高天然,周可新
(1.南京信息工程大學(xué)應(yīng)用氣象學(xué)院,江蘇 南京 210044;2.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 210042)
鎘脅迫下水生動物的生物標(biāo)志物研究進(jìn)展
高天然1,2,周可新2①
(1.南京信息工程大學(xué)應(yīng)用氣象學(xué)院,江蘇 南京 210044;2.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 210042)
生物體特定組織或器官內(nèi)重金屬含量可反映環(huán)境重金屬污染水平,但不能夠提供分子水平的信息。生物標(biāo)志物的變化可用于評估重金屬暴露水平及對生物的潛在不利影響。生物標(biāo)志物包括暴露標(biāo)志物、效應(yīng)標(biāo)志物和易感性標(biāo)志物。綜述了水生動物抗氧化生物標(biāo)志物、遺傳毒性標(biāo)志物、乙酰膽堿酯酶、金屬硫蛋白和熱休克蛋白等幾種生物標(biāo)志物監(jiān)測水體鎘污染的原理和應(yīng)用現(xiàn)狀,可為研究鎘對水生動物的毒害機制提供參考,為防控重金屬污染、保護(hù)水生生態(tài)系統(tǒng)提供理論依據(jù)。
重金屬;鎘;水生動物;生物標(biāo)志物
鎘(cadmium,Cd)是水生動物生長和發(fā)育的非必需元素,對其具有潛在危害[1]。進(jìn)入生物體內(nèi)的鎘離子主要通過結(jié)合活性酶或膜蛋白位點與必需金屬競爭來發(fā)揮毒性[2-4]。自然環(huán)境中的鎘主要來源于地殼運動、巖石風(fēng)化、火山活動或富鎘土壤浸出等自然因素,以及采礦、冶煉、生產(chǎn)和使用鎳鎘電池等人為活動[5]。鎘離子易通過攝食、呼吸和吸附作用被生物利用,累積在水體沉積物中和底棲水生生物體內(nèi)造成急性和慢性中毒,影響生物生存,并通過食物鏈的富集作用可能引發(fā)人類肺、前列腺和腎臟慢性疾病[2,6-8]。20世紀(jì)末,鎘及其化合物被國際癌癥研究機構(gòu)(International Agency for Research on Cancer,IARC)列為確定的人類致癌物(carcinogenic to humans),屬于Ⅰ類致癌物[9-11]。
水生動物作為水生態(tài)系統(tǒng)的重要組成部分,可以對環(huán)境中的重金屬污染做出響應(yīng),金屬脅迫下水生動物的生理、生化相關(guān)指標(biāo)可作為評價重金屬污染響應(yīng)的生物標(biāo)志物[12]。生物標(biāo)志物通過指示分子、細(xì)胞和組織水平結(jié)構(gòu)或功能的改變,可表征生物體所處的污染狀態(tài)。
化學(xué)分析方法可定量檢測生物體內(nèi)重金屬含量,但無法反映重金屬對生物的毒性效應(yīng)。為了解這些生物效應(yīng),需從生物整體、組織、分子水平研究重金屬污染作用下水生動物體內(nèi)各項代謝指標(biāo)的變化。筆者總結(jié)了鎘污染條件下水生動物體內(nèi)生物標(biāo)志物的研究進(jìn)展,以期為研究鎘對水生動物的毒害作用提供參考,并從中篩選出合適的生物指標(biāo)來評價水體重金屬污染狀況。
1.1 生物標(biāo)志物定義
生物標(biāo)志物(biomarker)是從生物細(xì)胞和組織中檢測到的在生化、生理或遺傳分子等方面發(fā)生異常變化的信號指標(biāo),可用于判斷污染物是否作用于生物個體。生物標(biāo)志物的突出特征主要表現(xiàn)為可被定量測定,能夠直接以生物靶為反應(yīng)終點,具有敏感性和特異性,對污染物的早期預(yù)警性強,且測定值與真實劑量的生物化學(xué)機制及毒性效應(yīng)相關(guān)[13-15]。
1.2 生物標(biāo)志物分類
生物標(biāo)志物主要涉及暴露生物標(biāo)志物(exposure biomarkers)、毒性效應(yīng)生物標(biāo)志物(toxic effect biomarkers)和易感性生物標(biāo)志物(susceptibility biomarkers)3個方面[16-17]。暴露生物標(biāo)志物通過測定組織中特定污染物或其代謝物,或與內(nèi)源性物質(zhì)的反應(yīng)產(chǎn)物來監(jiān)測環(huán)境金屬污染物[18]。暴露生物標(biāo)志物又分為內(nèi)部劑量標(biāo)志物和生物學(xué)有效劑量標(biāo)志物。內(nèi)部劑量標(biāo)志物是在生物體內(nèi)測定的特定污染物及其代謝物含量;生物學(xué)有效劑量標(biāo)志物是指特定污染物及其代謝物與重要的細(xì)胞、組織等靶結(jié)構(gòu)相互作用形成的反應(yīng)產(chǎn)物含量[17]。毒性效應(yīng)生物標(biāo)志物是指生物體因暴露外源污染物引起的靶細(xì)胞或組織的生物學(xué)改變[19]。易感性生物標(biāo)志物是指由于遺傳多樣機體對毒物產(chǎn)生效應(yīng)的差異,如基因多態(tài)性就是一種易感性生物標(biāo)志物[15]。
2.1 暴露標(biāo)志物
環(huán)境中的鎘在進(jìn)入生物體內(nèi)各組織器官后才會產(chǎn)生毒害效果。水生動物吸收和積累金屬離子方式包括:鰓吸收溶解的金屬離子,經(jīng)循環(huán)系統(tǒng)轉(zhuǎn)移到其他器官;或攝取食物直接進(jìn)入消化系統(tǒng)。鎘通過以上2種途徑與必需營養(yǎng)物質(zhì)結(jié)合穿過細(xì)胞膜進(jìn)入水生動物體內(nèi)[20],并通過食物鏈富集對其他物種包括人類構(gòu)成較高的毒性風(fēng)險[21]。
水環(huán)境中鎘暴露劑量的增加及暴露時間的延長會引起鎘蓄積量的增加,蓄積量可作為環(huán)境中鎘污染的暴露標(biāo)志物,且蓄積情況隨著地理環(huán)境、生物種類的不同而有所差異。陳璐璐等[22]對太湖動物體內(nèi)鎘暴露水平進(jìn)行監(jiān)測,發(fā)現(xiàn)東部沿岸區(qū)鎘暴露濃度值最小,竺山湖區(qū)濃度值最大,全湖平均值低于竺山湖區(qū)和西部沿岸的暴露水平。水生動物的生活習(xí)性決定了鎘吸收富集的差異性,一般認(rèn)為,貝類和甲殼類大多棲息在水體底層,主要以底泥物質(zhì)為食,它們體內(nèi)鎘的平均含量明顯高于食物鏈更高營養(yǎng)級的魚類[23]。秦春艷等[24]對珠江口伶仃洋海域的部分水生動物體內(nèi)鎘含量進(jìn)行測定,發(fā)現(xiàn)各種生物對鎘的富集能力由大到小依次為雙殼類、頭足類、甲殼類和魚類,其中,七絲鱭的鎘含量最低,近江牡蠣的鎘積累能力最強。
同種生物不同組織對鎘的蓄積有一定影響。由于特殊的生存環(huán)境以及生理結(jié)構(gòu),大多數(shù)水生動物通過鰓吸收重金屬,普遍認(rèn)為鰓組織具有短暫的重金屬貯存功能,是累積重金屬最多的器官[25]。對淡水羅氏沼蝦不同組織內(nèi)低濃度鎘的生物蓄積量監(jiān)測發(fā)現(xiàn)組織內(nèi)鎘的蓄積水平由高到低依次為鰓、肝和腹部肌肉[26],鰓組織的血淋巴將鎘逐步轉(zhuǎn)移到肝臟中,鎘暴露下肝組織內(nèi)鎘可完全被金屬硫蛋白結(jié)合并進(jìn)行解毒,而鰓不能,致使鰓組織中鎘含量最高,繼而肝臟上皮細(xì)胞分化促使金屬離子轉(zhuǎn)移到其他部位,其中腹部肌肉的收縮蛋白對鈣離子具有高親和性,對其他金屬表現(xiàn)出較低的親和力,因此腹部肌肉中鎘累積量最少[27];鎘誘導(dǎo)華溪蟹的研究得到了類似結(jié)果[25]。有研究指出肝臟是魚類微量金屬元素最終的貯存器官[28],如雌性淡水食蚊魚肝臟細(xì)胞膜組分中鎘含量明顯高于卵黃囊組織中含量[29],可能的原因是鎘作用于垂體和性腺,改變促性腺激素的分泌和類固醇激素的活性,雌性硬骨魚類卵黃發(fā)育過程中,肝臟的代謝需求量非常大,肝臟細(xì)胞質(zhì)組分中的金屬硫蛋白的合成與貯存增加以清除重金屬離子,而這種附加的代謝活動可能最終損害卵黃,抑制卵黃原蛋白的表達(dá),導(dǎo)致卵黃囊重金屬累積相對較少[30];但金頭鯛鎘積累研究表明鰓內(nèi)鎘水平明顯高于肝臟、肌肉,這是因為硬骨魚類鰓表面的非特異性糖蛋白能結(jié)合鎘離子,并抑制其他組織對鎘的吸收[31]。低濃度鎘暴露條件下鰨魚腎組織中被檢測出鎘蓄積量最高,其后依次是肝、脾,與水環(huán)境直接接觸的鰓和皮膚受到的影響最小,其原因是鎘最早聚積在肝臟中,然后被運到腎臟,但金屬硫蛋白很容易被腎小球排出并由腎小管重吸收,致使腎組織中鎘含量最高,腎臟釋放的鎘離子最后進(jìn)入組織的上皮細(xì)胞[32]。水生動物組織內(nèi)鎘蓄積量見表1[25-26,29,31-37]。
盡管測定的鎘水平能夠直接指示環(huán)境鎘污染的程度,但鎘在生物體內(nèi)的蓄積情況受不同生物種類和非生物環(huán)境條件等多種因素的影響[18]。環(huán)境監(jiān)測還應(yīng)考慮水生動物的游動性,特別是魚類等,以及種群的人為引入等問題,鎘對環(huán)境的響應(yīng)關(guān)系還有待進(jìn)一步的探討。因此,應(yīng)用鎘檢測結(jié)果監(jiān)測水環(huán)境污染時,需要選擇代表性較強的敏感生物,例如,海洋貽貝[38-40]、溞類[6,41]、水絲蚓[42]等被認(rèn)為是較好的環(huán)境污染預(yù)警監(jiān)測生物,且選定易于蓄積殘留鎘的組織,如鰓[33-34]、肝胰臟[29]等進(jìn)行測定。
表1 水生動物組織內(nèi)鎘蓄積量
Table 1 Cadmium accumulation in tissues of aquatic animals
水生動物種類ρ(鎘)/(μg·L-1)暴露時間暴露條件溫度/℃ρ(溶解氧)/(mg·L-1)鹽度pH值組織內(nèi)鎘蓄積量排序文獻(xiàn)馬尼拉蛤(Venerupisphilippinarum)4、4035d19~207.8~8.6(28.2~29.5)‰7.8~8.1鰓絲>消化腺[33]紫貽貝(Mytilusedulis)201、4、8d14.8±0.1(98.1±0.3)%(30.8±0.007)‰7.7±0.01鰓>消化腺>性腺>淋巴[34]淡水羅氏沼蝦(Macrobrachiumsintangese)307d28~295.9~6.2—7.6~8.1鰓>肝>腹部肌肉[26]谷甾醇對日本對蝦〔Penaeus(Marsupenaeus)japonicus〕200、2000、400015、4、4d25±1—(37±1)‰—鰓絲>肝>上肢[35]華溪蟹(Sinopotamonhenanense)1000、50000、4、10、16、22d14~186—6.8鰓>肝胰臟[25]中華絨螯蟹(Eriocheirsinensis)5030d14.4±0.37.8±1.0—8.2±0.3鰓>肝胰腺>甲殼>肌肉[36]金頭鯛(Sparusaurata)10011d12—30‰—鰓>肝>肌肉[31]淡水食蚊魚(Gambusiaaffinis)40056d——0.9‰7.09肝臟>卵黃囊[29]鰨魚(Senegalesesoles)0.5、5、1028d19—30%~31%7.7±0.2腎>肝>脾>鰓>皮膚[32]鯉魚(Cyprinuscarpio)1509d19~227.0~7.5—6.95±7.20血液>肝臟>腎臟>腮絲>肌肉[37]
“—”表示無數(shù)據(jù)。
2.2 毒性效應(yīng)標(biāo)志物
2.2.1 抗氧化生物標(biāo)志物
鎘是非氧化還原活性金屬,當(dāng)鎘積累率超過水生動物的排放和解毒能力時,它可以間接引發(fā)氧化應(yīng)激并產(chǎn)生大量氧自由基,進(jìn)而導(dǎo)致脂質(zhì)過氧化作用,造成生物系統(tǒng)氧化損傷,引發(fā)多種病理改變甚至細(xì)胞死亡[43-45]。為響應(yīng)活性氧引發(fā)的細(xì)胞損傷,生物體形成了一套抗氧化防御系統(tǒng),如酶抗氧化系統(tǒng)的超氧化物歧化酶(SOD)、過氧化氫酶(CAT)和谷胱甘肽過氧化物酶(GPX),以及非酶抗氧化系統(tǒng)的谷胱甘肽、鋅、硒、維生素E、抗壞血酸、β-胡蘿卜素等,都可以清除脂質(zhì)過氧化產(chǎn)物,抑制活性氧自由基形成,保護(hù)大分子免受氧化損傷[46-47]。
各種有關(guān)金屬鎘引起氧化應(yīng)激的研究表明,鎘可以誘導(dǎo)動物組織抗氧化酶活性改變[48-51]。研究發(fā)現(xiàn),隨著鎘濃度的增加和暴露時間的延長,華溪蟹肝胰腺細(xì)胞線粒體、消化系統(tǒng)和副性腺中SOD活性均表現(xiàn)出先上升后降低趨勢[51-53],這與大型蚤、厚殼貽貝鰓組織、魴幼魚的毒性實驗研究結(jié)果[39,54-55]相似。將骨螺暴露于不同濃度鎘污染物中測定產(chǎn)卵前后不同階段消化腺內(nèi)CAT活性變化,發(fā)現(xiàn)鎘結(jié)合蛋白質(zhì)的巰基破壞了消化腺細(xì)胞結(jié)構(gòu),促使CAT含量增加[49]。鎘脅迫作用下厚殼貽貝、魚類肝臟內(nèi)GPX活性與鎘暴露呈劑量-效應(yīng)關(guān)系[39,56],這些數(shù)據(jù)表明鎘暴露促使生物體抗氧化系統(tǒng)參數(shù)發(fā)生顯著變化。
隨著鎘離子濃度的升高,過氧化脂質(zhì)的生成隨之增加,抗氧化系統(tǒng)誘導(dǎo)SOD、CAT活性不斷上升,加速分解過氧化物,隨之刺激GPX分解過氧化物,從而刺激活性氧自由基的生成,進(jìn)一步間接誘導(dǎo)SOD、CAT活性[57]。因此,鎘污染作用下抗氧化酶活性的改變趨勢不能概化,如鎘脅迫下貽貝抗氧化酶家族中的GPX和CAT活性增加,而SOD活性無顯著變化[58];金頭鯛肝臟中GPX活性則呈下降趨勢[31]。即使大多數(shù)鎘誘導(dǎo)的氧化應(yīng)激都會使水生生物組織的抗氧化酶活性水平顯著增加,但因過氧化脂質(zhì)量隨之增加不能及時被清除,抗氧化酶水平的增加不足以抵御氧化應(yīng)激[59-60]。
一些非酶抗氧化物質(zhì)對鎘暴露導(dǎo)致的多器官毒性也具有保護(hù)作用,可以通過疏基基團(tuán)與活性氧直接作用運輸和消除活性化合物,間接發(fā)揮抗氧化功能,保護(hù)器官免受氧化應(yīng)激,在調(diào)節(jié)鎘誘導(dǎo)的脂質(zhì)過氧化過程中起著重要作用[61]。鋅和硒能輔助酶抗氧化系統(tǒng)修復(fù)氧化損傷,當(dāng)向?qū)嶒炆锿段购\或富硒食物時,生物體內(nèi)抗氧化酶活性趨于正常,兩者同時供應(yīng)可以明顯減少受試生物組織器官對鎘的吸收,因此推斷鋅和硒對鎘誘導(dǎo)的氧化應(yīng)激具有保護(hù)作用[62-63]。脂質(zhì)過氧化終產(chǎn)物丙二醛與各種細(xì)胞成分發(fā)生反應(yīng),影響線粒體內(nèi)關(guān)鍵酶活性,造成酶和膜嚴(yán)重?fù)p壞,可作為氧化損傷指標(biāo)[48,64-65]。有研究發(fā)現(xiàn),迫于環(huán)境污染物鎘壓力,水生動物會采取細(xì)胞和分子水平的自噬防御機制來清除氧化受損的細(xì)胞器和蛋白,預(yù)先緩解鎘誘導(dǎo)的氧化應(yīng)激,因此,一些水生動物的自噬反應(yīng)可作為毒性效應(yīng)標(biāo)志物監(jiān)測生態(tài)系統(tǒng)健康[66]。
各種酶活性及非酶物質(zhì)的明顯改變可以說明,利用氧化應(yīng)激相關(guān)生物標(biāo)志物來有效監(jiān)測鎘污染具有可行性。但應(yīng)當(dāng)注意的是,應(yīng)用抗氧化酶生物標(biāo)志物對鎘污染進(jìn)行早期預(yù)警時,必須考慮不同種屬間的個體差異、同種生物的不同生長發(fā)育時期以及不同組織器官等可能對檢測結(jié)果造成的影響,為此,監(jiān)測過程應(yīng)當(dāng)綜合考慮多種因素的影響,以確保檢測結(jié)果的真實性[18]。
2.2.2 特異性基因標(biāo)志物
鎘離子進(jìn)入細(xì)胞參與跨細(xì)胞膜運動,會干擾基因表達(dá)和DNA修復(fù),從而干擾細(xì)胞的穩(wěn)態(tài)和功能。氧化應(yīng)激、神經(jīng)毒性和內(nèi)分泌干擾效應(yīng)等不同作用機制可以表現(xiàn)為相應(yīng)的基因表達(dá)變化,可將一些特異性表達(dá)的基因視為分子生物標(biāo)志物。研究發(fā)現(xiàn)編碼抗氧化蛋白的mRNA豐度改變時,相關(guān)的酶活性也會發(fā)生改變,例如鎘脅迫下骨螺肝臟、卵巢中金屬硫蛋白、CAT、SOD和GPX的轉(zhuǎn)錄顯著增加[67];硫酸鎘與α-萘黃酮的聯(lián)合毒性會引起斑馬魚胚胎耐藥相關(guān)蛋白MRP和細(xì)胞色素P450(CYP)的mRNA水平顯著下調(diào),導(dǎo)致SOD活性被顯著抑制[64]。各種實驗已經(jīng)完成對斑馬魚、金頭鯛的研究,結(jié)果均顯示鎘的毒性是由CYP的表達(dá)抑制以及產(chǎn)生氧化應(yīng)激引起的[68-70]。測定鎘對底棲寡毛類蠕蟲、水稻鰓蚯蚓、顙魚幼魚和胡鯰的急性毒性作用,發(fā)現(xiàn)較高濃度鎘暴露72和96 h,觀察到4種動物體表黏液分泌過多,隨時間的延長和濃度的提高,顙魚幼魚和胡鯰出現(xiàn)自發(fā)運動增多、身體失衡、呼吸困難等行為變化,表明鎘具有神經(jīng)系統(tǒng)毒性[71]。低劑量氯化鎘持續(xù)暴露影響斑馬魚幼魚的神經(jīng)發(fā)育,具體表現(xiàn)為幼魚軌跡紊亂、刻板式轉(zhuǎn)向運動增加、原地震顫等狀態(tài),且運動距離與鎘暴露濃度關(guān)系呈劑量依賴性的倒“U”型,光照驚恐反射實驗中,幼魚對突發(fā)的光暗變化表現(xiàn)敏感或遲鈍[72]。生物體基因表達(dá)的異常最終會引起生理層面的改變,關(guān)于鎘對羅非魚類固醇激素相關(guān)基因的表達(dá)影響研究表明,鎘毒性具有母系轉(zhuǎn)移特點,處理組雌性激素基因表達(dá)均上調(diào),引起卵泡畸形,卵巢發(fā)育遲滯,而雄性魚類沒有顯著變化;已孕羅非魚的卵黃原蛋白表達(dá)明顯下調(diào),無法為胚胎提供氨基酸、脂肪、碳水化合物、維生素和微量元素等營養(yǎng)功能性物質(zhì)[73]。以上基因表達(dá)異常控制的生理活動改變表明鎘污染對水生生物具有毒性作用。
2.2.3 遺傳毒性標(biāo)志物
遺傳毒性標(biāo)志物可在分子水平上直接揭示有毒污染物的毒性作用機制和由此引發(fā)的細(xì)胞及個體水平上的破壞,具有專一性、特異性和廣泛適用性,可直接揭示毒性效應(yīng)的分子反應(yīng)機理,并通過相關(guān)生物標(biāo)志物揭示組織結(jié)構(gòu)發(fā)生的變化,因此,可將DNA損傷視為鎘污染的生物標(biāo)志物。
環(huán)境壓力脅迫下(如重金屬鎘污染等)生物體內(nèi)DNA損傷的主要表現(xiàn)形式為堿基改變、DNA結(jié)構(gòu)破壞、甲基化損傷和DNA交聯(lián)等,它們對細(xì)胞產(chǎn)生遺傳毒性或細(xì)胞毒性,導(dǎo)致生殖細(xì)胞致死突變、畸形和遺傳缺陷等[74]。劉建博等[75]觀察不同濃度鎘離子染毒5 d后的精子染色體裝片,發(fā)現(xiàn)遠(yuǎn)低于半致死濃度的鎘離子雖未直接造成文蛤死亡,但明顯破壞精子DNA完整性,且隨濃度的升高,完整性下降趨勢逐漸減慢并趨于平穩(wěn),說明鎘離子對DNA完整性已造成極嚴(yán)重的破壞。曹哲明等[76]發(fā)現(xiàn)鎘脅迫下鯉魚基因組存在DNA甲基化現(xiàn)象,且與鎘離子處理時間及濃度有關(guān),且幼魚暴露于不同濃度組試劑中均未出現(xiàn)個體死亡,值得注意的是,急性試驗中甲基化位點的改變不一定同時引起DNA損傷,低濃度處理下鯉魚甲基化水平較低,高濃度條件下甲基化區(qū)域發(fā)生顯著變化,可能導(dǎo)致相應(yīng)基因的表達(dá)異常。這些遺傳毒性結(jié)果證實鎘污染雖未誘導(dǎo)生物生理上的直接破壞,但可對基因表達(dá)造成一定程度的干擾。陸慧賢等[77]以縊蟶的消化腺和鰓2種組織細(xì)胞為試驗對象,應(yīng)用彗星試驗檢測水體遺傳毒性效應(yīng),發(fā)現(xiàn)暴露期間DNA損傷程度呈先上升后降低趨勢,且同一處理組鰓組織細(xì)胞DNA損傷程度高于消化腺細(xì)胞,隨時間的延長,在組織內(nèi)抗氧化酶的作用下DNA損傷得到一定程度的修復(fù),因此,將DNA損傷作為鎘污染監(jiān)測指標(biāo)時應(yīng)考慮其他生態(tài)毒理學(xué)指標(biāo)的影響。
以往急性毒理實驗研究中所采用的生物標(biāo)志物均建立在細(xì)胞和生理層面上,雖然可以定量檢測水環(huán)境中鎘污染的毒性效應(yīng),但對基因表達(dá)層面干擾作用的研究還較少,遺傳毒性生物標(biāo)志物的探索將會成為以后重金屬毒性研究的重點。
2.2.4 乙酰膽堿酯酶(acetyl cholinesterase,AChE)
AChE是大多數(shù)物種的感覺和神經(jīng)肌肉系統(tǒng)之間的主要神經(jīng)傳遞素,AChE的干擾可能妨礙神經(jīng)或肌肉纖維的正常通信。一些研究表明,顯著抑制AChE活性的污染物包括重金屬[78-79],因此,水生動物體內(nèi)的AChE活性可能是用于環(huán)境重金屬污染物檢測的一個潛在的生物標(biāo)志物。但不是所有金屬脅迫都會對AChE產(chǎn)生抑制作用,例如橈足類日本虎斑猛水溞暴露于鎘的生化反應(yīng)的實驗研究發(fā)現(xiàn),經(jīng)過一定的曝光時間,鎘明顯提高AChE活性,這與酶活性受到抑制的結(jié)論存在分歧,因此,可以推斷生物標(biāo)志物的反應(yīng)可能與物種有關(guān)[80]。
部分研究指出,鎘離子抑制和激活A(yù)ChE活性與生物體內(nèi)金屬脅迫相關(guān)響應(yīng)酶的變化有關(guān)。例如,隨暴露濃度及暴露時間的增加,銀鯰魚大腦和肌肉中AChE活性均呈現(xiàn)下降趨勢,同時,腦中硫代巴比妥酸反應(yīng)物質(zhì)(TBARS)含量增加,14 d后,發(fā)現(xiàn)腦中AChE活性得到恢復(fù),而魚肌肉內(nèi)無明顯變化,腦中AChE活性抑制狀態(tài)的解除可能與TBARS水平的增加[81]有關(guān)。比較2種重金屬對羅非魚腦和肌肉膽堿酯抑制潛力的研究發(fā)現(xiàn),高濃度鎘或銅對膽堿酯的抑制作用比低濃度鎘或銅更大,且腦組織比肌肉組織更敏感,且隨著暴露時間的延長,鎘誘導(dǎo)的酶抑制作用逐漸降低或喪失,可以推測鎘誘導(dǎo)作用下魚體內(nèi)產(chǎn)生的金屬硫蛋白緩解了鎘對膽堿酯的抑制效果[82]。
綜合上述結(jié)果可以推斷,鎘脅迫下水生動物體內(nèi)AChE的改變可以作為監(jiān)測鎘污染的毒性效應(yīng)標(biāo)志物,用于監(jiān)測水生態(tài)系統(tǒng)中有毒污染物的存在,然而與其他生物標(biāo)志物相比,AChE的敏感程度還較低,有關(guān)鎘脅迫抑制AChE的機制尚不明確。
2.3 易感性標(biāo)志物
2.3.1 金屬硫蛋白(metallothionein,MT)
金屬結(jié)合蛋白具有特殊的解毒功能,在金屬元素代謝中起到重要作用。MT是一種低分子量蛋白質(zhì),其獨特的半胱氨酸結(jié)構(gòu)與金屬離子具有高親和力,與重金屬形成的金屬-硫簇參與金屬離子解毒[83]。一般認(rèn)為,重金屬脅迫下MT的生理功能包括調(diào)節(jié)金屬在細(xì)胞內(nèi)的濃度、激活調(diào)節(jié)蛋白和清除自由基,且MT屬于基因多態(tài)性家族[84-87],可以在轉(zhuǎn)錄水平上被環(huán)境中的金屬誘導(dǎo),因此,MT基因表達(dá)高低和MT含量的變化可以被認(rèn)為是金屬脅迫的易感性生物標(biāo)志物[88-90]。研究發(fā)現(xiàn),鎘處理誘導(dǎo)四角蛤蜊[91]、底棲搖蚊幼蟲[92]、長江華溪蟹[93]、紅樹林鳉魚[94]和寬鰭[95]MT mRNA的表達(dá)均以劑量依賴的方式上調(diào)。縊蟶內(nèi)臟中MT mRNA的組織特異性表達(dá)隨鎘離子濃度的增加而明顯升高,且具有較好的劑量效應(yīng)和時間依賴性[96],這些結(jié)果表明MT是水生環(huán)境中重金屬的一種潛在生物標(biāo)志物。
但鎘誘導(dǎo)的MT響應(yīng)也受到生活環(huán)境、物種和組織部位等因素的影響。例如,有學(xué)者在亞熱帶墨西哥太平洋牡蠣養(yǎng)殖區(qū)的河流附近、養(yǎng)殖區(qū)近海河口和養(yǎng)殖區(qū)中間位置3個地點對牡蠣進(jìn)行取樣,監(jiān)測收集的生物體內(nèi)MT含量變化,發(fā)現(xiàn)隨著鎘濃度的增加所有采樣點收集的牡蠣MT含量均升高,且由于河流附近富集大量農(nóng)藥,該采樣點MT含量明顯高于其他采樣點[97]。CRETP等[98]針對密集型、半密集型及非密集型3種魚類養(yǎng)殖系統(tǒng)探討金頭鯛組織中MT含量情況,結(jié)果發(fā)現(xiàn)所有養(yǎng)殖類型的金頭鯛組織中MT含量由高到低依次為肌肉、腸、肝臟、腎臟和鰓,且密集型和半密集型養(yǎng)殖場中金頭鯛腸道中MT含量明顯高于非密集型養(yǎng)殖場中金頭鯛腸道中MT含量。
此外,水生動物生存環(huán)境中存在的其他物質(zhì)對鎘脅迫的響應(yīng)也有所影響。鎘和鋅離子對大型蚤的聯(lián)合毒性研究發(fā)現(xiàn),隨著暴露濃度的增加,鎘和鋅重金屬聯(lián)合毒性相繼表現(xiàn)出協(xié)同作用、相加作用和拮抗作用[99]。對脊尾白蝦卵巢、肌肉、胃和肝胰臟4種組織中MT編碼基因EcMT表達(dá)情況的研究表明,暴露于氯化鎘中12 h基因表達(dá)下調(diào),暴露于硫酸銅12 h基因表達(dá)上調(diào),而暴露于這2種金屬24 h后基因表達(dá)出現(xiàn)下調(diào),這表明EcMT的表達(dá)可作為海水中鎘污染的生物標(biāo)志物[100]。與實驗室環(huán)境條件相比,自然條件下各種污染物之間相互作用會影響生物體內(nèi)MT變化,因此加強對混雜金屬共同污染方面的研究具有重要意義。僅憑重金屬含量定量描述無法反映重金屬對生物的毒性效應(yīng)機制,在這種情況下,通過測定水生動物體內(nèi)MT含量及其基因表達(dá)水平可以有效地反映水質(zhì)的污染程度。
2.3.2 熱休克蛋白(heats shock proteins,HSP)
HSP是一類分子伴侶,負(fù)責(zé)蛋白質(zhì)的折疊和組裝,可作為防御蛋白來維持細(xì)胞穩(wěn)態(tài)[101]。HSP也稱應(yīng)激蛋白,其合成的增加可以響應(yīng)各種物理和化學(xué)壓力,包括溫度、鹽度、金屬和一些外源性化學(xué)物質(zhì),故這類蛋白質(zhì)被認(rèn)為是良好的應(yīng)激標(biāo)志物[102]。HSP具有基因多態(tài)性[103-105],其基因表達(dá)已成為轉(zhuǎn)錄調(diào)節(jié)、應(yīng)激反應(yīng)和分子進(jìn)化的研究對象,可能成為一種新的環(huán)境生物標(biāo)志物,當(dāng)面對重金屬脅迫、氧化應(yīng)激等環(huán)境壓力時,細(xì)胞產(chǎn)生各種HSP防止外來蛋白質(zhì)聚集,促進(jìn)折疊合成新蛋白,穩(wěn)定并修復(fù)損壞蛋白,保護(hù)細(xì)胞免于受損[49,66,106-109]。
一些研究表明,冷、熱應(yīng)激可刺激水生動物對環(huán)境抗逆性的提高[110-112],如水溫升高導(dǎo)致草魚肝臟和肌肉中HSP73表達(dá)上調(diào)[113];熱休克蛋白對鹽脅迫的適應(yīng)功能機理還不明確,一種可能性是熱休克蛋白變異是變性蛋白質(zhì)的積累結(jié)果,導(dǎo)致鹽度休克細(xì)胞質(zhì)壁分離過程中造成的水活性降低[114];此外,水生動物特殊的生存環(huán)境決定了水體低氧勢必會對動物體造成一定損傷,低氧脅迫過程HSP表達(dá)量明顯高于對照組,且具有組織差異性,復(fù)氧后表達(dá)水平恢復(fù)到正常[115-116],熱激蛋白的差異表達(dá)在保護(hù)和維持低氧脅迫下水生動物的正常生理活動方面具有重要作用[117];以上結(jié)果表明熱休克蛋白表達(dá)差異性可以作為抵御溫度、鹽度、溶氧應(yīng)激的重要生理響應(yīng)機制。
一般情況下,正常細(xì)胞內(nèi)HSP水平較低,而在應(yīng)激狀態(tài)如重金屬鎘暴露下,水生動物體內(nèi)HSP(HSP60、HSP70和HSP90)基因的表達(dá)明顯升高[109,118]。鎘離子亞致死濃度及短期暴露不足以引起金頭鯛幼魚HSP70的預(yù)期轉(zhuǎn)錄調(diào)制,隨著濃度升高及暴露時間的延長,HSP70的相對表達(dá)水平明顯下降[119],這與對太平洋牡蠣[120]、鯽魚[121]的研究結(jié)果相似。也有研究指出,暴露于鎘中的魚不同組織中HSP的表達(dá)水平增加[122]或表達(dá)無任何變化[123],因此,可以推測該基因的普遍存在及其表達(dá)情況在很大程度上取決于組織差異性。
重金屬脅迫可以激活機體內(nèi)應(yīng)激蛋白的合成,它們根據(jù)細(xì)胞的損傷程度能產(chǎn)生解毒和抗氧化作用,因此,HSP含量及基因的表達(dá)通常被提出作為一個敏感的和有效的生物標(biāo)志物,用于評估金屬鎘暴露累積的生物效應(yīng)。
細(xì)胞、分子或基因水平上的生物標(biāo)志物在鎘污染暴露和毒性效應(yīng)的早期預(yù)警方面顯示了其優(yōu)越性,并取得了很大進(jìn)展,但鎘對水生動物的生物標(biāo)志研究尚不全面,并有待進(jìn)一步研究,具體表現(xiàn)為以下幾個方面:(1)目前國內(nèi)外研究多集中于實驗室研究條件下、單一或多種重金屬聯(lián)合暴露途徑的響應(yīng)規(guī)律,不能有效反映實際水環(huán)境中其他污染物復(fù)合污染對水生動物的綜合影響。(2)生物標(biāo)志物監(jiān)測水體重金屬污染具有種間差異性和組織差異性,且生物響應(yīng)過程容易受到外界環(huán)境因素如地理位置、溫度、鹽度和pH等的影響。(3)應(yīng)注重多種類型生物標(biāo)志物的聯(lián)合使用,增加總體污染評價結(jié)果的可靠性。(4)加強鎘等重金屬對水生動物致毒機制方面的研究,有助于解釋受重金屬脅迫后各種生物標(biāo)志物的變化規(guī)律。
[1] QU R J,WANG X H,FENG M B,etal.The Toxicity of Cadmium to Three Aquatic Organisms (Photobacteriumphosphoreum,DaphniamagnaandCarassiusauratus) Under Different pH Levels[J].Ecotoxicology & Environmental Safety,2013,95(1):83-90.
[2] MALEKPOURI P,MOSHTAGHIE A A,KAZEMIAN M,etal.Protective Effect of Zinc on Related Parameters to Bone Metabolism in Common Carp Fish (CyprinuscarpioL.) Intoxified With Cadmium[J].Fish Physiology and Biochemistry,2011,37(1):187-196.
[3] LIU J,QU W,KADIISKA M B.Role of Oxidative Stress in Cadmium Toxicity and Carcinogenesis[J].Toxicology & Applied Pharmacology,2009,238(3):209-214.
[4] STANKOVIC S,JOVIC M,STANKOVIC A R,etal.Heavy Metals in Seafood Mussels.Risks for Human Health[M]∥Environmental Chemistry for a Sustainable World.[s. l.]:Springer Netherlands,2012:311-373.
[5] TULONEN T,ARVOLA L,STR?MMER R.Cadmium Release From Afforested Peatlands and Accumulation in an Aquatic Ecosystem After Experimental Wood Ash Treatment[J].European Journal of Forest Research,2012,131(5):1529-1536.
[6] WANG Z S,YAN C Z,ZHANG X.Acute and Chronic Cadmium Toxicity to a Saltwater CladoceranMoinamonogolicaDaday and Its Relative Importance[J].Ecotoxicology,2009,18(1):47-54.
[7] HU H.Human Health and Heavy Metals Exposure[M]∥MCCALLY M.Life Support:The Environment and Human Health.Cambridge,UK:MIT Press,2002:65-82.[8] IARC.List of Classifications by Cancer Sites With Sufficient or Limited Evidences in Humans,Volumes 1-117[Z/OL].[2015-11-04].http:∥monographs.iarc.fr/ENG/Classification/Table4.pdf.
[9] IARC.Agents Classified by the IARC Monographs,Volumes 1-115[Z/OL].[2016-02-22].http:∥monographs.iarc.fr/ENG/Classification/List_of_Classifications_Vol1-115.pdf.
[10]劉美霞,石峻嶺,吳世達(dá),等.IARC:900種有害因素及接觸場所對人類致癌性的綜合評價(一)[J].環(huán)境與職業(yè)醫(yī)學(xué),2006,23(2):180-184.[LIU Mei-xia,SHI Jun-ling,WU Shi-da,etal.A Comprehensive Evaluation of the Carcinogenic Activity of 900 Kinds of Hazardous Factors and Contact Sites(Ⅰ)[J].Journal of Environmental and Occupational Medicine,2006,23(2):180-184.]
[11]李旭東,么鴻雁,闞堅力,等.IARC公布的化學(xué)物質(zhì)和混合物及暴露環(huán)境對人類致癌性的綜合評價[J].環(huán)境與健康雜志,2008,25(12):1107-1110.[LI Xu-dong,YAO Hong-yan,KAN Jian-li,etal.Comprehensive Evaluation of Chemical Substances and Mixtures and Exposure Environment to Human Carcinogenicity Announced by IARC[J].Journal of Environment and Health,2008,25(12):1107-1110.]
[12]LUOMA S N,RAINBOW P S,LUOMA S.Metal Contamination in Aquatic Environments:Science and Lateral Management[M].Cambridge,UK:Cambridge University Press,2008:93-125.
[13]王海黎,陶澍.生物標(biāo)志物在水環(huán)境研究中的應(yīng)用[J].中國環(huán)境科學(xué),1999,19(5):421-426.[WANG Hai-li,TAO Shu.Application of Biomarkers in Environmental Research[J].China Environmental Science,1999,19(5):421-426.]
[14]田志環(huán),焦傳珍.生物標(biāo)志物在監(jiān)測環(huán)境污染中的應(yīng)用[J].環(huán)境與可持續(xù)發(fā)展,2007(1):9-11.[TIAN Zhi-huan,JIAO Chuan-zhen.Application of Biomarkers in Environmental Pollution Monitoring[J].Environment and Sustainable Development,2007(1):9-11.]
[15]丁竹紅,謝標(biāo),王曉蓉.生物標(biāo)志物及其在環(huán)境中的應(yīng)用[J].農(nóng)業(yè)環(huán)境保護(hù),2002,21(5):465-467,470.[DING Zhu-hong,XIE Biao,WANG Xiao-rong.Biomarkers and Their Application in Environmental Sciences[J].Agro-Environmental Protection,2002,21(5):465-467,470.]
[16]尚惠華,胡紹燊,劉冬姝,等.生物標(biāo)志物在環(huán)境評價中的應(yīng)用研究概況與趨向[J].污染防治技術(shù),2004,17(1):49-53,94.[SHANG Hui-hua,HU Shao-shen,LIU Dong-shu,etal.An Overview of Research on Biomarkers Applied to Environmental Assessment[J].Pollution Control Technology,2004,17(1):49-53,94.]
[17]吳曉薇,黃國城.生物標(biāo)志物的研究進(jìn)展[J].廣東畜牧獸醫(yī)科技,2008,33(2):14-18.[WU Xiao-wei,HUANG Guo-cheng.Research Progress of Biomarkers[J].Guangdong Journal of Animal and Veterinary Science,2008,33(2):14-18.]
[18]戴偉.水生動物重金屬污染生物標(biāo)志物的研究進(jìn)展[J].水生態(tài)學(xué)雜志,2010,3(6):116-119.[DAI Wei.Advances in Biomarkers of Aquatic Animals for Monitoring Heavy Metal Contamination[J].Journal of Hydroecology,2010,3(6):116-119.]
[19]張忠彬,李巖,夏昭林.效應(yīng)生物標(biāo)志物與危險度評價[J].職業(yè)衛(wèi)生與應(yīng)急救援,2005,23(1):15-17.[ZHANG Zhong-bin,LI Yan,XIA Zhao-lin.Biomarker of Effect and Risk Assessment[J].Occupational Health and Emergency Rescue,2005,23(1):15-17.]
[20]SZYCZEWSKI P,SIEPAK J,NIEDZIELSKI P,etal.Research on Heavy Metals in Poland[J].Polish Journal of Environmental Studies,2009,18(5):755-768.
[21]STANKOVIC S,JOVIC M.Health Risks of Heavy Metals in the Mediterranean Mussels as Seafood[J].Environmental Chemistry Letters,2012,10(2):119-130.
[22]陳璐璐,周北海,徐冰冰,等.太湖水體典型重金屬鎘和鉻含量及其生態(tài)風(fēng)險[J].生態(tài)學(xué)雜志,2011,30(10):2290-2296.[CHEN Lu-lu,ZHOU Bei-hai,XU Bing-bing,etal.Cadmium and Chromium Concentrations and Their Ecological Risks in the Water Body of Taihu Lake,East China[J].Chinese Journal of Ecology,2011,30(10):2290-2296.]
[23]羅正明,賈雷坡,劉秀麗,等.水環(huán)境鎘對水生動物毒性的研究進(jìn)展[J].食品工業(yè)科技,2015,36(15):346-381.[LUO Zheng-ming,JIA Lei-po,LIU Xiu-li,etal.Research Advances in Toxic Effect of Cadmium on Aquatic Animals[J].Science and Technology of Food Industry,2015,36(15):346-381.]
[24]秦春艷,方展強,唐以杰,等.珠江口伶仃洋習(xí)見水生動物體內(nèi)重金屬含量測定與評價[J].華南師范大學(xué)學(xué)報(自然科學(xué)版),2010,42(3):104-109,114.[QIN Chun-yan,FANG Zhan-qiang,TANG Yi-jie,etal.Contents and Evaluation of Heavy Metals in Common Aquatic From Lingding Yang in Pearal River Estuary,South China Ocean[J].Journal of South China Normal University (Natural Science Edition),2010,42(3):104-109,114.]
[25]馬文麗,王蘭,何永吉,等.鎘誘導(dǎo)華溪蟹不同組織金屬硫蛋白表達(dá)及鎘蓄積的研究[J].環(huán)境科學(xué)學(xué)報,2008,28(6):1192-1197.[MA Wen-li,WANG Lan,HE Yong-ji,etal.Cadmium Accumulation and Mentallothione in Biosynthesis in the Fresh-Water CrabSinopotamonhenanense[J].Acta Scientiae Circumstantiae,2008,28(6):1192-1197.]
[26]SOEGIANTO A,WINARNI D,HANDAYANI U S,etal.Bioaccumulation,Elimination,and Toxic Effect of Cadmium on Structure of Gills and Hepatopancreas of Freshwater Prawn Macrobrachium Sintangese(De Man,1898)[J].Water Air and Soil Pollution,2013,224(5):1575-1584.
[27]PALANIAPPAN P R, KARTHIKEYAN S.Biaccumulation and Depuration of Chromium in the Selected Organs and Whole Body Tissues of the Freshwater FishCirrhinusmrigalaIndividually and in Binary Solutions With Nickel[J].Journal of Environmental Sciences,2009,21(2):229-236.
[29]ANNABI A,KESSABI K,KERKENI A,etal.Influence of Cadmium Exposure on Growth and Fecundity of Freshwater MosquitofishGambusiaaffinis:InSituandinVivoStudies[J].Biological Trace Element Research,2012,148(3):345-355.
[30]LI N,ZHAO Y,YANG J.Impact of Waterborne Copper on the Structure of Gills and Hepatopancreas and Its Impact on the Content of Metallothionein in Juvenile Giant Freshwater PrawnMacrobrachiumrosenbergii(Crustacea:Decapoda)[J].Archives of Environmental Contamination and Toxicology,2007,52(1):73-79.
[31]CIRILLO T,COCCHIERI R A,FASANO E,etal.Cadmium Accumulation and Antioxidant Responses inSparusaurataExposed to Waterborne Cadmium[J].Archives of Environmental Contamination & Toxicology,2012,62(1):118-126.
[32]COSTA P M,CAEIRO S,COSTA M H.Multi-Organ Histological Observations on JuvenileSenegalesesolesExposed to Low Concentrations of Waterborne Cadmium[J].Fish Physiology & Biochemistry,2012,39(2):143-158.
[33]ZHAO L Q,YU Z,LIANG J,etal.Environmental Cadmium Exposure Impacts Physiological Responses inManilaclams[J].Biological Trace Element Research,2014,159(1/2/3):241-253.
[34]SHEIR S K,HANDY R D,HENRY T B.Effect of Pollution History on Immunological Responses and Organ Histology in the Marine MusselMytilusedulisExposed to Cadmium[J].Archives of Environmental Contamination & Toxicology,2013,64(4):701-716.
[35]SOEGIANTO A,CHARMANTIER-DAURES M,TRILLER J P,etal.Impact of Cadmium on the Structure of Gills and Epipodites of the ShrimpPenaeusjaponicus(Crustacea:Decapoda)[J].Aquatic Living Resources,1999,12(1):57-70.
[36]SILVESTRE F, DUCHNE C, TRAUSH G,etal.Tissue-Specific Cadmium Accumulation and Metallothionein-Like Protein Levels During Acclimation Process in the Chinese CrabEriocheirsinensis[J].Comparative Biochemistry & Physiology Part C:Toxicology & Pharmacology,2005,140(1):39-45.
[37]李華.重金屬在淡水魚體內(nèi)的蓄積、排出機理及其金屬硫蛋白的研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2013.[LI Hua.The Research of Heavy Metal Accumulation and Discharge Mechanism in Freshwater Fish and Its Metallothionein[D].Harbin:Northeast Agricultural University,2013.]
[38]李春娣,顏文,龍愛民,等.Cu暴露條件下翡翠貽貝(Pernaviridis)消化腺內(nèi)金屬和類金屬硫蛋白的變化[J].環(huán)境科學(xué),2007,28(8):1788-1795.[LI Chun-di,YAN Wen,LONG Ai-min,etal.Metal Accumulation and MTLP Induction in the Digestive Glands ofPernaviridisExposed to Cu[J].Environmental Science,2007,28(8):1788-1795.]
[39]彭玲,曾江寧,陳全震,等.鎘對厚殼貽貝急性毒性及對其鰓抗氧化酶活性的影響[J].環(huán)境科學(xué)與技術(shù),2015,38(2):13-18,24.[PENG Ling,ZENG Jiang-ning,CHEN Quan-zhen,etal.Effects of Cadmium on Antioxidant Enzyme Activity in Gill ofMytiluscoruscusand Acute Toxicity of Cadmium onMytiluscoruscus[J].Environmental Science and Technology,2015,38(2):13-18,24.]
[40]BARAJ B,NIENCHESKI F,FILLMANN G,etal.Assessing the Effects of Cu,Cd,and Exposure Period on Metallothionein Production in Gills of the Brazilian Brown MusselPernapernaby Using Factorial Design[J].Environmental Monitoring & Assessment,2011,179(1/2/3/4):155-162.
[41]DUMAN F,KAR M.Evaluation of Effects of Exposure Conditions on the Biological Responses ofGammaruspulexExposed to Cadmium[J].International Journal of Environmental Science & Technology,2015,12(2):437-444.
[42]姜東生,李梅,崔益斌.重金屬和氯酚對霍甫水絲蚓的急性毒性及水環(huán)境安全評價[J].中國環(huán)境科學(xué),2014,34(6):1572-1578.[JIANG Dong-sheng,LI Mei,CUI Yi-bin.Acute Toxic Effects of Heavy Metals and Chlorophenols onLimnodrilushoffmeisteriand Safety Assessment of the Aquatic Environment[J].China Environmental Science,2014,34(6):1572-1578.]
[43]CAO L,HUAN W,LIU J,etal.Accumulation and Oxidative Stress Biomarkers in Japanese Flounder Larvae and Juveniles Under Chronic Cadmium Exposure[J].Comparative Biochemistry & Physiology Part C:Toxicology & Pharmacology,2010,151(3):386-392.
[44]CUYPERS A,PLUSQUIN M,REMANS T,etal.Cadmium Stress:An Oxidative Challenge[J].Biometals,2010,23(5):927-940.
[45]SOUID G,SOUAYED N,YAKTITI F,etal.Effect of Acute Cadmium Exposure on Metal Accumulation and Oxidative Stress Biomarkers ofSparusaurata[J].Ecotoxicology & Environmental Safety,2013,89(11):1-7.
[46]LEI W,WANG L,LIU D,etal.Histopathological and Biochemical Alternations of the Heart Induced by Acute Cadmium Exposure in the Freshwater CrabSinopotamonyangtsekiense[J].Chemosphere,2011,84(5):689-694.
[47]JIN Y,ZHANG X,SHU L,etal.Oxidative Stress Response and Gene Expression With Atrazine Exposure in Adult Female Zebrash (Daniorerio)[J].Chemosphere,2010,78(7):846-852.
[48]DUMAN F,KAR M.Evaluation of Effects of Exposure Conditions on the Biological Responses ofGammaruspulexExposed to Cadmium[J].International Journal of Environmental Science and Technology,2015,12(2):437-444.
[49]MAHMOUD N,DELLALI M,AISSA P,etal.Acute Toxicities of Cadmium and Permethrin on the Pre-Spawning and Post-Spawning Phases ofHexaplextrunculusFrom Bizerta Lagoon,Tunisia[J].Environmental Monitoring & Assessment,2012,184(10):5851-5861.
[50]CUYPERS A,PLUSQUIN M,REMANS T,etal.Cadmium Stress:An Oxidative Challenge[J].Biometals,2010,23(5):927-940.
[51]金芬芬,徐團(tuán),秦圣娟,等.鎘對長江華溪蟹肝胰腺線粒體抗氧化酶活力和脂質(zhì)過氧化水平的影響[J].水生生物學(xué)報,2011,35(6):1019-1024.[JIN Fen-fen,XU Tuan,QIN Sheng-juan,etal.Effects of Cadmium on Hepatopancreas Mitochondrial Antioxidant Enzyme Activity and Lipid Peroxidation Level in Freshwater CrabSinopotamonyangtsekiense[J].Acta Hydrobiologica Sinica,2011,35(6):1019-1024.]
[52]WU H,XUAN R,LI Y,etal.Biochemical,Histological and Ultrastructural Alterations of the Alimentary System in the Freshwater CrabSinopotamonhenanenseSubchronically Exposed to Cadmium[J].Ecotoxicology,2014,23(1):65-75.
[53]侯宇華,李娜,李丹,等.鎘對河南華溪蟹副性腺抗氧化酶活性及脂質(zhì)、蛋白質(zhì)和DNA的影響[J].水生生物學(xué)報,2015,39(3):621-626.[HOU Yu-hua,LI Na,LI Dan,etal.Bioaccumulation of Cadmium and Its Effects on Antioxidant Enzyme Activities,Lipid,Protein and DNA in Male Accessory Gland of the Freshwater CrabSinopotamonhenanense[J].Acta Hydrobiologica Sinica,2015,39(3):621-626.]
[54]張融,范文宏,唐戈,等.重金屬Cd和Zn對水生浮游動物大型蚤(Daphniamagna)聯(lián)合毒性的研究初探[J].內(nèi)蒙古大學(xué)學(xué)報(自然科學(xué)版),2008,39(6):704-709.[ZHANG Rong,FAN Wen-hong,TANG Ge,etal.A Preliminary Study on Joint Toxicity of Cd and Zn on Freshwater ZooplanktonDaphniamagna[J].Journal of Inner Mongolia University(Natural Science Edition),2008,39(6):704-709.]
[55]曾艷藝,賴子尼,楊婉玲,等.廣東魴幼魚對銅、鎘脅迫的氧化應(yīng)激響應(yīng)及其指示意義[J].生態(tài)環(huán)境學(xué)報,2014,23(12):1972-1979.[ZENG Yan-yi,LAI Zi-ni,YANG Wan-ling,etal.Responses Towards Oxidative Stress of Juvenile Guangdong BreamMegalobramaterminalisto Cu2+and Cd2+Exposure[J].Ecology and Environmental Sciences,2014,23(12):1972-1979.]
[56]EROGLU A,DOGAN Z,KANAK E G,etal.Effects of Heavy Metals (Cd,Cu,Cr,Pb,Zn) on Fish Glutathione Metabolism[J].Environmental Science and Pollution Research International,2015,22(5):3229-3237.
[57]陳琳琳,張高生,陳靜,等.汞、硒暴露對紫貽貝(Mytilusedulis)抗氧化酶系統(tǒng)的影響[J].生態(tài)毒理學(xué)報,2011,6(4):383-388.[CHEN Lin-lin,ZHANG Gao-sheng,CHEN Jing,etal.Exposure Effects of Mercury and Selenium on Antioxidant Enzymes of Blue MusselMytilusedulis[J].Asian Journal of Ecotoxicology,2011,6(4):383-388.]
[58]YOU L P,NING X X,CHEN L L,etal.Expression Profiles of Two Small Heat Shock Proteins and Antioxidant Enzyme Activity inMytilusgalloprovincialisExposed to Cadmium at Environmentally Relevant Concentrations[J].Chinese Journal of Oceanology and Limnology,2014,32(2):334-343.
[59]DABAS A,NAGPURE N S,MISHRA R M,etal.Cadmium Induced Lipid Peroxidation and Effects on Glutathione Dependent Enzymes in Tissues ofLabeorohita[J].Proceedings of the National Academy of Science,India Section B:Biological Sciences,2014,84(4):981-988.
[60]WU H,XUAN R J,LI Y J,etal.Effects of Cadmium Exposure on Digestive Enzymes,Antioxidant Enzymes and Lipid Peroxidation in the Freshwater CrabSinopotamonhenanense[J].Environmental Science and Pollution Research,2013,20(6):4085-4092.
[61]JIA X,ZHANG H,LIU X.Low Levels of Cadmium Exposure Induce DNA Damage and Oxidative Stress in the Liver of Oujiang Colored Common CarpCyprinuscarpioVar. Color[J].Fish Physiology & Biochemistry,2011,37(1):97-103.
[62]KUCUKBAY Z,YAZLAK H,SAHIN N,etal.Zinc Picolinate Supplementation Decreases Oxidative Stress in Rainbow Trout (Oncorhynchusmykiss)[J].Journal of Vertebrate Paleontology,2006,30(3):855-871.
[63]BANNI M,CHOUCHENE L,SAID K,etal.Mechanisms Underlying the Protective Effect of Zinc and Selenium Against Cadmium-Induced Oxidative Stress in ZebrafishDaniorerio[J].Biometals,2011,24(6):981-992.
[64]YIN J,YANG J,ZHANG F,etal.Individual and Joint Toxic Effects of Cadmium Sulfate andα-Naphthoflavone on the Development of Zebrafish Embryo[J].Journal of Zhejiang University Science B,2014,15(9):766-775.
[65]SHAW J R,COLBOURNE J K,DAVEY J C,etal.Gene Response Profiles forDaphniapulexExposed to the Environmental Stressor Cadmium Reveals Novel Crustacean Metallothioneins[J].BMC Genomics,2007,8(1):477-497.
[66]CHIARELLI R,MARTINO C,AGNELLO M,etal.Autophagy as a Defense Strategy Against Stress:Focus onParacentrotuslividusSea Urchin Embryos Exposed to Cadmium[J].Cell Stress and Chaperones,2016,21(1):19-27.
[67]BANNI M,CHOUCHENE L,SAID K,etal.Mechanisms Underlying the Protective Effect of Zinc and Selenium Against Cadmium-Induced Oxidative Stress in ZebrafishDaniorerio[J].Biometals,2011,24(6):981-992.
[68]SASSI A,DARIASS M J,SAID K,etal.Cadmium Exposure Affects the Expression of Genes Involved in Skeletogenesis and Stress Response in Gilthead Sea Bream Larvae[J].Fish Physiology and Biochemistry,2013,39(3):649-659.
[69]WANG L,GALLAGHER E P.Role of Nrf2 Antioxidant Defense in Mitigating Cadmium-Induced Oxidative Stress in the Olfactory System of Zebrafish[J].Toxicology & Applied Pharmacology,2013,266(2):177-186.
[70]SOUID G,SOUAYED N,YAKTITI F,etal.Effect of Acute Cadmium Exposure on Metal Accumulation and Oxidative Stress Biomarkers ofSparusaurata[J].Ecotoxicology & Environmental Safety,2013,89(11):1-7.
[71]DHARA K,MUKHERJEE D,SAHA N C.Acute Toxicity of Cadmium to Benthic Oligochaete Worm,BranchiurasowerbyiBeddard,1982 and Juvenile Catfish,ClariasbatrachusLinnaeus,1758[J].Proceedings of the Zoological Society,2015,68(2):116-119.
[72]史慧勤,張利軍,苑曉燕,等.氯化鎘暴露對斑馬魚幼魚神經(jīng)行為毒性作用[J].生態(tài)毒理學(xué)報,2013,8(3):374-380.[SHI Hui-qin,ZHANG Li-jun,YUAN Xiao-yan,etal.Toxic Effects of Cadmium Chloride Exposure on Neurobehavior of Zebrafish Larvae[J].Asian Journal of Ecotoxicology,2013,8(3):374-380.]
[73]LUO Y,SHAN D,ZHONG H,etal.Subchronic Effects of Cadmium on the Gonads,Expressions of Steroid Hormones and Sex-Related Genes in TilapiaOreochromisniloticus[J].Ecotoxicology,2015,24(10):2213-2223.
[74]劉宛,李培軍,周啟星,等.環(huán)境污染條件下生物體內(nèi)DNA損傷的生物標(biāo)記物研究進(jìn)展[J].應(yīng)用與環(huán)境生物學(xué)報,2005,11(2):251-255.[LIU Wan,LI Pei-jun,ZHOU Qi-xing,etal.Research Advances of Biomarkers of DNA Damage in Organisms Under Environmental Pollution[J].Chinese Journal of Applied and Environmental Biology,2005,11(2):251-255.]
[75]劉建博,潘登,江安娜,等.鎘暴露對文蛤雄性生殖細(xì)胞的影響[J].環(huán)境科學(xué)學(xué)報,2013,33(7):2036-2043.[LIU Jian-bo,PAN Deng,JIANG An-na,etal.Effects of Cadmium Exposure on Spermatozoon ofMeretrixmeretrix[J].Acta Scientiae Circumstantiae,2013,33(7):2036-2043.
[76]曹哲明,楊健.不同濃度Cd2+對鯉魚基因組DNA的影響[J].應(yīng)用與環(huán)境生物學(xué)報,2010,16(4):457-461.[CAO Zhe-ming,YANG Jian.Effect of Cadmium at Different Concentrations on Genomic DNA of Common Carps[J].Chinese Journal of Applied and Environmental Biology,2010,16(4):457-461.]
[77]陸慧賢,徐永健.鎘脅迫下縊蟶 (Sinonovaculaconstricta)抗氧化酶活性及DNA損傷的研究[J].海洋環(huán)境科學(xué),2011,30(1):96-101.[LU Hui-xian,XU Yong-jian.Effects of Cadmium on Antioxidant Enzyme Activity and DNA Damage inSinonovaculaconstricta[J].Marine Environmental Science,2011,30(1):96-101.]
[78]王晶,周啟星,張倩茹,等.沙蠶暴露于石油烴、Cu2+和Cd2+毒性效應(yīng)及乙酰膽堿酯酶活性的響應(yīng)[J].環(huán)境科學(xué),2007,28(8):1796-1801.[WANG Jing,ZHOU Qi-xing,ZHANG Qian-ru,etal.Toxic Effects of Petroleum Hydrocarbons,Copper and Cadmium on PolychaetePerinereisaibuhitensisGrube and on Its Responses in Acetycholinesterase Activity[J].Environmental Science,2007,28(8):1796-1801.]
[79]MI S P,SHIN H S,LEE J,etal.Influence of Quercetin on the Physiological Response to Cadmium Stress in Olive Flounder,Paralichthysolivaceus:Effects on Hematological and Biochemical Parameters[J].Molecular & Cellular Toxicology,2010,6(2):151-159.
[80]WANG M H,WANG G Z.Biochemical Response of the CopepodTigriopusjaponicusMori Experimentally Exposed to Cadmium[J].Archives of Environmental Contamination & Toxicology,2009,57(4):707-717.
[81]PRETTO A,LORO V L,MORSCH V M,etal.Acetylcholinesterase Activity,Lipid Peroxidation,and Bioaccumulation in Silver Catfish (Rhamdiaquelen) Exposed to Cadmium[J].Archives of Environmental Contamination & Toxicology,2010,58(4):1008-1014.
[82]SILVA K T,PATHIRATNE A.InVitroandinVivoEffects of Cadmium on Cholinesterases inNiletilapiaFingerlings Implications for Biomonitoring Aquatic Pollution[J].Ecotoxicology,2008,17(8):725-731.
[83]MARTINS C D M G,BIANCHINI A.Metallothionein-Like Proteins in the Blue CrabCallinectessapidus:Effect of Water Salinity and Ions[J].Comparative Biochemistry Physiology Part A:Molecular and Integrative Physiology,2009,152(3):366-371.
[84]TAPIERO H,TEW K D.Trace Elements in Human Physiology and Pathology:Zinc and Metallothioneins[J].Biomedicine & Pharmacotherapy,2003,57(9):399-411.
[85]苗毅,李保慶,劉會寧,等.人食管鱗狀細(xì)胞癌細(xì)胞株MT-3 mRNA的表達(dá)[J].上海交通大學(xué)學(xué)報(醫(yī)學(xué)版),2009,29(3):319-322.[MIAO Yi,LI Bao-qing,LIU Hui-ning,etal.Expression of MT-3 mRNA in Human Esophageal Squamous Cell Carcinama[J].Journal of Shanghai Jiaotong University(Medical Science),2009,29(3):319-322.]
[86]CHEN X,LEI L,TIAN L T,etal.Bone Mineral Density and Polymorphisms in Metallothionein 1A and 2A in a Chinese Population Exposed to Cadmium[J].Science of the Total Environment,2012,423(8):12-17.
[87]GIACCONI R,MUTI E,MALAVOLTA M,etal.The +838 C/G MT2A Polymorphism,Metals,and the Inflammatory/Immune Response in Carotid Artery Stenosis in Elderly People[J].Molecular Medicine,2007,13(7/8):388-395.
[88]ZHOU Q,ZHANG J,FU J,etal.Biomonitoring:An Appealing Tool for Assessment of Metal Pollution in the Aquatic Ecosystem[J].Analytica Chimica Acta,2008,606(2):135-150.
[89]FREISINGER E.The Metal-Thiolate Clusters of Plant Metallothioneins[J].Chimia International Journal for Chemistry,2010,64(4):217-224.
[90]SEVCIKOVA M,MODRA H,SLANINOVA A,etal.Metals as a Cause of Oxidative Stress in Fish:A Review[J].Veterinární Medicína,2011,56(56):537-546.
[91]FANG Y,YANG H,WANG T,etal.Metallothionein and Superoxide Dismutase Responses to Sublethal Cadmium Exposure in the ClamMactraveneriformis[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2010,151(3):325-333.
[92]PARK K,KWAK I S.Assessment of Potential Biomarkers,Metallothionein and Vitellogenin mRNA Expressions in Various Chemically Exposed BenthicChironomusripariusLarvae[J].Ocean Science Journal,2012,47(4):435-444.
[93]GAO A B,WANG L,YUAN H.Expression of Metallothionein cDNA in a Freshwater Crab,Sinopotamonyangtsekiense,Exposed to Cadmium[J].Experimental and Toxicologic Pathology,2012,64(3):253-258.
[94]RHEE J S,RAISUDDIN S,HWANG D S,etal.Differential Expression of Metallothionein (MT) Gene by Trace Metals and Endocrine-Disrupting Chemicals in the Hermaphroditic Mangrove Killifish,Kryptolebiasmarmoratus[J].Ecotoxicology & Environmental Safety,2009,72(1):206-212.
[95]LEE S,KIM C,KIM J,etal.Cloning Metallothionein Gene inZaccoplatypusand Its Potential as an Exposure Biomarker Against Cadmium[J].Environmental Monitoring & Assessment,2015,187(7):447.
[96]霍禮輝,陳彩芳,林志華,等.鎘誘導(dǎo)縊蟶 (Sinonovaculaconstricta)體內(nèi)金屬硫蛋白基因變化規(guī)律研究[J].海洋與湖沼,2012,43(4):723-728.[HUO Li-hui,CHEN Cai-fang,LIN Zhi-hua,etal.The Metallothionein Gene Expression inSinonovaculaconatrictaExposing to Cadmium[J].Oceanologia et Limnologia Sinica,2012,43(4):723-728.]
[97]BERNAL-HERNNDEZ Y Y,MEDINA-DAZ I M,ROBLEDO-MARENCO M L,etal.Acetylcholinesterase and Metallothionein in Oysters (Crassostreacorteziensis) From a Subtropical Mexican Pacific Estuary[J].Ecotoxicology,2010,19(4):819-825.
[99]張融,范文宏,唐戈,等.水體中重金屬鎘和鋅對大型蚤聯(lián)合毒性效應(yīng)的初步研究[J].生態(tài)毒理學(xué)報,2008,3(3):286-290.[ZHANG Rong,FAN Wen-hong,TANG Ge,etal.A Preliminary Study on Joint Toxicity of Cd and Zn onDaphniamagna[J].Asian Journal of Ecotoxicology,2008,3(3):286-290.]
[100]ZHANG J Q,WANG J,XIANG J H.A Cadmium Metallothionein Gene of Ridgetail White PrawnExopalaemoncarinicauda(Holthuis,1950) and Its Expression[J].Chinese Journal of Oceanology and Limnology,2013,31(6):1204-1209.
[101]ZHANG Z,ZHANG Q.Molecular Cloning,Characterization and Expression of Heat Shock Protein 70 Gene From the Oyster Crassostrea Hongkongensis Responding to Thermal Stress and Exposure of Cu2+and Malachite Green[J].Gene,2012,497(2):172-180.
[102]YAMASHITA M,YABU T,OJIMA N.Stress Protein HSP70 in Fish[J].Aquatic Bioscience Monograph,2010,3(4):111-141.
[103]肖成峰,李芳澤,賀涵貞,等.HSP70家族基因多態(tài)性及其與疾病易感性之間的關(guān)系[J].國外醫(yī)學(xué)遺傳分冊,2003,26(4):205-209.[XIAO Cheng-feng,LI Fang-ze,HE Han-zhen,etal.Genetic Polymorphism of HSP70 Family and Its Relationship With Disease Susceptibility[J].Foreign Medical Sciences(Section of Genetics),2003,26(4):205-209.]
[104]簡精.熱休克蛋白90α基因多態(tài)性與肺癌危險度的關(guān)聯(lián)性研究[D].武漢:華中科技大學(xué),2009.[JIAN Jing.Association Study on Polymorphisms ofhsp90αGene With Lung Cancer Risk[D].Wuhan:Huazhong University of Science and Technology,2009.]
[105]張蕾.櫛孔扇貝、海灣扇貝熱休克蛋白22基因的克隆和表達(dá)及其與櫛孔扇貝抗熱性狀相關(guān)SNP位點的篩查[D].青島:中國海洋大學(xué),2009.[ZHANG Lei.Cloning and Expression Analysis of Scallop HSP22 Gene and Its Association With Heat Stress Resistance[D].Qingdao:Ocean University of China,2009.]
[106]LIU H,CHEN H,JING J,etal.Cloning and Characterization of the HSP90 Beta Gene From Tanichthys Albonubes Lin (Cyprinidae) Effect of Copper and Cadmium Exposure[J].Fish Physiology and Biochemistry,2012,38(3):745-756.
[107]KAI J E,LEUTENEGGER C M,KOHLER H R,etal.Effects of Neurotoxic Insecticides on Heat-Shock Proteins and Cytokine Transcription in Chinook Salmon (Oncorhynchustshawytscha)[J].Ecotoxicology & Environmental Safety,2009,72(1):182-190.
[108]RHEE J S,KIM R O,CHOI H G,etal.Molecular and Biochemical Modulation of Heat Shock Protein 20 (Hsp20) Gene by Temperature Stress and Hydrogen Peroxide (H2O2) in the Monogonont Rotifer,Brachionussp.[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2011,154(1):19-27.
[109]JIANG X Y,GUAN X T,YAO L L,etal.Effects of Single and Joint Subacute Exposure of Copper and Cadmium on Heat Shock Proteins in Common Carp (Cyprinuscarpio)[J].Biological Trace Element Research,2016,169(2):374-381.
[110]郭彪,王芳,侯純強,等.溫度突變對凡納濱對蝦己糖激酶和丙酮酸激酶活力以及熱休克蛋白表達(dá)的影響[J].中國水產(chǎn)科學(xué),2008,15(5):885-889.[GUO Biao,WANG Fang,HOU Chun-qiang,etal.Effects of Acute Temperature Fluctuation on HK and PK Activity,HSP70 Relative Content inLitopenaeusvannamei[J].Journal of Fishery Sciences of China,2008,15(5):885-889.]
[111]曲凌云,相建海,孫修勤,等.溫度刺激下櫛孔扇貝不同組織熱休克蛋白HSP70的表達(dá)研究[J].高技術(shù)通訊,2005,15(5):97-100.[QU Ling-yun,XIANG Jian-hai,SUN Xiu-qin,etal.Expression Analysis of HSP70 in Various Tissues ofChlamysfarreriUnder Thermal Stress[J].High Technology Letters,2005,15(5):97-100.]
[112]GUO Z Y,JIAO C Z,XIAN J H.Heat Shock Protein 70 Expression in ShrimpFenneropenaeuschinensisDuring Thermal and Immune-Challenged Stress[J].Chinese Journal of Oceanology and Limnology,2004,22(4):386-391.
[113]宋文華,LUDEVESE G,董云偉,等.高溫對草魚熱休克蛋白表達(dá)的影響[J].海洋湖沼通報,2012(1):27-32.[SONG W H,LUDEVESE G,DONG Y W,etal.The Effects of Thermal Stress on Survival and Expression of the Heat Shock Protein of Grass CarpCtenopharyngodonidellus[J].Transactions of Oceanology and Limnology,2012(1):27-32.]
[114]CHE S,SONG W Z,LIN X Z.Response of Heat-Shock Protein (HSP) Genes to Temperature and Salinity Stress in the Antarctic Psychrotrophic BacteriumPsychrobactersp. G[J].Current Microbiology,2013,67(5):601-608.
[115]王鵬飛.鱖熱休克蛋白和低氧反應(yīng)基因的克隆和表達(dá)研究[D].廣州:中山大學(xué),2014.[WANG Peng-fei.Cloning and Expression Analysis of Heat Shock Protein and Hypoxia Responsive Genes in Mandarin Fish(Sinipercachuatsi)[D].Guangzhou:Sun Yat-sen University,2014.]
[116]王曉陽.低氧脅迫下鰱微管蛋白相關(guān)基因及熱休克蛋白70的表達(dá)分析[D].武漢:華中農(nóng)業(yè)大學(xué),2013.[WANG Xiao-yang.Effect of Hypoxic Stress on Microtubulin Gene and Heat Shock Protein 70 Expression inHypophthalmichthysmoritrix[D].Wuhan:Huazhong Agricultural University,2013.]
[117]MOHINDRA V,TRIPATHI R K,YADAV P,etal.Hypoxia Induced Altered Expression of Heat Shock Protein Genes (Hsc71,Hsp90α and Hsp10) in Indian Catfish,Clariasbatrachus(Linnaeus,1758) Under Oxidative Stress[J].Molecular Biology Reports,2015,42(7):1197-1209.
[118]QIAN Z,LIU X,WANG L,etal.Gene Expression Profiles of Four Heatshock Proteins in Response to Different Acute Stresses in Shrimp,Litopenaeusvannamei[J].Comparative Biochemistry & Physiolology Part C:Toxicology Pharmacology,2012,156(3/4):211-220.
[119]SASSI A,DARIAS M J,SAID K,etal.Cadmium Exposure Affects the Expression of Genes Involved in Skeletogenesis and Stress Response in Gilthead Sea Bream Larvae[J].Fish Physiology & Biochemistry,2013,39(3):649-659.
[120]CONG M,Lü J S,WU H F,etal.Effect of Cadmium on the Defense Response of Pacific OysterCrassostreagigastoListonellaanguillarumChallenge[J].Chinese Journal of Oceanology and Limnology,2013,31(5):1002-1009.
[121]劉迪秋,葛鋒,陳朝銀,等.重金屬銅、鎘對鯽肝臟基因表達(dá)的影響[J].中國水產(chǎn)科學(xué),2010,17(6):1243-1249.[LIU Di-qiu,GE Feng,CHEN Chao-yin,etal.Effects of Heavy Metals Cu and Cd on Gene Expression in Liver Tissue ofCarassiusauratus[J].Journal of Fishery Sciences of China,2010,17(6):1243-1249.]
[122]KWONG R W,ANDRéS J A,NIYOGI S.Effects of Dietary Cadmium Exposure on Tissue-Specific Cadmium Accumulation,Iron Status and Expression of Iron-Handling and Stress Inducible Genes in Rainbow Trout:Influence of Elevated Dietary Iron[J].Aquatic Toxicology,2011,102(1/2):1-9.
[123]SOLé-ROVIRA M,FERNNDEZ-DAZ C,CAAVATE J P,etal.Effects on Metallothionein Levels and Other Stress Defences in Senegal Sole Larvae Exposed to Cadmium[J].Bulletin of Environmental Contamination and Toxicology,2005,74(3):597-603.
(責(zé)任編輯: 李祥敏)
Advancement of the Study on Biomarkers of Aquatic Animals Exposed to Cadmium Stress.
GAOTian-ran1,2,ZHOUKe-xin2
(1.School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China;2.Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China)
The content of heavy metals in a certain tissue or organ of an organism may reflect the level of heavy metal pollution in the environment, but not any information of molecular level. Changes in biomarkers may be used for assessing level of heavy metal exposure and potential adverse effects on living organisms. Biomarkers can be sorted into three major categories: exposure biomarkers, effect biomarkers and susceptibility biomarkers. Principles for using antioxidant, genetic toxicity, acetyl cholinesterase, metallothionein and heat shock proteins biomarkers to monitor Cd pollution of water bodies, and status of their applications are addressed, in an attempt to provide some reference for future studies on mechanism of cadmium toxication of aquatic animals as well as a theoretical basis for prevention and control of heavy metal pollution and protection of the aquatic ecosystem.
heavy metal; cadmium; aquatic animal; biomarker
2016-02-19
國家環(huán)境保護(hù)公益性行業(yè)科研專項(201309049)
X174;X835
A
1673-4831(2017)04-0297-11
10.11934/j.issn.1673-4831.2017.04.002
高天然(1991—),女,江蘇徐州人,碩士生,主要研究方向為環(huán)境生態(tài)。E-mail: kakabuqi@sina.com
① 通信作者E-mail: zhoukexin@aliyun.com