王芮,姜立新
?
腫瘤干細(xì)胞活體示蹤的分子影像學(xué)研究進(jìn)展
王芮,姜立新
(上海交通大學(xué)附屬第六人民醫(yī)院超聲醫(yī)學(xué)科,上海200233)
腫瘤干細(xì)胞(Cancer Stem Cell,CSCs)是腫瘤細(xì)胞中具有自我更新和多向分化能力的細(xì)胞,與腫瘤的發(fā)生、增殖、轉(zhuǎn)移和耐藥等生物學(xué)行為關(guān)系密切,CSCs的活體示蹤對(duì)于實(shí)時(shí)監(jiān)測CSCs在體內(nèi)的生物學(xué)行為具有重要意義。目前常見CSCs活體示蹤的分子影像學(xué)方法包括:超聲成像、核磁共振成像(Magnetic Resonance Imaging,MRI)、光學(xué)成像、核醫(yī)學(xué)成像(Positron Emission Tomography -Computed Tomography,PET-CT)、光聲成像、多模態(tài)成像。這些成像方法的發(fā)展對(duì)于CSCs的研究具有重大意義,對(duì)于CSCs的研究有助于臨床診斷及治療,有利于診療一體化進(jìn)程的發(fā)展。文章就CSCs活體示蹤的分子影像學(xué)研究進(jìn)展進(jìn)行了綜述。
腫瘤干細(xì)胞;活體示蹤;超聲;分子影像學(xué)
近年來關(guān)于腫瘤干細(xì)胞(Cancer Stem Cell,CSCs)的研究認(rèn)為,CSCs是腫瘤起始、增殖、轉(zhuǎn)移和放化療無效的主要原因。腫瘤干細(xì)胞是腫瘤細(xì)胞中極少量的一群細(xì)胞,其發(fā)現(xiàn)對(duì)于研究腫瘤的起始、增殖、轉(zhuǎn)移等生物學(xué)行為具有重要意義,對(duì)于CSCs的研究也有助于臨床診斷和選擇正確的治療方法。如何有效地對(duì)CSCs進(jìn)行示蹤,從而實(shí)時(shí)監(jiān)控CSCs在體內(nèi)外的生物學(xué)行為,是CSCs研究中十分重要的部分。
1997年,Bonnet[1]等人發(fā)現(xiàn)在人急性髓系白血病細(xì)胞中只有0.2%~1%的細(xì)胞具有持續(xù)克隆增殖能力,將分離出的CD34+CD38-白血病細(xì)胞移植入裸鼠體內(nèi)后,發(fā)現(xiàn)其形成的腫瘤與母代生物學(xué)特性相似,而將CD34-CD38-白血病細(xì)胞移植入裸鼠體內(nèi)后無腫瘤形成,可見CD34+CD38-白血病細(xì)胞成瘤能力顯著強(qiáng)于CD34-CD38-白血病細(xì)胞。美國癌癥研究學(xué)會(huì)定義CSCs是腫瘤中具有自我更新能力并能產(chǎn)生異質(zhì)性腫瘤細(xì)胞的細(xì)胞[2]。而后CSCs相繼在腦腫瘤、前列腺癌、胰腺癌等不同腫瘤中得到了證實(shí)[3-5]。
CSCs與普通干細(xì)胞的共同點(diǎn)是:CSCs表面的一些特異性標(biāo)志如分化抗原(Clusters of Differentiation,CD)等也存在于CSCs所在器官的正常干細(xì)胞表面[2]。Crowel[3]等人研究發(fā)現(xiàn)普通干細(xì)胞在無限增殖的過程中,有機(jī)會(huì)發(fā)生突變轉(zhuǎn)化為CSCs,但是CSCs的形態(tài)、數(shù)量及其功能與普通干細(xì)胞存在顯著差異[4]。CSCs與普通干細(xì)胞的區(qū)別是:(1) CSCs無分化為成熟細(xì)胞的能力,這與有正常分化程序的干細(xì)胞有著本質(zhì)的區(qū)別。(2)普通干細(xì)胞經(jīng)過某些信號(hào)通路的改變可轉(zhuǎn)化為CSCs,目前較為認(rèn)可的信號(hào)通路為Wnt通路、Hedgehog通路、Notch通路、TGF-β通路[5-7]等。
CSCs與普通腫瘤細(xì)胞區(qū)分的標(biāo)志是其細(xì)胞表面具有特殊標(biāo)記物,這些標(biāo)記物的存在與其增殖能力密切相關(guān),CSCs在腫瘤細(xì)胞中所占比例不到5%[8]。CSCs的致瘤可能性是普通腫瘤細(xì)胞的100倍。CSCs的侵襲性極強(qiáng),極少量的CSCs從腫瘤原發(fā)灶部位脫離,侵襲血管或淋巴管,最后到達(dá)其他組織器官形成轉(zhuǎn)移灶。普通腫瘤細(xì)胞則不具備這一特性[9]。
腫瘤干細(xì)胞的分離是利用其細(xì)胞表面標(biāo)志物,使用流式分選法或磁珠分選法,分離和鑒定CSCs。Li[10]等在研究胰腺癌時(shí),在同一只裸鼠上腹部對(duì)稱部位分別皮下注射500個(gè)CD44-CD24-ESA-細(xì)胞和500個(gè)CD44+CD24+ESA+細(xì)胞,發(fā)現(xiàn)CD44+CD24+ ESA+細(xì)胞處理組正常成瘤,CD44-CD24-ESA-細(xì)胞處理組種瘤后20周未成瘤,表明CD44+CD24+ ESA+細(xì)胞的成瘤能力明顯強(qiáng)于CD44-CD24-ESA-細(xì)胞。認(rèn)為CD44CD24ESA分子是胰腺癌干細(xì)胞的標(biāo)志。CD44是一種常見的CSCs表面標(biāo)志物,CD44與胞外基質(zhì)中的透明質(zhì)酸相結(jié)合,活化酪氨酸蛋白激酶受體如EGFR(表皮生長因子受體)和ERBB 2(人類表皮生長因子受體II),通過MAPK和P13/AKT信號(hào)通路增強(qiáng)細(xì)胞的增殖能力[11]。CD44可以促進(jìn)腫瘤細(xì)胞通過血行轉(zhuǎn)移的方式進(jìn)行腫瘤轉(zhuǎn)移[12]。Olempska[11]等研究5種胰腺癌細(xì)胞系時(shí)發(fā)現(xiàn),CD133+ABCG+胰腺癌細(xì)胞是胰腺癌干細(xì)胞,其致瘤率和侵襲能力顯著高于CD133-ABCG-胰腺癌細(xì)胞,CD133可保持胞質(zhì)膜拓?fù)浣Y(jié)構(gòu)的穩(wěn)定性,穩(wěn)定胞質(zhì)膜的磷脂結(jié)構(gòu)[13],CD133使得CSCs細(xì)胞在增殖分化過程中保持其干細(xì)胞的穩(wěn)定性。后續(xù)的研究發(fā)現(xiàn)CD44CD24是乳腺癌CSCs標(biāo)記物[14],CD133+人腦膠質(zhì)瘤細(xì)胞具有干細(xì)胞特性[15],CD44/integrin21high/CD133是前列腺癌CSCs的標(biāo)記物[16]。目前CSCs表面的特異性標(biāo)記物常作為活體成像中靶向性示蹤劑與CSCs特異性結(jié)合的靶點(diǎn)。
CSCs活體示蹤是在活體動(dòng)物體內(nèi)CSCs上標(biāo)記示蹤劑(如微泡、熒光素、量子點(diǎn)、核素等),應(yīng)用特定的影像學(xué)方法(如超聲、小動(dòng)物活體成像、PET-CT等)對(duì)CSCs進(jìn)行示蹤,從而觀察CSCs在體內(nèi)的生物學(xué)行為。目前常用的活體示蹤方法包括超聲成像、MRI成像、光學(xué)成像、核素成像和多模態(tài)成像。
超聲分子影像學(xué)成像采用靶向性造影劑對(duì)血管或細(xì)胞進(jìn)行超聲顯像。隨著超聲造影劑的研發(fā),超聲的分子影像學(xué)水平研究逐漸由血管內(nèi)成像拓展到血管外成像。Fan[17]等采用生物素-親和素法合成了靶向前列腺癌CSCs細(xì)胞表面特異性抗原PSMA的脂質(zhì)體,粒徑為(487.60±33.55) nm,對(duì)LNCaP前列腺癌細(xì)胞(PSMA的表達(dá)水平高)、C4-2前列腺癌細(xì)胞(PSMA的表達(dá)水平低)、MKN45胃癌細(xì)胞(不表達(dá)PSMA)的皮下移植瘤進(jìn)行超聲成像,評(píng)價(jià)該脂質(zhì)體對(duì)于細(xì)胞膜上PSMA的靶向性。LNCaP組注射脂質(zhì)體后超聲信號(hào)強(qiáng)度顯著強(qiáng)于空白對(duì)照組。C4-2組注射脂質(zhì)體后超聲信號(hào)強(qiáng)度稍強(qiáng)于空白對(duì)照組。MKN45組注射脂質(zhì)體和空白對(duì)照組圖像無顯著性差異。LNCaP組注射脂質(zhì)體后峰值時(shí)刻超聲信號(hào)強(qiáng)度明顯高于C4-2組和MKN45組。LNCaP組脂質(zhì)體超聲顯像的始增時(shí)間、達(dá)峰時(shí)間、峰值強(qiáng)度與其他兩組有顯著性差異,增強(qiáng)時(shí)間沒有顯著性差異。靶向性脂質(zhì)體較早對(duì)腫瘤實(shí)現(xiàn)超聲增強(qiáng)作用,超聲強(qiáng)度較早達(dá)到峰值,超聲信號(hào)顯著增強(qiáng)。靶向性脂質(zhì)體對(duì)CSCs的超聲成像具有特異性作用。超聲的優(yōu)點(diǎn)是實(shí)時(shí)成像,可反映組織、器官的血流情況,并且超聲沒有電離輻射,可反復(fù)進(jìn)行超聲檢查。其缺點(diǎn)是對(duì)腫瘤或臟器成像,成像范圍小,可觀察范圍小。
MRI的分子影像學(xué)研究采用靶向性的磁珠與CSCs特異性標(biāo)志物結(jié)合,實(shí)現(xiàn)體內(nèi)的主動(dòng)靶向作用,進(jìn)行腫瘤的活體示蹤[18-20]。CD44是乳腺癌CSCs細(xì)胞表面的特異性標(biāo)記物,在腫瘤的增殖、侵犯、血管生成方面發(fā)揮重要作用。CD44是細(xì)胞表面最重要的透明質(zhì)酸(Hyaluronic Acid,HA)受體,是與HA結(jié)合的主要部位。Lim[21]等合成了HA修飾含有鐵和錳的磁性納米晶體(Hyaluronan-Modified Magnetic Nanoclusters,HA-MNCs),研究乳腺癌時(shí)發(fā)現(xiàn)HA-MNCs注射1小時(shí)后,注射前后的T2 加權(quán)相信號(hào)差達(dá)到最大。在另一組提前4小時(shí)腹腔注射CD44抗體(Anti-CD44 Ab+HA-MNC組),相同時(shí)間T2加權(quán)相信號(hào)差小于HA-MNCs組。采用電感耦合等離子體原子發(fā)射光譜法(Inductively Coupled Plasma,ICP-AES),測量腫瘤、肝腦、脾、腎中的鐵和錳含量,發(fā)現(xiàn)HA-MNCs組HA-MNCs主要聚集在腫瘤中,而Anti-CD44 Ab+HA-MNC組HA-MNCs主要聚集在肝臟中。HA-MNCs組腫瘤普魯士藍(lán)染色表明鐵在腫瘤部位的大量積聚,材料在腫瘤內(nèi)聚集。該實(shí)驗(yàn)表明HA-MNCs可主動(dòng)靶向CD44陽性的乳腺癌CSCs。
在前列腺癌MRI研究方面,CSCs細(xì)胞特異性抗原PSMA與超小順磁氧化鐵(Ultrasmall Superparamagnetic Iron Oxide,USPIO)的結(jié)合物,作為前列腺癌特異性的納米顯像劑,對(duì)CSCs進(jìn)行活體示蹤[22]。MRI是一種無創(chuàng)的影像學(xué)檢查方法,可以了解活體組織的解剖結(jié)構(gòu)、功能、代謝情況等,無電離輻射。MRI成像以超小順磁性氧化鐵(USPIO)和超順磁性氧化鐵(SPIO)為造影劑時(shí),凋亡或裂解細(xì)胞釋放出的鐵被周圍的巨噬細(xì)胞吞噬,產(chǎn)生的信號(hào)與CSCs產(chǎn)生的信號(hào)難以區(qū)分,可以通過更換造影劑避免MRI偽像。
3.3.1 生物發(fā)光成像
生物發(fā)光成像是利用熒光素酶催化熒光素反應(yīng)后產(chǎn)生特定的光子,采用高靈敏度相機(jī)采集光子信號(hào)進(jìn)行成像。目前常用的熒光素酶包括細(xì)菌熒光素酶(Bacterial Luciferase,BL)[23]和螢火蟲熒光素酶(Firefly Luciferase,F(xiàn)L)[24]。Contaq[25]等人研究HIV病毒時(shí)發(fā)現(xiàn)轉(zhuǎn)基因小鼠體內(nèi)的熒光素酶基因在熒光素存在的條件下,產(chǎn)生生物發(fā)光現(xiàn)象。Rehemtulla[26]等人研究神經(jīng)膠質(zhì)肉瘤時(shí)發(fā)現(xiàn),熒光素所發(fā)出的光子量與腫瘤體積有關(guān),通過活體觀察轉(zhuǎn)染了熒光素酶基因的神經(jīng)膠質(zhì)肉瘤細(xì)胞所發(fā)出光學(xué)信號(hào)的強(qiáng)弱,可對(duì)藥物作用后的腫瘤生長情況進(jìn)行評(píng)估。Liu[27]等人研究乳腺癌轉(zhuǎn)移機(jī)制時(shí),在CD44+乳腺癌CSCs上標(biāo)記熒光素酶,通過小動(dòng)物活體成像實(shí)時(shí)監(jiān)測了CSCs由原位灶轉(zhuǎn)移至肺和淋巴結(jié)的動(dòng)態(tài)過程。該實(shí)驗(yàn)表明CSCs主動(dòng)靶向性成像有利于CSCs的定位和監(jiān)測腫瘤的轉(zhuǎn)移過程。生物發(fā)光成像,可在不處死動(dòng)物的情況下,對(duì)同一動(dòng)物體進(jìn)行連續(xù)觀察,減少了動(dòng)物個(gè)體差異的影響,不需要外源性激發(fā)光即可成像。熒光素酶活體示蹤的優(yōu)點(diǎn)是實(shí)時(shí)、非放射性、應(yīng)用范圍廣,缺點(diǎn)是必須要有外源性熒光素的存在。熒光素酶催化熒光素的反應(yīng)必須要在有氧和ATP存在的條件下進(jìn)行,在活細(xì)胞中進(jìn)行。
3.3.2 熒光成像
熒光活體成像技術(shù)是將標(biāo)記了熒光染料的CSCs注射入動(dòng)物體內(nèi),或?qū)邢蛐詿晒獠牧献⑷霂Я鰟?dòng)物體內(nèi),激發(fā)一定波長的熒光探針,采用高靈敏度的攝像機(jī)對(duì)發(fā)射的質(zhì)子進(jìn)行捕獲,從而成像。帶有活性基團(tuán)的熒光染料通過活性基團(tuán)與生物大分子上的羥基、羧基或巰基結(jié)合,形成高分子材料。Gener[28]等人在研究乳腺癌時(shí),構(gòu)建了FITC標(biāo)記的納米粒,該納米粒上載有CD44抗體(針對(duì)乳腺癌CSCs)和紫杉醇,即PLGA-co-PEG-CD44-FITC納米粒,共聚焦顯微鏡發(fā)現(xiàn)納米粒位于溶酶體內(nèi),表明受體可介導(dǎo)細(xì)胞對(duì)材料的胞吞作用,通過觀察細(xì)胞的凋亡發(fā)現(xiàn)紫杉醇在CSCs內(nèi)的定位釋放可對(duì)腫瘤起到治療作用。該研究表明攜帶藥物的靶向性抗體可對(duì)CSCs進(jìn)行定位,對(duì)腫瘤進(jìn)行治療。Beck[29]等人構(gòu)建了熒光素與NESTIN單克隆抗體結(jié)合的聚合物(NESTIN蛋白是膠質(zhì)瘤CSCs細(xì)胞表面特異性標(biāo)志物)。聚合物注入帶膠質(zhì)瘤裸鼠體內(nèi)4天后,觀察到裸鼠皮下移植瘤部位的熒光強(qiáng)度顯著高于裸鼠身體其他部位,將解剖得到的皮下移植瘤、原位腦腫瘤和主要臟器進(jìn)行熒光成像,觀察到皮下移植瘤和原位腦腫瘤的熒光強(qiáng)度顯著高于各臟器。主動(dòng)靶向腦膠質(zhì)瘤CSCs的聚合物在定位CSCs方面發(fā)揮作用,為后續(xù)的治療奠定了基礎(chǔ)。Tsurumi[30]等人研究腦膠質(zhì)瘤時(shí),合成了CyDye Cy5.5標(biāo)記的CD133抗體,抗體注入帶瘤鼠體內(nèi)7天后,靶向組腫瘤部位熒光強(qiáng)度是對(duì)照組的3倍。注射入帶瘤鼠體內(nèi)九天后,將腫瘤取下進(jìn)行體外成像,發(fā)現(xiàn)靶向組腫瘤的熒光強(qiáng)度強(qiáng)于對(duì)照組。該研究表明靶向材料可對(duì)腫瘤血管外的CSCs進(jìn)行顯像。熒光成像的優(yōu)點(diǎn)是可應(yīng)用含活性基團(tuán)的熒光探針對(duì)熒光材料進(jìn)行成像,對(duì)材料在體內(nèi)的代謝過程進(jìn)行實(shí)時(shí)檢測。熒光成像的缺點(diǎn)是受動(dòng)物皮膚、臟器等自發(fā)熒光的干擾。
PET-CT成像技術(shù)是將靶向性抗體與放射性核素結(jié)合,采用微型PET-CT成像系統(tǒng)對(duì)CSCs進(jìn)行顯像[31]。2B3抗體的受體是前列腺癌CSCs細(xì)胞表面的PSCA分子,Leyton[32]等人設(shè)計(jì)了碘124標(biāo)記的2B3抗體作為PET-CT成像的顯像劑,對(duì)體內(nèi)前列腺癌中PSCA+細(xì)胞進(jìn)行了長達(dá)21小時(shí)的示蹤。Yang[33]等人在研究腦膠質(zhì)瘤時(shí),構(gòu)建了64Cu標(biāo)記的 YY146核素,可主動(dòng)靶向CD146+膠質(zhì)瘤CSCs,PET-CT上核素在原位腫瘤部位異常濃聚,顯像2 mm以下的腫瘤。免疫組化表明核素的攝取量與CSCs表面的CD146表達(dá)量呈正相關(guān)。在進(jìn)一步的研究中,作者發(fā)現(xiàn)該靶向性核素也可主動(dòng)靶向其他腫瘤(人胃癌、卵巢癌、肝癌、肺癌)CSCs的CD146蛋白。靶向性核素的應(yīng)用提高了PET-CT的靈敏度,在顯像微小腫瘤方面具有優(yōu)勢。PET-CT成像的缺點(diǎn)是部分放射性核素半衰期短,無法進(jìn)行長時(shí)間動(dòng)態(tài)觀察。
光聲成像是用光輻照某種媒質(zhì)時(shí),光能通過分子振動(dòng)和熱彈性膨脹轉(zhuǎn)化為熱能,引起媒質(zhì)內(nèi)結(jié)構(gòu)和體積變化,形成波源,被組織表面的超聲傳感器探測到,轉(zhuǎn)換為一系列時(shí)間序列的電信號(hào)[34]。Liang[35]等人采用特異性靶向CD44+胃癌CSCs的金納米探針對(duì)胃癌CSCs進(jìn)行研究,發(fā)現(xiàn)靶向組注射4小時(shí)后,裸鼠胃癌皮下移植瘤的光聲信號(hào)強(qiáng)度是注射前的4.7倍。靶向組注射4小時(shí)后,裸鼠胃癌皮下移植瘤的光聲信號(hào)強(qiáng)度是非靶向組的2.5倍。等離子體質(zhì)譜分析發(fā)現(xiàn)靶向組腫瘤注射4小時(shí)后,腫瘤中的金含量明顯高于非靶向組。實(shí)驗(yàn)表明該材料具有較高的光聲轉(zhuǎn)化效率,對(duì)CSCs具有主動(dòng)靶向性。光聲成像集合了光學(xué)成像對(duì)比度高和超聲成像穿透深度深的優(yōu)點(diǎn)。光聲成像的缺點(diǎn)是受到光的穿透深度限制,對(duì)于深部組織的顯像具有局限性。
以上各種成像方法均各有利弊,多模態(tài)成像可綜合各種成像方法的優(yōu)點(diǎn)。多模態(tài)成像是對(duì)同一研究對(duì)象采取不同的影像學(xué)方法,結(jié)合他們的優(yōu)勢,將設(shè)備與數(shù)據(jù)分析軟件相連接,將圖像融合后獲得更多的信息,提高腫瘤診斷的靈敏度和特異度。目前較為成熟的多模態(tài)成像方法包括MRI 與熒光成像結(jié)合,PET與熒光成像結(jié)合,PET和生物發(fā)光成像結(jié)合,以及三模態(tài)成像系統(tǒng):(PET與熒光成像、生物發(fā)光成像共結(jié)合)。Zhou[36]等人在研究肺癌時(shí),采用層層自組裝方法合成了一種含有Cy5.5和Fe3O4的納米復(fù)合材料,可主動(dòng)靶向HCBP-1陽性肺癌干細(xì)胞,對(duì)腫瘤既可進(jìn)行熒光成像,也可進(jìn)行MRI成像。該納米復(fù)合材料粒徑為(138.4±2.99) nm,材料注射入裸鼠體內(nèi)一小時(shí)后發(fā)現(xiàn)靶向組腫瘤部位熒光逐漸增強(qiáng),7小時(shí)熒光達(dá)到最強(qiáng)。非靶向組在觀察的7小時(shí)內(nèi)腫瘤部位未見熒光。在材料注射7小時(shí)后對(duì)裸鼠進(jìn)行MRI 成像,發(fā)現(xiàn)靶向組腫瘤部位T2加權(quán)相出現(xiàn)顯著則高信號(hào),非靶向組和PBS組實(shí)驗(yàn)全程未見高信號(hào)。該實(shí)驗(yàn)表明將熒光成像和MRI成像相結(jié)合的多模態(tài)成像方法可有效提高CSCs的發(fā)現(xiàn)率,提高腫瘤的診斷率。多模態(tài)成像既可監(jiān)測腫瘤大小等器質(zhì)性改變,也可發(fā)現(xiàn)腫瘤的轉(zhuǎn)移等功能性變化。
攜帶藥物的示蹤劑可對(duì)CSCs進(jìn)行精確定位,提高腫瘤治療效果,改善患者預(yù)后,這種示蹤劑是目前的研究難點(diǎn),同時(shí)也是研究熱點(diǎn)。相信隨著CSCs活體示蹤分子影像學(xué)研究的開展,可以為腫瘤的精確定位提供更好的方法,促進(jìn)腫瘤診療一體化平臺(tái)的發(fā)展。
[1] Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J]. Nat Med, 1997, 3(7): 730-737.
[2] Shipitsin M, Polyak K. The cancer stem cell hypothesis in search of definition, markers and relevanve[J]. Lab Invest, 2008, 88(8): 459-263.
[3] Crowe D L, Parsa B, Sinha U K. Relationships between stem cells and cancer stem cells[J]. Histol Histopathol, 2004, 19(2): 505-509.
[4] Wicha M S, Liu S, Dontu G. Cancer stem cells: an old idea--a paradigm shift[J]. Cancer Res, 2006, 66(4): 1883-1890.
[5] Reya T, Clevers H. Wnt signalling in stem cells and cancer[J]. Nature, 2005, 434(7035): 843-850.
[6] Matsui W H. Cancer stem cell signaling pathways[J]. Medicine (Baltimore), 2016, 95(1 Suppl 1): S8-S19.
[7] Farnie G, Clarke R B. Mammary stem cells and breast cancer--role of Notch signalling[J]. Stem Cell Rev, 2007, 3(2): 169-175.
[8] Bagheri V, Razavi M S, Momtazi A A, et al. Isolation, identification, and characterization of cancer stem cells: a review[J]. J. Cell Physiol, 2016.
[9] Visvader J E, Lindeman G J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions[J]. Nat Rev Cancer, 2008, 8(10): 755-768.
[10] Li C, Lee C J, Simeone D M. Identification of human pancreatic cancer stem cells[J]. Methods in Molecular Biology, 2009, 568: 161-173.
[11] Ghatak S, Misra S, Toole B P. Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells[J]. J Biol Chem, 2005, 280(10): 8875-8883.
[12] Lang D, Mascarenhas J B, Shea C R. Melanocytes, melanocyte stem cells, and melanoma stem cells[J]. Clin Dermatol, 2013, 31(2): 166-178.
[13] Mizrak D, Brittan M, Alison M. CD133: molecule of the moment[J]. J Pathol, 2008, 214(1): 3-9.
[14] Alhajj M, Wicha M S, Benitohernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7): 3983-3988.
[15] Singh S K, Clarke I D, Terasaki M, et al. Identification of a cancer stem cell in human brain tumor[J]. Cancer research, 2003, 63(18): 5821-5828.
[16] Collins A T, Berry P A, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer research, 2005, 65(23): 10946-10951.
[17] Fan X, Wang L, Guo Y. Ultrasonic nanobubbles carrying anti-psma nanobody: construction and application in prostate cancer-targeted imaging[J]. PLoS One, 2015, 10(6): e0127419.
[18] Zhu H, Zhang L, Liu Y, et al. Aptamer-PEG-modified Fe3O4@ Mn as a novel T1- and T2- dual-model MRI contrast agent targeting hypoxia-induced cancer stem cells[J]. Sci Rep, 2016, 6: 39245
[19] Addington C P, Cusick A, Shankar R V, et al. Siloxane nanoprobes for labeling and dual modality functional imaging of neural stem cells[J]. Ann Biomed Eng, 2016, 44(3): 816-827.
[20] Ray P. Multimodality molecular imaging of disease progression in living subjects[J]. J Biosci, 2011, 36(3): 499-504.
[21] Lim E K, Kim H O, Jang E, et al. Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging[J]. Biomaterials, 2011, 32(32): 7941-7950.
[22] Wang A Z, Bagalkot V, Vasilliou C C, et al. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy[J]. ChemMedChem, 2008, 3(9): 1311-1315.
[23] Mc E W, Green A A. Enzymatic properties of bacterial luciferase [J]. Arch Biochem Biophys, 1955, 56(1): 240-255.
[24] Green A A, McElroy W D. Crystalline firefly luciferase[J]. Biochim Biophys Acta, 1956, 20(1): 170-176.
[25] Contag C H, Ehrnst A, Duda J, et al. Mother-to-infant transmission of human immunodeficiency virus type 1 involving five envelope sequence subtypes[J]. J Virol 1997, 71(2): 1292-1300.
[26] Rehemtulla A, Stegman L D, Cardozo S J, et al. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging[J]. Neoplasia, 2000, 2(6): 491-495.
[27] Liu H, Patel M R, Prescher J A, et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models[J]. Proc Natl Acad Sci U S A, 2010, 107(42): 18115-18120.
[28] Gener P, Gouveia L P, Sabat G R, et al. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells[J]. Nanomedicine, 2015, 11(8): 1883-1892.
[29] Beck S, Jin X, Yin J, et al. Identification of a peptide that interacts with Nestin protein expressed in brain cancer stem cells[J]. Biomaterials, 2011, 32(33): 8518-8528.
[30] Tsurumi C, Esser N, Firat E, et al. Non-invasive in vivo imaging of tumor-associated CD133/prominin[J]. PLoS One, 2010, 5(12): e15605.
[31] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotechnol, 2004, 22(8): 969-976.
[32] Leyton J V, Olafsen T, Lepin E J, et al. Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors[J]. Clin Cancer Res, 2008, 14(22): 7488-7496.
[33] Yang Y, Hernandez R, Rao J, et al. Targeting CD146 with a 64Cu-labeled antibody enables in vivo immunoPET imaging of high-grade gliomas[J]. Proc Natl Acad Sci U S A, 2015, 112(47): E6525-6534.
[34] van den Berg P J, Daoudi K, Steenbergen W. Review of photoacoustic flow imaging: its current state and its promises[J]. Photoacoustics, 2015, 3(3): 89-99.
[35] Liang S, Li C, Zhang C, et al. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells[J]. Theranostics, 2015, 5(9): 970-984.
[36] Zhou X, Chen L, Wang A, et al. Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research[J]. Colloids Surf B Biointerfaces, 2015, 134: 431-439.
Research progress in the molecular imaging tracking of cancer stem cells in vivo
WANG Rui, JIANG Li-xin
(Department of Ultrasound, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China)
Cancer stem cells (CSCs) have distinct characteristics including cell renewal capability, differentiation into multiple lineages, endless proliferation potential, and have intimate relationship with tumor initiation, proliferation, metastasis and drug resistance. In vivo, tracking of CSCs is of great significance in monitoring the biological behavior of CSCs. The study about CSCs is beneficial to clinical diagnosis and therapy. The current common in vivo tracking of CSCs molecular imaging include: ultrasonic imaging, MRI imaging, optical imaging, PET - CT imaging, photoacoustic imaging, multimodal imaging. These imaging methods is of great significance for CSCs research is helpful to clinical diagnosis and treatment, is conducive to the development of diagnosis and integration.This review will briefly discuss the recent findings on molecular imaging of CSCs behavior as reported in vivo imaging studies.
cancer stem cells; tracking in vivo; ultrasonography; molecular imaging
R445.1
A
1000-3630(2017)-03-0257-05
10.16300/j.cnki.1000-3630.2017.03.011
2017-02-12;
2017-05-22
國家自然科學(xué)基金(81371574)、上海市人才發(fā)展基金(201452)、上海交通大學(xué)醫(yī)工交叉基金(YG2014MS53)資助。
王芮(1991-), 女, 安徽蚌埠人, 碩士研究生, 研究方向胰腺癌干細(xì)胞的活體示蹤。
姜立新, E-mail: jinger_28@sina.com