胡飛翔,童 彤,彭衛(wèi)軍
復旦大學附屬腫瘤醫(yī)院放射診斷科,復旦大學上海醫(yī)學院腫瘤學系,上海 200032
彌散峰度成像評價及預測直腸癌新輔助放化療后病理完全緩解的價值
胡飛翔,童 彤,彭衛(wèi)軍
復旦大學附屬腫瘤醫(yī)院放射診斷科,復旦大學上海醫(yī)學院腫瘤學系,上海 200032
彭衛(wèi)軍,教授,復旦大學博士研究生導師?,F(xiàn)任復旦大學附屬腫瘤醫(yī)院放射診斷科主任,中國抗癌協(xié)會腫瘤影像專業(yè)委員會候任主任委員,上海醫(yī)學會放射診斷??莆瘑T會副主任委員,上海市抗癌協(xié)會腫瘤影像專業(yè)委員會主任委員,中華醫(yī)學會放射學分會乳腺學組副組長。
目的:探討彌散峰度成像(diffusion kurtosis imaging,DKI)預測及評價直腸癌新輔助放化療后病理完全緩解(pathologic complete response,pCR)的應用價值。方法:連續(xù)入組40例局部進展期直腸癌患者,患者在放化療前后各進行一次3.0T MRI檢查。在新輔助治療前后分別測量腫瘤的表觀彌散系數(shù)(apparent diffusion coefficient,ADC)均值、校正彌散系數(shù)(corrected diffusion coefficient,D)均值(MD)及彌散峰度系數(shù)(excess diffusion kurtosis coefficient,K)均值(MK),并與全直腸系膜切除術(shù)(total mesorectal excision,TME)后的病理結(jié)果進行比較。根據(jù)病理結(jié)果,將患者分為pCR和非pCR組。采用非參數(shù)Mann-WhitneyU檢驗比較兩組治療前后各參數(shù)及其變化的差異,Kruskal-Wallis檢驗評估pCR與非pCR均值差異,受試者工作特征 (receiver operating characteristic,ROC) 曲線分析法計算各參數(shù)預測新輔助治療有效的曲線下面積(area under curve,AUC)、靈敏度、特異度、陽性預計值、陰性預計值、準確率及截斷值。結(jié)果:40例患者中(pCR,n=10;非pCR,n=30),MKpre和MKpost在pCR組中(0.72±0.10和0.56±0.06)顯著低于非pCR組(0.87±0.11和0.67±0.08)(P<0.001)。ADCpost和ADCratio在pCR組中(1.31±0.13和0.64±0.40)顯著高于非pCR組(1.15±0.18和0.36±0.29)(P值分別為0.011和0.026)。此外,兩組間MDpost和MDratio也有統(tǒng)計學差異(分別為2.51±0.34vs.1.99±0.30,P=0.001;0.82±0.51vs.0.37±0.34,P=0.003)。然而,兩組間ADCpre、MDpre和MKratio差異無統(tǒng)計學意義(P值分別為0.499、0.510和0.589)。AUC結(jié)果顯示,相比其他參數(shù),MKpost具有最佳診斷效能(AUC為0.893,截斷值為0.590 5),且具有90%的較高準確率。結(jié)論:DKI和彌散加權(quán)成像(diffusion weighted imaging,DWI)均展示出較好的預測及評價直腸癌新輔助放化療后病理完全緩解的潛力。DKI參數(shù)中,尤其是MKpost在評估局部進展期直腸癌患者pCR與非pCR中顯示出比DWI更高的特異度。治療前的ADC和MD值并不可靠。
彌散峰度成像;表觀彌散系數(shù);新輔助放化療;局部進展期直腸癌;病理完全緩解
MRI具有良好的形態(tài)學評估特點,廣泛應用于直腸癌新輔助放化療后的療效評估及預測[1-3]。功能MRI在評估患者預后中扮演著重要角色,可作為一種生物標記定量分析方法并客觀反映治療效果[4-8]。目前常見的功能成像方法有彌散加權(quán)成像(diffusion weighted imaging,DWI)、彌散張量成像(diffusion tensor imaging,DTI)、彌散峰度成像(diffusion kurtosis imaging,DKI),可無創(chuàng)反映活體組織內(nèi)水分子彌散運動的方向及能力。彌散成像的理論基礎(chǔ)是組織細胞間水分子的布朗運動。生物體內(nèi)的組織結(jié)構(gòu)復雜,包含多種組織成分,因此臨床上常用的單e指數(shù)(monoexponential)模型只能獲得體素內(nèi)的平均擴散系數(shù),反映擴散的總體情況。2005年,Jensen等[9]首次提出DKI模型,其初始目的是為定量彌散偏離高斯分布的程度。常規(guī)單e指數(shù)模型假設水分子彌散是不受阻礙的自由運動,水分子在隨機運動的情況下,其彌散運動位移滿足正態(tài)分布。然而,真實的生物組織中水分子的彌散實際上是在細胞間隙、細胞內(nèi)的運動,必然不是自由運動,因此真實的水分子彌散運動位移是非高斯分布的。水分子的彌散受周圍環(huán)境的限制程度越大,體素內(nèi)組織成分越混雜,彌散的非高斯性越顯著。DKI提供了一個值來量化真實水分子擴散位移與理想的非受限高斯分布擴散位移的偏離大小,以體現(xiàn)水分子擴散受限程度及擴散的不均質(zhì)性,能更好地顯示組織復雜的微觀結(jié)構(gòu)。
對于局部進展期直腸癌,術(shù)前新輔助放化療(neoadjuvant chemoradiation therapy,NCRT)是目前最常用的標準治療策略。因此,新輔助放化療前后的評估顯得尤為重要,MRI已擴展到對術(shù)前放化療后的療效評價。例如,有些患者可能單獨受益于手術(shù)[10-11],且可避免長期暴露于放療的損傷,病理完全緩解(pathologic complete response,pCR)患者可受益于較小的侵入性手術(shù)(如經(jīng)肛門內(nèi)鏡顯微外科手術(shù))[12-13]或“等待觀察”策略[14-15]。然而,并非所有患者都能從新輔助放化療獲益,目前仍不清楚為什么有些患者會完全緩解,而有些患者僅部分緩解[14]。對局部進展期直腸癌治療后緩解的早期預測,可幫助臨床醫(yī)師進行個體化治療并避免不必要的全身毒性,但目前缺乏可靠的非侵入性診斷工具,判斷pCR仍是一個挑戰(zhàn)[16]。
有研究顯示,DKI在腫瘤檢出與分級方面比傳統(tǒng)DWI具有更高的診斷效能[17-23],可用于預測新輔助放化療后局部進展期鼻咽癌(nasal pharyngeal cancer,NPC)患者的早期反應[24]。目前,很少有關(guān)于DKI應用于直腸癌新輔助治療前后療效評估的研究。本研究旨在探討與傳統(tǒng)DWI相比,DKI在評價及預測局部進展期直腸癌新輔助放化療后pCR中的應用價值。
1.1 臨床資料
前瞻性地連續(xù)收集44例2014年1月—2015年1月于復旦大學附屬腫瘤醫(yī)院就診的直腸癌患者,均活檢病理證實為直腸腺癌,且為局部進展期:影像學或病理學檢查原發(fā)腫瘤侵出腸壁肌層直至周圍結(jié)構(gòu)(c/pT3-4b),系膜內(nèi)及真骨盆范圍內(nèi)出現(xiàn)淋巴結(jié)轉(zhuǎn)移(c/pN1-2)而無遠處轉(zhuǎn)移(M0)的距肛12 cm以內(nèi)的直腸癌患者。排除標準:① MRI檢查禁忌證(如起搏器、耳蝸植入等)(n=0);② 不完整的MRI數(shù)據(jù)收集或組織病理學分析(n=1);③ 手術(shù)前有新輔助治療禁忌證或無法手術(shù)治療或不能耐受而暫停新輔助放化療的患者(n=2);④ 法律上無行為能力或法律行為能力有限的患者(n=0);⑤ 對化療藥物或造影劑過敏的患者(n=0)。此外,如果患者同時進行實驗藥物治療或參加另一個臨床試驗,則排除該患者(n=1)。因此,最終研究人群為40例局部進展期直腸癌患者,年齡(53±12)歲(25~70歲)。所有患者均至少進行了兩次MRI檢查,第1次于新輔助放化療前2~5 d對腫瘤進行最初分期,第2次于術(shù)前1~4 d對腫瘤進行再分期。最后,對患者行全直腸系膜切除術(shù)(total mesorectal excision,TME)治療,術(shù)后病理由病理學專家分析并給出最終病理分期。
1.2 MRI檢查
采用3.0T MR掃描儀(SIEMENS公司MAGNETOM Skyra),16通道體部相控陣線圈作為接收線圈。MRI掃描序列包括:常規(guī)高分辨T2WI快速自旋回波序列(軸位、矢狀位及冠狀位),矢狀位和軸位多b值單次激發(fā)自旋回波-平面回波彌散序列。彌散掃描參數(shù):重復時間(repetition time,TR)/回波時間(echo time,TE) 4 500/82 ms,掃描野 200 mm×180 mm,層厚6 mm,掃描矩陣140×140,體素大小1.4 mm× 1.4 mm×6 mm,相位過采樣20%,層數(shù)20;啟用4個擴散梯度場(b=0、700、1 400、2 100 s/mm2),擴散敏感梯度場同時取X、Y和Z 3個方向。每個b值采集20幅圖像,最終獲得80幅,采集時間3 min 51 s。檢查前患者均按照標準直腸掃描協(xié)議掃描,未做任何腸道準備(灌腸,直腸填充及解痙劑等),膀胱適度充盈。
1.3 組織病理學評估
由1名經(jīng)驗豐富的胃腸道組織病理學專家進行評估。直腸癌術(shù)后分期根據(jù)最新的第7版美國癌癥聯(lián)合委員會(American Joint Committee on Cancer,AJCC)分期標準[25]。腫瘤退縮分級(tumor regression grading,TRG):0級,完全緩解,無癌細胞殘存;1級,中度緩解,僅小簇狀或單個癌細胞殘留;2級,輕度緩解,仍有腫瘤細胞殘存,但主要表現(xiàn)為纖維化;3級,較差緩解,少量或無腫瘤細胞被殺死,廣泛殘余癌[26]。通過比較臨床治療前和術(shù)后病理分期來確定是否降期,并定義為ypStage 0-Ⅰ(ypT0-2N0M0,“yp”中的y表示放化療后分期,p表示術(shù)后病理分期)。如果在切除標本中沒有發(fā)現(xiàn)腫瘤細胞,只存在纖維團塊或無癌細胞的黏液蛋白池,則表示為完全緩解(ypT0N0),最終將TRG 0級和ypT0N0期患者均歸類為pCR組。
1.4 數(shù)據(jù)后處理
DKI參數(shù)[(校正彌散系數(shù)(corrected diffusion coefficient,D)、彌散峰度系數(shù)(excess diffusion kurtosis coefficient,K)]和DWI參數(shù)[表觀彌散系數(shù)(apparent diffusion coefficient,ADC)]均由多b值DWI數(shù)據(jù)通過Body Diffusion Toolbox (德國SIEMENS公司Healthcare GmbH,Erlangen)軟件計算得出。使用彌散峰度信號衰減雙變量最小二階算法,對公式進行體素與體素非線性相擬合,從而獲得相應的ADC、校正彌散系數(shù)均值(mean diffusion,MD)和彌散峰度系數(shù)均值(mean kurtosis,MK),該算法與之前研究所用方法相一致[27]:
該方程中,S(b)是某一b值的信號強度,S0是沒有擴散加權(quán)的基線信號,D是校正彌散系數(shù),K是彌散峰度系數(shù)。K描述分子運動偏離高斯分布的程度。當K=0時,等式(1)降階到常規(guī)單指數(shù)方程:
D與ADC之間的差異是D是在非高斯情況下ADC的校正形式。
感興趣區(qū)(region of interest,ROI)參照相應的T2WI圖像,于軸位ADC圖上沿腫瘤最大層面的邊緣勾畫,由兩名放射科醫(yī)師達成一致意見后選取。其中經(jīng)驗豐富的醫(yī)師有10年以上臨床經(jīng)驗,經(jīng)驗較少的醫(yī)師在直腸MRI診斷方面也有5年臨床經(jīng)驗,兩名醫(yī)師均不知道最終病理學結(jié)果。通過軟件將ADC圖上的ROI自動對應至MD圖與MK圖上。以治療前ROI作為參照,繪制治療后的ROI,如果沒有腫瘤殘余或腫瘤退縮十分明顯,特別是新輔助治療后的pCR患者,其治療后的ROI以治療前所選擇區(qū)域為對照,在相應增厚的腸壁或正常殘留直腸上繪制。用以下等式表示相應的名稱:ADCratio=(ADCpost-ADCpre)/ ADCpre;MDratio=(MDpost-MDpre)/MDpre;MKratio=(MKpre-MKpost)/MKpre。其中,ADCpre、ADCpost、MDpre、MDpost、MKpre和MKpost分別指放化療前后的ADC、MD和MK值。
1.5 統(tǒng)計學處理
使用SPSS 21.0和MedCalc 12.7.2進行統(tǒng)計學分析。連續(xù)變量表示為均值±標準差。采用非參數(shù)Mann-Whitney U檢驗比較兩組治療前后各參數(shù)及其變化的差異,Kruskal-Wallis檢驗評估pCR組與非pCR均值的差異,受試者工作特征(receiver operating characteristic,ROC)曲線分析每個參數(shù)預測放化療結(jié)果的診斷效能,比較DKI與DWI模型用于評估pCR的靈敏度、特異度、陽性預計值(positive predictive value,PPV)、陰性預計值(negative predictive value,NPV)、準確率和曲線下面積(area under curve,AUC)。截斷值采用最大約登指數(shù)計算:約登指數(shù)=靈敏度-(1-特異度)。
2.1 患者特征
共納入40例患者(女性11例、男性29例),平均年齡(53±12)歲。其中pCR患者10例(圖1)、非pCR患者30例(圖2)。
圖1 新輔助放化療前后pCR患者各參數(shù)圖
圖2 新輔助放化療前后非pCR患者各參數(shù)圖
2.2 pCR和非pCR參數(shù)
pCR患者的MKpre和MKpost值顯著低于非pCR患者(圖3),分別為0.72±0.10、0.87±0.11 (P<0.001)及0.56±0.06、0.67±0.08 (P<0.001);MKratio值無顯著差異(0.21±0.15和0.23±0.11,P=0.589);ADCpre和MDpre值也無顯著差異(0.83±0.13和0.87±0.16,P=0.499;1.43±0.24和1.51±0.34,P=0.510);ADCpost和MDpost值差異有統(tǒng)計學意義,ADCratio和MDratio差異亦有統(tǒng)計學意義(P值分別為0.011、0.001、0.026、0.003)(表1)。
2.3 各參數(shù)pCR的診斷效能
采用ROC曲線評估DKI與DWI參數(shù)的pCR診斷效能(圖4)。ADC、MD和MK值的放化療前AUC分別為0.560、0.550和0.877,放化療后分別為0.773、0.870和0.893。ADC、MD和MK比值所顯示的AUC分別為0.730、0.800和0.570。當最佳截斷值為0.590 5時,MKpost靈敏度為90%,特異度為90%,PPV為75%,NPV為96.43%,準確率為90%;最佳截斷值為0.819 9時,MKpre靈敏度為90%,特異度為76.67%,PPV為56.25%,NPV為95.83%,準確率為80%(表2)。
圖3 新輔助放化療前后pCR與非pCR患者MD值與MK值的變化
表1 局部進展期直腸癌新輔助放化療前后pCR與非pCR患者的ADC、MD和MK值
圖4 新輔助放化療前后相應參數(shù)的ROC曲線
表2 DWI與DKI參數(shù)鑒別局部進展期直腸癌新輔助放化療后pCR的ROC曲線
局部進展期直腸癌的早期療效預測可幫助臨床醫(yī)師進行個體化治療,避免不必要的全身毒性。Goshima等[28]建議DKI作為肝細胞肝癌治療后療效評估的新選擇。Chen等[24]認為,在預測局部進展期鼻咽癌患者早期療效方面,DKI可能優(yōu)于單指數(shù)DWI。近期,Yu等[29]認為對DKI圖運用整個腫瘤的直方圖分析法,評價新輔助放化療的療效是可行且可靠的,可能成為一種監(jiān)測局部進展期直腸癌患者新輔助放化療后療效預測的有價值工具。他們認為,從DKI模型衍生出的非高斯分布的表觀彌散變化比(rΔDapp)提供了優(yōu)勢更大的AUC和靈敏度,并采用mrTGR評分來評估新輔助放化療的療效反應。本研究中,DKI和DWI均表現(xiàn)出預測直腸癌新輔助放化療療效的潛能。DKI參數(shù)中,尤其是MKpost顯示出比DWI更高的特異度,可用于鑒別局部進展期直腸癌患者pCR與非pCR。到目前為止,DKI用于直腸癌新輔助放化療的研究較少,本研究旨在探討其評估及預測局部進展期直腸癌患者新輔助放化療后pCR的價值。
水通過生物組織的擴散被認為是隨機運動的過程,并可通過測量ADC值來定量。早期研究表明,較低的ADC值主要是由于組織間隙空間減少和細胞密度增加[30-32]。在pCR和非pCR患者中,ADCpost比ADCpre明顯升高。本研究中,ADC值從放化療前的(0.86±0.15)×10-3mm2/s上升至放化療后的(1.19±0.18)×10-3mm2/s,差異有統(tǒng)計學意義(P<0.001)。有效的細胞毒性化療降低了腫瘤細胞結(jié)構(gòu),可能導致細胞外空間水分子擴散增加,表現(xiàn)為ADC值升高。最近一項韓國研究發(fā)現(xiàn),放化療后ADC值能可靠區(qū)分出局部進展期直腸癌患者中的pCR與非pCR[8]。Lambrecht等[33]分析了20例直腸癌患者放化療前后的彌散數(shù)據(jù),并通過分析ADC值變化預測pCR,結(jié)果顯示了非常高的靈敏度(100%)和特異度(93%~100%)。此外,他們還發(fā)現(xiàn)治療前較低的ADC值與pCR具有顯著相關(guān)性。然而,本研究未能證實ADCpre可區(qū)分患者的pCR和非pCR,與另一項研究結(jié)果一致。該研究顯示,局部進展期直腸癌中pCR患者治療前的ADC值(0.85±0.10×10-3mm2/s)與非pCR患者治療前的ADC值(0.88±0.14×10-3mm2/s)無顯著差異(P=0.409 4)[34]。此差異可能是由于ROI勾畫不同、b值組合不同、腫瘤異質(zhì)性的差異及分組不同導致。本研究中,MD值趨向于高于ADC均值,與最近DKI[18,35]的研究一致。這種增加可能是因為常規(guī)ADC值通常是細胞外和細胞內(nèi)擴散的總和,而MD值主要體現(xiàn)為細胞外區(qū)域[36]。Filli等[37]比較了全身DKI與DWI數(shù)據(jù),認為全身DKI比全身DWI能更準確地反映組織微結(jié)構(gòu)。
K參數(shù)反映組織中水分子偏離高斯分布的程度,可能與活體組織中微結(jié)構(gòu)的復雜度相關(guān)[9]。本研究中,治療前后MK值在pCR患者中明顯低于非pCR患者。某些pCR患者出現(xiàn)局部壞死,引起相應的細胞結(jié)構(gòu)缺失,通常發(fā)展為液化性壞死,局部纖維化,且擴散屏障減少。相反,非pCR患者仍具有較高的細胞結(jié)構(gòu)與核異型性。結(jié)構(gòu)復雜度在非pCR患者中比pCR患者高,這就提供了區(qū)別pCR與非pCR的可能性。本研究通過比較MK值的差異性來判斷pCR與非pCR患者之間局部微觀結(jié)構(gòu)復雜性的差異,從而達到預測pCR的目的。
DKI模型比DWI模型具有更高的特異度,歸因于以下幾點:① DWI模型基于水分子在一個體素內(nèi)擴散且遵循高斯運動的假設,然而DKI模型試圖去解釋標準分布模式的變化以提供更準確的擴散模型,并獲得非高斯擴散運動作為組織異質(zhì)性的標記[38]。② 非pCR患者的病灶局部細胞微結(jié)構(gòu)比pCR患者更復雜且具有較高的異質(zhì)性。③pCR患者病灶局部液化壞死和纖維化可降低每個體素中的局部重疊度和細胞密度,從而影響水分子的擴散。
本研究有以下不足:首先,樣本量較小,pCR患者數(shù)量低。第二,盡管MK值評估直腸癌的pCR表現(xiàn)為可行,但pCR與非pCR之間MK值存在重疊。第三,腫瘤ROI選擇是采用最大層面的畫法,后續(xù)需進行整個腫瘤ROI勾畫。第四,僅評估了放化療前后各參數(shù),沒有納入更多時間節(jié)點,還需評估不同治療時間的情況,以獲得預測pCR的最佳時間節(jié)點。最后,本單中心研究隊列相對較小,需更大樣本量的多中心試驗來確認。DKI定量分析獲得的峰度參數(shù),比ADC顯示出更高的特異度,具有區(qū)分局部進展期直腸癌患者新輔助放化療后pCR與非pCR的潛力,能反映腫瘤組織結(jié)構(gòu)的復雜性。隨著技術(shù)的進一步改善,DKI可能是評價局部進展期直腸癌患者放化療后療效的一個新選擇。
[1] JOYE I, DEROOSE C M, VANDECAVEYE V, et al. The role of diffusion-weighted MRI and18F-FDG PET/ CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review [J]. Radiother Oncol, 2014, 113(2): 158-165.
[2] VAN DER PAARDT M P, ZAGERS M B, BEETSTAN R G, et al. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis [J]. Radiology, 2013, 269(1):101-112.
[3] TAYLOR F G, QUIRKE P, HEALD R J, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage Ⅰ, Ⅱ, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study [J]. Ann Surg, 2011, 253(4):711-719.
[4] MARTENS M H, LAMBREGTS D M, PAPANIKOLAOU N, et al. Magnetization transfer ratio:a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer [J]. Invest Radiol, 2014, 49(1): 29-34.
[5] MUSIO D, DE FELICE F, MAGNANTE A L, et al. Diffusion-weighted magnetic resonance application in response prediction before, during, and after neoadjuvant radiochemotherapy in primary rectal cancer carcinoma [J]. Biomed Res Int, 2013, 2013: 740195.
[6] JUNG S H, HEO S H, KIM J W, et al. Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: diffusion-weighted 3 Tesla MR imaging [J]. J Magn Reson Imaging, 2012, 35(1): 110-116.
[7] LAMBREGTS D M, VANDECAVEYE V, BARBARO B, et al. Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study [J]. Ann Surg Oncol, 2011, 18(8): 2224-2231.
[8] KIM S H, LEE J M, HONG S H, et al. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo-and radiation therapy [J]. Radiology, 2009, 253(1): 116-125.
[9] JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: The quantification of nongaussian water diffusion by means of magnetic resonance imaging [J]. Magn Reson Med, 2005, 53(6): 1432-1440.
[10] SEBAG-MONTEFIORE D, STEPHENS R J, STEELE R, et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial [J]. Lancet, 2009, 373(9666):811-820.
[11] PEETERS K C, MARIJNEN C A, NAGTEGAAL I D, et al. The TME trial after a median follow-up of 6 years:increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma [J]. Ann Surg, 2007, 246(5): 693-701.
[12] LEZOCHE E, GUERRIERI M, PAGANINI A M, et al. Long-term results in patients with T2-3 N0 distal rectal cancer undergoing radiotherapy before transanal endoscopic microsurgery [J]. Br J Surg, 2005, 92(12):1546-1552.
[13] SERRA-ARACIL X, MORA-LOPEZ L, ALCANTARA-MORAL M, et al. Transanal endoscopic surgery in rectal cancer [J]. World J Gastroenterol, 2014, 20(33): 11538-11545.
[14] HARTLEY A, HO K F, MCCONKEY C, et al. Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of phaseⅡ/Ⅲ trials [J]. Br J Radiol, 2005, 78(934): 934-938.
[15] O’NEILL B D, BROWN G, HEALD R J, et al. Nonoperative treatment after neoadjuvant chemoradiotherapy for rectal cancer [J]. Lancet Oncol, 2007, 8(7): 625-633.
[16] BARBARO B, VITALE R, LECCISOTTI L, et al. Restaging locally advanced rectal cancer with MR imaging after chemoradiation therapy [J]. Radiographics, 2010, 30(3): 699-716.
[17] SUN K, CHEN X, CHAI W, et al. Breast cancer:diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors [J]. Radiology, 2015, 277(1): 46-55.
[18] SUO S, CHEN X, WU L, et al. Non-Gaussian water diffusion kurtosis imaging of prostate cancer [J]. Magn Reson Imaging, 2014, 32(5): 421-427.
[19] NOGUEIRA L, BRANDAO S, MATOS E, et al. Application of the diffusion kurtosis model for the study of breast lesions [J]. Eur Radiol, 2014, 24(6): 1197-1203.
[20] ROSENKRANTZ A B, SIGMUND E E, JOHNSON G, et al. Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer [J]. Radiology, 2012, 264(1): 126-135.
[21] VAN CAUTER S, VERAART J, SIJBERS J, et al. Gliomas: diffusion kurtosis MR imaging in grading [J]. Radiology, 2012, 263(2): 492-501.
[22] ROSENKRANTZ A B, SIGMUND E E, WINNICK A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants [J]. Magn Reson Imaging, 2012, 30(10): 1534-1540.
[23] RAAB P, HATTINGEN E, FRANZ K, et al. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences [J]. Radiology, 2010, 254(3):876-881.
[24] CHEN Y, REN W, ZHENG D, et al. Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients [J]. J Magn Reson Imaging, 2015, 42(5): 1354-1361.
[25] EDGE S B, COMPTON C C. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM [J]. Ann Surg Oncol, 2010, 17(6): 1471-1474.
[26] RYAN R, GIBBONS D, HYLAND J M, et al. Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer [J]. Histopathology, 2005, 47(2): 141-146.
[27] JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis [J]. NMR Biomed, 2010, 23(7): 698-710.
[28] GOSHIMA S, KANEMATSU M, NODA Y, et al. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma [J]. AJR Am J Roentgenol, 2015, 204(5): W543-W549.
[29] YU J, XU Q, SONG J C, et al. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J]. Eur Radiol, 2016. [Epub ahead of print].
[30] BARAJAS R J, RUBENSTEIN J L, CHANG J S, et al. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma [J]. AJNR Am J Neuroradiol, 2010, 31(1): 60-66.
[31] LAMBRECHT M, DIRIX P, VANDECAVEYE V, et al. Role and value of diffusion-weighted MRI in the radiotherapeutic management of head and neck cancer [J]. Expert Rev Anticancer Ther, 2010, 10(9): 1451-1459.
[32] GIBBS P, LINEY G P, PICKLES M D, et al. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla [J]. Invest Radiol, 2009, 44(9): 572-576.
[33] LAMBRECHT M, VANDECAVEYE V, De KEYZER F, et al. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer:preliminary results [J]. Int J Radiat Oncol Biol Phys, 2012, 82(2): 863-870.
[34] KIM S H, LEE J Y, LEE J M, et al. Apparent diffusion coefficient for evaluating tumour response to neoadjuvantchemoradiation therapy for locally advanced rectal cancer [J]. Eur Radiol, 2011, 21(5): 987-995.
[35] YUAN J, YEUNG D K, MOK G S, et al. Non-Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma [J]. PLoS One, 2014, 9(1): e87024.
[36] LU H, JENSEN J H, RAMANI A, et al. Threedimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging [J]. NMR Biomed, 2006, 19(2): 236-247.
[37] FILLI L, WURNIG M, NANZ D, et al. Whole-body diffusion kurtosis imaging: initial experience on non-Gaussian diffusion in various organs [J]. Invest Radiol, 2014, 49(12): 773-778.
[38] WU E X, CHEUNG M M. MR diffusion kurtosis imaging for neural tissue characterization [J]. NMR Biomed, 2010, 23(7): 836-848.
Diffusion kurtosis imaging: Assessment of pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer
HU Feixiang, TONG Tong, PENG Weijun
(Department of Diagnostic Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
PENG Weijun E-mail: cjr.pengweijun@vip.163.com
Objective: To investigate the applicable value of diffusion kurtosis imaging (DKI) in assessing the pathological complete response (pCR) to neoadjuvant chemoradiation therapy (CRT) in locally advanced rectal cancer (LARC). Methods: Fortyconsecutive patients diagnosed with LARC were prospectively enrolled and underwent MRI before and after CRT on 3.0 T MRI. Apparent diffusion coefficient (ADC), mean diffusion (MD), and mean kurtosis (MK) values of the tumor were measured in pre-CRT and post-CRT phases and compared with histopathologic findings after total mesorectal excision (TME). According to the pathological results, the patients were divided into pCR group and non-pCR group. The diffusion weighted imaging (DWI) and DKI parameters were compared between pCR and non-pCR groups, using the nonparametric Mann-Whitney U test. The Kruskal-Wallis test was used to assess differences in the means between pCR and non-pCR groups. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and area under the receiver operating characteristic (ROC) curve (AUC) for the evaluation of pCR were also calculated and compared between DKI and DWI models. Results: For a total of 40 rectal lesions (pCR,n=10; non-pCR,n=30), the MKpre and MKpost values in pCR group (0.72±0.10 and 0.56±0.06, respectively) were significantly lower than those in non-pCR group (0.87±0.11 and 0.67±0.08, respectively) (P<0.001). The ADCpost and the ratio of apparent diffusion coefficient (ADCratio) values were significantly higher in pCR group (1.31±0.13 and 0.64±0.40, respectively) than those in non-pCR group (1.15±0.18 and 0.36±0.29, respectively) (P=0.011 andP=0.026, respectively). In addition, the MDpost and the ratio of mean diffusion (MDratio) (2.51±0.34vs.1.99±0.30,P=0.001; 0.82±0.51vs.0.37±0.34,P=0.003, respectively) were significantly different, whereas the ADCpre, MDpre, and the ratio of mean kurtosis (MKratio) were not significantly different between the two groups (P=0.499, 0.510 and 0.589, respectively). The area under the receiver operating characteristic curve (AUROC) for the assessment of pCR was greater using MKpost (0.893, cutoff value=0.590 5) compared with other parameters. And overall accuracy of MKpost (90%) was the highest. Conclusion: Both DKI and conventional DWI exhibit potential for predicting treatment response to neoadjuvant CRT in rectal cancer. The DKI parameters, especially MKpost, shows higher specificity than conventional DWI in assessment of pCR and non-pCR in the patients with LARC, while the pre-CRT ADC and MD values are not reliable.
Diffusion kurtosis imaging; Apparent diffusion coefficient; Neoadjuvant chemoradiation therapy; Locally advanced rectal cancer; Pathological complete response
R445.2
A
1008-617X(2017)01-0049-09
2017-02-01)
國家自然科學基金(No:81501437)
彭衛(wèi)軍 E-mail:cjr.pengweijun@vip.163.com