穆曉輝 張軍偉 龍 麗 雷 丹
(三峽大學(xué) 水利與環(huán)境學(xué)院, 湖北 宜昌 443002)
薄邊界層法與靜態(tài)通量箱法估算水-氣界面CH4通量對(duì)比
穆曉輝 張軍偉 龍 麗 雷 丹
(三峽大學(xué) 水利與環(huán)境學(xué)院, 湖北 宜昌 443002)
采用薄邊界層法與在線測(cè)量-靜態(tài)通量箱法對(duì)三峽庫(kù)區(qū)水-氣界面溫室氣體甲烷(CH4)通量進(jìn)行比較,得到兩種估算方法差異性.結(jié)果顯示:靜態(tài)通量箱法結(jié)果多數(shù)點(diǎn)高于薄邊界層法,一般為薄邊界層法的1.2~12倍;極少數(shù)點(diǎn)薄邊界層法高于靜態(tài)通量箱法.
薄邊界層法; 靜態(tài)通量箱法; 溫室氣體通量
工業(yè)革命后,大氣中的溫室氣體,包括二氧化碳(CO2)、甲烷(CH4)、氧化亞氮(N2O)等濃度的上升,造成溫室效應(yīng),使人類面臨全球性的環(huán)境問(wèn)題[1].其中的CH4為CO2溫室效應(yīng)的20多倍,為第二大貢獻(xiàn)的溫室氣體[2],工業(yè)化以前,大氣中的質(zhì)量分?jǐn)?shù)只有0.72×10-6,到2011年已接近1.803×10-6,比工業(yè)革命前增長(zhǎng)了150%[3].在全球變暖的背景下,CH4的排放通量大小已不可忽視.
大壩的興建,土地利用方式的改變,水庫(kù)水體溫室氣體的源匯問(wèn)題及通量大小成為了研究的熱點(diǎn)之一[4].關(guān)于對(duì)水-氣界面溫室氣體通量的估算,采用了不同的技術(shù)和方法測(cè)量水-氣界面溫室氣體通量[5],主要包括了靜態(tài)箱法(STAT)、薄邊界層法(TBL)、渦度相關(guān)法等[6-7].方法的不同又會(huì)導(dǎo)致測(cè)量結(jié)果的偏高或偏低,影響溫室氣體通量的正確估算[8-9].
在這幾種方法中.靜態(tài)通量箱法操作簡(jiǎn)單,利用一個(gè)密閉的的箱體,箱體底部中通,應(yīng)用到水體或土壤中,收集以擴(kuò)散方式排放的溫室氣體,通過(guò)箱體內(nèi)氣體濃度隨時(shí)間的變化來(lái)計(jì)算氣體通量[10].靜態(tài)通量箱法可以同時(shí)地分析多種溫室氣體的排放通量,應(yīng)用廣泛.但靜態(tài)通量箱法對(duì)時(shí)間的要求比較高,每個(gè)點(diǎn)需要花費(fèi)大量的時(shí)間去采集氣體,不便于進(jìn)行大面積的溫室氣體監(jiān)測(cè).另外,通量箱法也受到許多因素的影響,例如箱體擾動(dòng)、箱體內(nèi)外溫差、箱內(nèi)氣壓變化、箱體大小以及箱內(nèi)氣體混合程度等[11-12].
薄邊界層法是基于氣體水-氣界面擴(kuò)散過(guò)程的模型方法,可以快速地得到結(jié)果[13],其中氣體交換系數(shù)k是薄邊界層法計(jì)算通量的關(guān)鍵.研究表明,在較大風(fēng)速下,湖泊、水庫(kù)、海洋中,表層水體k值可以表示為風(fēng)速的函數(shù)[14-16].在弱風(fēng)條件下,Cole等[17]利用六氟化硫(SF6)在不同水體進(jìn)行了弱風(fēng)條件下氣體交換系數(shù)k計(jì)算方法的研究,通過(guò)向水體中添加SF6,并跟蹤其擴(kuò)散過(guò)程,計(jì)算弱風(fēng)條件下的氣體交換系數(shù)k,進(jìn)而估算水-氣界面的氣體通量.但薄邊界層法屬于模型算法,結(jié)果存在許多不確定性,受風(fēng)速、降雨等的影響較大[17-18].
渦度相關(guān)法是目前直接測(cè)定大氣與群落間碳交換通量的主要方法,為微氣象學(xué)中的一種[19].與其他方法相比,可以實(shí)現(xiàn)對(duì)碳通量的快速響應(yīng)與觀測(cè),實(shí)現(xiàn)對(duì)大面積區(qū)域和全球的溫室氣體通量估算,但需要滿足特定的環(huán)境條件,且成本偏高,技術(shù)要求高[20-21].
在各種方法中,因存在原理的不同使結(jié)果存在著極大的差異性.三峽大壩興建后,其水庫(kù)水體溫室氣體排放近年來(lái)備受關(guān)注.本研究以三峽庫(kù)區(qū)干流和支流香溪河為對(duì)象,利用薄邊界層法和通量箱法兩種方法,對(duì)水-氣界面CH4交換通量進(jìn)行估算比較.
1.1 薄邊界層(TBL)法
TBL方法計(jì)算水-氣界面氣體通量(F)的公式[22]為:
(1)
其中F為水-氣界面擴(kuò)散通量(mmol·m-2·h-1),k為氣體交換系數(shù)(cm·h-1),Cw(μmol/L)為該氣體在表層水體中的濃度,Ceq(μmol/L)為該氣體相對(duì)于上方空氣而言平衡時(shí)表層水體中的濃度.Cw和Ceq可直接或間接測(cè)定.
表層水體溶解氣體濃度Cw采用下式計(jì)算[23]:
(2)
式中,Cgas(μmol/L)為頂空平衡法-氣相色譜儀監(jiān)測(cè)得到的結(jié)果,即平衡后氣袋內(nèi)氣相部分中的氣體濃度,β為Bunsen系數(shù)(L/L/atm),R為普適氣體常數(shù)(0.082,L·atm/mol/K),T為室溫(K);n為氣體的摩爾體積(L/mol),Vgas和Vwater分別為注入氮?dú)獾捏w積和氣袋內(nèi)水樣體積.
Cgas的測(cè)定采用頂空-氣相色譜法,實(shí)驗(yàn)現(xiàn)場(chǎng)采集表層水100 mL注入真空氣袋,同時(shí)注入3 mL氯化汞快速殺死水中微生物,以保存水樣.水樣采集完后送回實(shí)驗(yàn)室,每袋注入200 ml 99.99%的高純氮?dú)?,將樣品袋置于振蕩器上振?0 min以上,靜置24 h以上,使樣品袋內(nèi)的氣-液達(dá)到兩相平衡,然后抽取氣體約50 ml注入氣相色譜儀(福立GC9790II,中國(guó))測(cè)定CH4濃度.實(shí)驗(yàn)期間使用便攜式氣象站(YGY-QXY,中國(guó))現(xiàn)場(chǎng)測(cè)定風(fēng)速.
Ceq的計(jì)算根據(jù)亨利定律計(jì)算[24]:
(3)
式中,Cg為上覆大氣中的氣體濃度,R為普適氣體常數(shù),T為溫度,kH為亨利常數(shù),kH?為T=298.15K時(shí)的亨利常數(shù),ΔsolnH/R=-d(lnkH)/d(1/T)和T?=298.15K.
氣體傳輸系數(shù)根據(jù)Cole等[25]1998年根據(jù)示蹤氣體SF6得到的,為了便于不同氣體間和不同水溫條件下的對(duì)比,按Schmidt數(shù)為600對(duì)氣體傳送輸運(yùn)速率進(jìn)行標(biāo)準(zhǔn)化的得到k600(cm·h-1):
(4)
U10為水面上方10 m風(fēng)速(m·s-1).通?,F(xiàn)場(chǎng)監(jiān)測(cè)所得的水體上方風(fēng)速Uz可用下式進(jìn)行換算[26]:
(5)
式中,z為測(cè)量風(fēng)速時(shí)的高度(m),Uz為z高度風(fēng)速大小(m·s-1),Cd10為10 m時(shí)的阻力系數(shù)(取1.3×10-3),κ為VonKarman常數(shù)(取0.41).
k值計(jì)算公式采用Wanninkhof等[15]建立的公式計(jì)算,當(dāng)風(fēng)速小于3.7 m/s時(shí),甲烷的傳輸系數(shù)公式為:
(6)
CH4施密特?cái)?shù)按下列計(jì)算公式[27].淡水鹽度忽略不計(jì),公式為:
(7)
1.2 靜態(tài)通量箱法
實(shí)驗(yàn)采用快速溫室氣體在線分析儀(DLT-100,美國(guó))連接通量箱,形成一個(gè)完整的回路,在線實(shí)時(shí)監(jiān)測(cè)箱內(nèi)氣體濃度變化,通量箱直徑30 cm,高50 cm,箱體頂部設(shè)有兩根6 mm聚乙烯管與儀器相連,箱頂安裝有兩個(gè)微型風(fēng)扇以便于使箱內(nèi)的空氣混合均勻.采樣前倒置5 min,使箱內(nèi)空氣混合均勻,每次監(jiān)測(cè)時(shí)間為15~20 min.
通量箱法用以下公式計(jì)算擴(kuò)散通量[28]:
(8)
式中,F(xiàn)為水氣界面擴(kuò)散通量(mg·m-2·h-1),Sslope為箱內(nèi)甲烷隨時(shí)間的變化率,F(xiàn)1為μL·L-1到μg·m-3的轉(zhuǎn)化系數(shù)(CH4為655.47 μg·m-3),F(xiàn)2為秒到小時(shí)的轉(zhuǎn)化系數(shù)(3 600),V為靜態(tài)箱漂浮在水面時(shí)箱內(nèi)氣體的體積(m3),Asurface為通量箱箱底的面積(m2),F(xiàn)3為μg到mg的轉(zhuǎn)化系數(shù)(1 000).
甲烷濃度隨時(shí)間變化(圖1),由于采樣點(diǎn)水深較深,甲烷在產(chǎn)生氣泡上升過(guò)程中被氧化,所觀測(cè)結(jié)果無(wú)明顯氣泡產(chǎn)生.
圖1 采樣點(diǎn)靜態(tài)箱內(nèi)甲烷濃度隨時(shí)間變化擬合結(jié)果
該研究選取位于三峽庫(kù)區(qū)的干流和支流香溪的6個(gè)監(jiān)測(cè)點(diǎn),包括茅坪、黃陵廟、南津關(guān)、香溪河口、香溪河萬(wàn)古寺、香溪河峽口.通量結(jié)果使用其中的33個(gè)數(shù)據(jù)進(jìn)行對(duì)比,以靜態(tài)箱法為橫坐標(biāo),薄邊界層法為縱坐標(biāo),其中可以看出通量箱法結(jié)果多數(shù)明顯高于薄邊界層法,甚至有的高出了許多數(shù)量級(jí),極少數(shù)點(diǎn)薄邊界層法高于通量箱法.靜態(tài)通量箱法與薄邊界層法具有顯著的正相關(guān)關(guān)系,利用SPSS進(jìn)行分析,Spearman相關(guān)系數(shù)為0.47(P<0.01).
圖2 薄邊界層法與通量箱法對(duì)比
國(guó)內(nèi),李建鴻等[29]利用靜態(tài)通量箱法和薄邊界層法對(duì)對(duì)不同地質(zhì)背景水庫(kù)區(qū)夏季水-氣界面溫室氣體CH4和CO2交換通量進(jìn)行比較研究中,得出靜態(tài)箱法平均是模型箱法的4.24~5.01倍;高潔等[30]利用靜態(tài)通量箱法和薄邊界層法測(cè)定內(nèi)陸水體CH4和N2O排放通量比較研究中,得出通量箱法與薄邊界層法測(cè)定的甲烷通量差異很大,靜態(tài)通量箱法是薄邊界層法0.57~7.69倍.國(guó)外,Duchemin等[31]將薄邊界層法與靜態(tài)箱法通量估算CH4結(jié)果進(jìn)行比較,得出通量箱法所測(cè)出通量值大多數(shù)明顯高于薄邊界層法.
采用通量箱法與薄邊界層法對(duì)三峽水庫(kù)水-氣界面CH4通量的連續(xù)監(jiān)測(cè)結(jié)果表明,通量箱估算結(jié)果普遍大于薄邊界層法,甚至高出許多.只有少數(shù)點(diǎn)薄邊界層法大于通量箱法.多數(shù)情況下,薄邊界層法結(jié)果可能會(huì)低估水-氣界面溫室氣體實(shí)際通量,而通量箱法則可能高于水-氣界面溫室氣體實(shí)際值.
薄邊界層法大多受風(fēng)速制約,而采樣地區(qū)風(fēng)速日變化較大,從估算結(jié)果準(zhǔn)確性來(lái)說(shuō),宜選用通量箱法進(jìn)行估算.
[1] Thomas J. Crowley. Causes of Climate Change Over the Past 1000 Years[J]. Science, 2000, 289(5477): 270-277.
[2] Henning Rodhe. A Comparison of the Contribution of Various Gases to the Greenhouse Effect[J]. Science, 1990, 248(4960): 1217-1219.
[3] Ipcc. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, , 2013.
[4] Rudd J W M, Hecky R E, Harris R, et al. Are Hydroelectric Reservoirs Significant Sources of Greenhouse Gases[J]. Ambio, 1993, 22(4): 246-248.
[5] Te Graedel, Ts Bates, Af Bouwman, et al. A Compilation of Inventories of Emissions to the Atmosphere[J]. Global Biogeochemical Cycles, 1993, 7(1): 1-26.
[6] Cory J. D. Matthews, Vincent L. St.Louis, Raymond H. Hesslein. Comparison of Three Techniques Used To Measure Diffusive Gas Exchange from Sheltered Aquatic Surfaces[J]. Environmental Science & Technology, 2003, 37(4): 772-780.
[7] 趙 炎, 曾源, 吳炳方,等. 水庫(kù)水氣界面溫室氣體通量監(jiān)測(cè)方法綜述[J]. 水科學(xué)進(jìn)展, 2011, 22(1):135-146.
[8] Anne M Thompson, Kathleen B Hogan, John S Hoffman. Methane reductions: Implications for Global Warming and Atmospheric Chemical Change[J]. Atmospheric Environment Part A General Topics, 1992, 26(14): 2665-2668.
[9] Kathleen B Hogan, John S Hoffman, Anne M Thompson. Methane on the Greenhouse Agenda[J]. 1991.
[10] Mari K. Pihlatie, Jesper Riis Christiansen, Hermanni Aaltonen, et al. Comparison of Static Chambers to Measure CH4Emissions from Soils[J]. Agricultural and Forest Meteorology, 2013,171: 124-136.
[11] Naishen Liang, Toshie Nakadai, Takashi Hirano, et al. In Situ Comparison of Four Approaches to Estimating Soil CO2Efflux in a Northern Larch (Larix kaempferi Sarg.) Forest[J]. Agricultural and Forest Meteorology, 2004, 123(1): 97-117.
[12] Jukka Pumpanen, Pasi Kolari, Hannu Ilvesniemi, et al. Comparison of Different Chamber Techniques for Measuring Soil CO2Efflux[J]. Agricultural and Forest Meteorology, 2004, 123(3): 159-176.
[13] Ps Liss, Pg Slater. Fluxes of Gases Across the Air-sea Interface[J]. Nature, 1974, 247: 181.
[14] Rik Wanninkhof. Relationship Between Wind Speed and Gas Exchange Over the Ocean[J]. J Geophys Res, 1992, 97(C5): 7373-7382.
[15] Rik Wanninkhof, Wade R Mcgillis. A Cubic Relationship Between Air-sea CO2Exchange and Wind Speed[J]. Geophysical Research Letters, 1999, 26(13): 1889-1892.
[16] Frédéric Guérin, Gwena?l Abril, Dominique Ser?a, et al. Gas Transfer Velocities of CO2and CH4in a Tropical Reservoir and Its River Downstream[J]. Journal of Marine Systems, 2007, 66(1-4): 161-172.
[17] J Cole, J Nina, F Caraco. Atmospheric Exchange of Carbon Dioxide in a Low-wind Oligotrophic Lake Measured by the Addition of SF~ 6[J]. Limnology and Oceanography, 1998, 43: 647-656.
[18] David T Ho, Larry F Bliven, Rik Wanninkhof, et al. The Effect of Rain on Air-water Gas Exchange[J]. Tellus B, 1997, 49(2): 149-158.
[19] Unesco/Iha Greenhouse Gas (Ghg) Research Project, editor. The Unesco/IHA Measurement Specification Guidance for Evaluating the GHG Status of Man-Made Freshwater Reservoirs[R]. 2009.
[20] David Fowler, Jh Duyzer, Mo Andreae, et al. Micrometeorological Techniques for the Measurement of Trace Gas Exchange[M]. John Wiley & Sons, 1989.
[21] 于貴瑞, 伏玉玲, 孫曉敏, 等. 中國(guó)陸地生態(tài)系統(tǒng)通量觀測(cè)研究網(wǎng)絡(luò) (ChinaFLUX) 的研究進(jìn)展及其發(fā)展思路[J]. 中國(guó)科學(xué): D 輯, 2006, 36(A01): 1-21.
[22] L. Varfalvy Tremblay, Roehm C., Garneau M., editors. Greenhouse Gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. New York: Springer, 2005.
[23] K. M. Johnson, J. E. Hughes, P. L. Donaghay, et al. Bottle-calibration Static Head Space Method for the Determination of Methane Dissolved in Seawater[J]. Analytical Chemistry, 1990, 62(21): 2408-2412.
[24] Rolf Sander. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. 1999.
[25] Jonathan J Cole, Nina F. Caraco. Atmospheric Exchange of Carbon Dioxide in a Low-wind Oligotrophic Lake Measured by the Addition of SF6[J]. Limnol Oceanogr, 1998, 43(4): 647-656.
[26] J. Amorocho, J. J. Devries. A New Evaluation of the Wind Stress Coefficient Over Water Surfaces[J]. Journal of Geophysical Research: Oceans, 1980, 85(C1): 433-442.
[27] Bernd J?hne, Karl Otto Münnich, Rainer B?singer, et al. On the Parameters Influencing air-water Gas Exchange[J]. Journal of Geophysical Research: Oceans, 1987, 92(C2): 1937-1949.
[28] M. Lambert, Jl. Fréchette. Analytical Techniques for Measuring Fluxes of CO2and CH4from Hydroelectric Reservoirs and Natural Water Bodies. In: Greenhouse Gas Emissions-Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments. Tremblay A. , Varfalvy Louis , Roehm Charlotte , et al., editors. Berlin: Springer, 2005:37-60.
[29] 李建鴻, 蒲俊兵, 孫平安,等.不同地質(zhì)背景水庫(kù)區(qū)夏季水-氣界面溫室氣體交換通量研究[J]. 環(huán)境科學(xué), 2015, 36(11):4032-4042.
[30] 高 潔, 鄭循華, 王 睿,等. 漂浮通量箱法和擴(kuò)散模型法測(cè)定內(nèi)陸水體CH4和N2O排放通量的初步比較研究[J]. 氣候與環(huán)境研究, 2014(3):290-302.
[31] E. Duchemin, M. Lucotte, R. Canuel. Comparison of Static Chamber and Thin Boundary Layer Equation Methods for Measuring Greenhouse Gas Emissions from Large Water Bodies[J]. Environmental Science & Technology, 1999, 33(2): 350-357.
[責(zé)任編輯 周文凱]
Comparison between Thin Boundary Layer Method and Static Chamber Method for Estimating Methane Fluxes on Water-air
Mu Xiaohui Zhang Junwei Long Li Lei Dan
(College of Hydraulic & Environmental Engineering, China Three Gorges Univ., Yichang 443002, China)
A comparison between the thin boundary layer method and online monitoring-static chamber method for estimating greenhouse gases(CH4) fluxes of methane across the water-air interface of the Three-Gorges Reservoir. The differences between the two methods are obtained. The results show that the static chamber method results in most points higher than ones by thin boundary layer method; generally, it is 1.2-12 times ones by thin boundary layer method.
thin boundary layer method; static chamber method; flux of greenhouse gases
2016-11-02
國(guó)家自然科學(xué)基金(41273110);湖北省自然科學(xué)基金(2014CFB672);湖北省教育廳科研計(jì)劃項(xiàng)目(Q20151209)
雷 丹(1980-),女,講師,博士,主要研究方向?yàn)樗こ蹋瓻-mail:88598687@qq.com
10.13393/j.cnki.issn.1672-948X.2017.02.009
TV12:P332
A
1672-948X(2017)02-0039-04