAS S C, ISOBE N, YOSHIMURA Y. Expression of Toll-like receptors and avian beta-defensins and their changes in response to bacterial components in chicken sperm. Poultry Science, 2011, 90(2): 417-425.
[15] ANASTASIADOU M, AVDI M, MICHAILIDIS G. Expression of avian beta-defensins and Toll-like receptor genes in the rooster epididymis during growth and Salmonella infection. Animal Reproduction Science, 2013, 140(3-4): 224-231.
[16] ARIYADI B, ISOBE N, YOSHIMURA Y. Toll-like receptor signaling for the induction of mucin expression by lipopolysaccharide in the hen vagina. Poultry Science, 2014, 93(3): 673-679.
[17] ZHANG M, NII T, ISOBE N, YOSHIMURA Y. Expression of Toll-like receptors and effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokine in the testis and epididymis of roosters. Poultry Science, 2012, 91(8): 1997-2003.
[18] QI Y, YAN B, CHEN S, CHEN H, WANG M, JIA R, ZHU D, LIU M, LIU F, YANG Q, SUN K, WU Y, CHEN X, JING B, CHENG A. CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection. Immunobiology, 2016, 221(3): 454-461.
[19] QI Y, CHEN S, ZHAO Q, WANG M, JIA R, ZHU D, LIU M, LIU F, CHEN X, CHENG A. Molecular cloning, tissue distribution, and immune function of goose TLR7. Immunology Letters, 2015, 163(2): 135-142.
[20] WEI L, JIAO P, YUAN R, SONG Y, CUI P, GUO X, ZHENG B, JIA W, QI W, REN T, LIAO M. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response. Veterinary Immunology and Immunopathology, 2013, 153(1-2): 99-106.
[21] FANG Q, PAN Z, GENG S, KANG X, HUANG J, SUN X, LI Q, CAI Y, JIAO X. Molecular cloning, characterization and expression of goose Toll-like receptor 5. Molecular Immunology, 2012, 52(3-4): 117-124.
[22] YONG Y, LIU S, HUA G, JIA R, ZHAO Y, SUN X, LIAO M, JU X. Identification and functional characterization of Toll-like receptor 2-1 in geese. BMC Veterinary Research, 2015, 11: 108.
[23] QIN Q, SUN A, GUO R, LEI M, YING S, SHI Z. The characteristics of oviposition and hormonal and gene regulation of ovarian follicle development in Magang geese. Reproductive Biology and Endocrinology, 2013, 11(1): 65.
[24] SECHMAN A, ANTOS P, KATARZYNSKA D, GRZEGORZEWSKA A, WOJTYSIAK D, HRABIA A. Effects of 2,3,7,8-tetrachlorodibenzop-dioxin on secretion of steroids and STAR, HSD3B and CYP19A1 mRNA expression in chicken ovarian follicles. Toxicology Letters, 2014, 225(2): 264-274.
[25] OLSEN R H, BISGAARD M, CHRISTENSEN J P, KABELL S, CHRISTENSEN H. Pathology and molecular characterization of Escherichia Coli associated with the avian Salpingitis-Peritonitis Disease Syndrome. Avian Diseases, 2016, 60(1): 1-7.
[26] OZOE A, ISOBE N, YOSHIMURA Y. Expression of Toll-like receptors (TLRs) and TLR4 response to lipopolysaccharide in hen oviduct. Veterinary Immunology and Immunopathology, 2009, 127(3-4): 259-268.
[27] 應(yīng)詩家, 戴子淳, 郭佳佳, 李輝, 雷明明, 施振旦, 沈明君. 鵝輸卵管 TLR家族基因差異表達(dá)的研究. 江蘇農(nóng)業(yè)學(xué)報(bào), 2015, 31(06): 1395-1399.
YING S J, DAI Z C, GUO J J, LI H, LEI M M, SHI Z D, SHEN M J. Differential expression of Toll-like receptors in geese different segments of the oviduct. Jiangsu Journal of Agricultural Sciences, 2015, 31(06): 1395-1399. (in Chinese)
[28] ANASTASIADOU M, THEODORIDIS A, AVDI M, MICHAILIDIS G. Changes in the expression of Toll-like receptors in the chicken testis during sexual maturation and Salmonella infection. Animal Reproduction Science, 2011, 128(1-4): 93-99.
[29] LUTTGENAU J, HERZOG K, STRUVE K, LATTER S, BOOS A, BRUCKMAIER R M, BOLLWEIN H, KOWALEWSKI M P. LPS-mediated effects and spatio-temporal expression of TLR2 andTLR4 in the bovine corpus luteum. Reproduction, 2016, 151: 391-399.
[30] PRICE J C, SHELDON I M. Granulosa cells from emerged antral follicles of the bovine ovary initiate inflammation in response to bacterial pathogen-associated molecular patterns via Toll-like receptor pathways. Biology of Reproduction, 2013, 89(5): 119.
[31] PRICE J C, BROMFIELD J J, SHELDON I M. Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology, 2013, 154(9): 3377-3386.
[32] JOHNSON A L. Ovarian follicle selection and granulosa cell differentiation. Poultry Science, 2015, 94(4): 781-785.
[33] JOHNSON A L, WOODS D C. Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation. General and Comparative Endocrinology, 2009, 163(1-2): 12-17.
[34] WOODS D C, SCHOREY J S, Johnson A L. Toll-like receptor signaling in hen ovarian granulosa cells is dependent on stage of follicle maturation. Reproduction, 2009, 137(6): 987-996.
[35] SHI J, ZHAO Y, WANG Y, GAO W, DING J, LI P, HU L, SHAO F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521): 187-192.
[36] OGUEJIOFOR C F, CHENG Z, ABUDUREYIMU A, FOULADINASHTA A A, WATHES D C. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biology of Reproduction, 2015, 93(4): 9.
[37] OGUEJIOFOR C F, CHENG Z, ABUDUREYIMU A, ANSTAETT O L, BROWNLIE J, FOULADI-NASHTA A A, WATHES D C. Global transcriptomic profiling of bovine endometrial immune response in vitro. II. Effect of bovine viral diarrhea virus on the endometrial response to lipopolysaccharide. Biology of Reproduction, 2015, 93(4): 9.
[38] NII T, SONODA Y, ISOBE N, YOSHIMURA Y. Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and the subsequent recruitment of immunocompetent cells in the oviduct of laying and molting hens. Poultry Science, 2011, 90(10): 2332-2341.
[39] ABDELSALAM M, ISOBE N, YOSHIMURA Y. Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and influx of leukocytes in the hen ovary. Poultry Science, 2011, 90(9): 2054-2062.
[40] SCHWARZ H, SCHNEIDER K, OHNEMUS A, LAVRIC M, KOTHLOW S, BAUER S, KASPERS B, STAEHELI P. Chicken toll-like receptor 3 recognizes its cognate ligand when ectopically expressed in human cells. Journal of Interferon & Cytokine Research, 2007, 27(2): 97-101.
(責(zé)任編輯 林鑒非)
Time Course Effect of Lipopolysaccharide on Toll-Like Receptors Expression in the Goose Follicular Stroma
YING ShiJia, DAI ZiChun, GUO JiaJia, SHI ZhenDan
(Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Science, Nanjing 210014)
【Objective】 This study aims to investigate the transcriptional profiling of Toll-like receptors (TLRs) and their responses to lipopolysaccharide with different treatment times in the goose follicular stroma. 【Method】 The laying process wasmonitored in a flock of Yangzhou geese. The geese were injected intravenously with LPS (1.5mg/kg body weight) 8 and 2 h after oviposition, and 4, 16 and 28 h before oviposition. All experimental geese were slaughtered 8 h after oviposition. Therefore, time course of LPS was achieved, namely at 0, 6, 12, 24 and 36 h after injection of LPS. Five geese at each time point were selected. After slaughtering, the ovaries were collected, the follicle morphology was observed, and the stroma of the first largest follicles (F1), F2, F3, F4 and F5 was isolated. The animals were provided with feed and water ad libitum, and maintained under natural photoperiod. For the geese 0, 24 and 36 h of after LPS treatment, all samples were used for gene expression analysis. For the other geese, RNA samples of follicular stroma of each goose were mixed with equal concentrations for gene expression analysis. RT-PCR was performed to examine the transcriptional profiling of 10 types of avian TLRs in follicular stroma. The spleen tissue was used as the positive control, and the sample without cDNA sample was used as the negative control. The expression levels of TLRs in follicular stroma among different hierarchical follicles and among different time points were tested using Real-time PCR. For data on the time course of LPS and different hierarchical follicles, the significance of differences was analyzed using the one-way ANOVA followed by Duncan’s multiple range tests. For data between stroma in control group and DF, statistical analysis was carried out using independent-samples T test. 【Result】 All 10 reported TLRs in poultry, namely TLRs 1A, 1B, 2A, 2B, 3, 4, 5, 7, 15 and 21 were expressed in goose stroma of hierarchical follicles. The expression level of TLR2A exhibited a tendency to increase with follicular growth. The TLR2A expression in F1 was higher than in F3, F4 and F5, and the TLR15 expression in F1 was higher than in F5. There were no significant effects of follicle sizes on the expression of TLRs 1A, 1B, 2B, 3, 4, 5, 7 and 21 in stroma. The morphology and colour of ovarian follicles were not changed at 0, 6 and 12 h after administration of LPS. However, the hierarchical follicles of three birds after 24 h and all birds after 36 h became an irregular ellipse or circle in shape and deep yellow in colour. Compared with the control (LPS treatment 0 h), the expression of TLRs 2A, 4 and 5 was significantly increased at 12 and 24 h after LPS treatment, the expression of TLR2B was significantly increased at 24 h, and the expression of TLRs 7 and 15 was significantly increased during the 6 to 24 h period. LPS stimulation did not significantly affect the expression of TLRs 1A, 1B, 3 and 21 during the 6 to 24 h period. Compared with the control, the expression of TLRs 1A, 2A, 2B, 4, 5, 7 and 15 was significantly increased in the denatured hierarchical follicles at 24 and 36 h, while the expression of TLRs 1B and 21 was significantly increased in the denatured hierarchical follicles at 36 h. 【Conclusion】 All the 10 members of avian TLR families are expressed in goose follicular stroma. Furthermore, with prolonged LPS treatment, the morphology of hierarchical follicles is changed, but the TLRs expression levels are still increased.
breeding goose; hierarchical follicle; lipopolysaccharide (LPS); TLRs
2016-07-25;接受日期:2017-01-22
江蘇省自然科學(xué)基金(BK20130718), 國家水禽產(chǎn)業(yè)技術(shù)體系(CARS-43-16)
聯(lián)系方式:應(yīng)詩家,E-mail:ysj@jaas.ac.cn。通信作者:施振旦,E-mail::zdshi@jaas.ac.cn