肖程程+張杰
[摘要] 纖維化造成的正常腎實(shí)質(zhì)破壞是導(dǎo)致慢性腎臟病漸進(jìn)性損傷的常見(jiàn)致病因素。了解腎間質(zhì)纖維化的發(fā)病基礎(chǔ)可以為治療慢性腎臟病提供更好的選擇。雖然其機(jī)制較為復(fù)雜,但可主要?dú)w納為以下四點(diǎn):①間質(zhì)性炎性反應(yīng),同時(shí)參與致病和修復(fù)過(guò)程;②主要來(lái)源于腎間質(zhì)細(xì)胞(成纖維細(xì)胞)的肌纖維母細(xì)胞形成獨(dú)特的間質(zhì)細(xì)胞群,參與細(xì)胞外基質(zhì)與間質(zhì)瘢痕形成;③腎小管上皮細(xì)胞在損傷早期參與損傷過(guò)程,在損傷后期由于其再生能力的喪失成為纖維化的受害者;④間質(zhì)毛細(xì)血管完整性的破壞導(dǎo)致氧輸送受阻,發(fā)生惡性級(jí)聯(lián)缺氧-氧化應(yīng)激,加重了腎損傷和纖維化,由于缺乏足夠的血管生成反應(yīng),無(wú)法維持健康的間質(zhì)毛細(xì)血管網(wǎng)絡(luò)。遺傳和表觀(guān)遺傳因素的重要性也日益受到重視。心腎綜合征的發(fā)生發(fā)展與腎臟纖維化的高發(fā)病率和病死率密切相關(guān)。
[關(guān)鍵詞] 細(xì)胞外基質(zhì);間質(zhì)毛細(xì)血管;腎纖維化;巨噬細(xì)胞;成纖維細(xì)胞
[中圖分類(lèi)號(hào)] R692 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)03(a)-0045-04
The cellular and molecular basis of renal fibrosis
XIAO Chengcheng ZHANG Jie
Department of Urology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
[Abstract] The destruction of normal kidney parenchyma caused by fibrosis is a common cause of chronic kidney disease. Understanding the pathogenesis of renal interstitial fibrosis can provide a better treatment option for chronic kidney disease. Although complex, it can be mainly summarized as the following four aspects: ①I(mǎi)nterstitial inflammatory reaction, which participates in the pathogenesis and repair process. ②Myofibroblast mainly derived from the renal interstitial cells (fibroblasts) forms a unique cell mass, which participates in the formation of extracellular matrix (ECM) and interstitial scars. ③Renal tubular epithelial cells participate in early kidney injury, and in the late kidney injury, they become the victim of fibrosis for the loss of the regenerative ability. ④The damaged integrity of interstitial capillaries results in the disruption of oxygen transport, and the incidence of a malignant cascade of hypoxia and oxidative stress aggravates renal injury and fibrosis. Due to the lack of sufficient blood vessel formation, the healthy capillary network can not be maintained. The importance of genetic and epigenetic factors has also been paid more attention. The incidence and development of cardiac syndrome is closely related to the high morbidity and mortality of renal fibrosis.
[Key words] Extracellular matrix; Interstitial capillaries; Renal fibrosis; Macrophages; Fibroblasts
慢性腎臟病的高發(fā)病率給社會(huì)和患者家庭帶來(lái)了沉重的經(jīng)濟(jì)負(fù)擔(dān)。普遍認(rèn)為纖維化造成的正常腎實(shí)質(zhì)破壞是導(dǎo)致慢性腎臟病漸進(jìn)性損傷的常見(jiàn)致病因素。盡管大量研究已發(fā)現(xiàn)導(dǎo)致纖維化的關(guān)鍵細(xì)胞和分子介質(zhì),但尚未得到臨床驗(yàn)證[1-4]。目前13%~16%的慢性腎臟病患者需行血液透析治療,遠(yuǎn)期他們可能需進(jìn)行腎移植治療,而慢性腎臟病所致的心血管疾病高患病風(fēng)險(xiǎn)更使患者生存率明顯降低[5]。基礎(chǔ)科學(xué)研究的快速發(fā)展為研究新的治療方法提供了平臺(tái)。參與纖維化主要介質(zhì)的發(fā)現(xiàn),更為靶向治療的發(fā)展打下基礎(chǔ)。本文對(duì)腎纖維化的細(xì)胞和分子基礎(chǔ)進(jìn)行綜述,為基礎(chǔ)研究及臨床工作提供參考。
1 腎纖維化的細(xì)胞與分子介質(zhì)
1.1 炎性細(xì)胞
慢性腎疾病的共同特點(diǎn)是巨噬細(xì)胞參與的間質(zhì)浸潤(rùn),其密度與移植腎存活率呈負(fù)相關(guān)[1]。在不同環(huán)境下,巨噬細(xì)胞可合成和分泌多種產(chǎn)物,包括生長(zhǎng)因子和細(xì)胞因子[轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)、血小板衍生生長(zhǎng)因子、成纖維細(xì)胞生長(zhǎng)因子、腫瘤壞死因子-α、γ-干擾素、肝細(xì)胞生長(zhǎng)因子],酶及其抑制劑(血管緊張素轉(zhuǎn)換酶、纖溶酶原激活因子、纖溶酶原激活物抑制物-1、膠原酶、基質(zhì)金屬蛋白酶組織抑制劑),基質(zhì)蛋白(膠原蛋白、纖連蛋白、凝血酶敏感蛋白)和許多其他產(chǎn)物(補(bǔ)體蛋白、凝血因子、生物活性脂質(zhì)、活性氧、一氧化氮、內(nèi)皮素等)[6]。已有實(shí)驗(yàn)表明減少間質(zhì)中巨噬細(xì)胞的數(shù)量可減輕腎纖維化程度[7]。
多功能巨噬細(xì)胞與組織潛在損傷的關(guān)系已被公認(rèn),其分子基礎(chǔ)在過(guò)去十年的重要科學(xué)進(jìn)展中已被闡明[8]。經(jīng)典活化的M1型巨噬細(xì)胞與替代激活的M2型巨噬細(xì)胞來(lái)源于局部刺激下暴露的單核細(xì)胞。誘導(dǎo)M1型巨噬細(xì)胞形成的主要是γ-干擾素、脂多糖、腫瘤壞死因子、粒細(xì)胞巨噬細(xì)胞集落刺激因子,主要與組織損傷相關(guān);而白細(xì)胞介素(IL)-4、IL-13、糖皮質(zhì)激素、維生素D、巨噬細(xì)胞集落刺激因子和TGF-β誘導(dǎo)M2型巨噬細(xì)胞形成,其可能促進(jìn)組織損傷的修復(fù)。當(dāng)務(wù)之急是確定兩者之間的微妙聯(lián)系。這依賴(lài)于基因、蛋白質(zhì)和代謝分析研究。例如Ⅰ型甘露糖受體,精氨酸酶-1的出現(xiàn)將抑制M2細(xì)胞。在可逆性肝損傷模型中,巨噬細(xì)胞的功能已被闡明。損傷誘導(dǎo)期抑制巨噬細(xì)胞可減輕纖維化[9]。纖維化是傷口愈合的重要組成部分,但還需要進(jìn)一步研究M2型巨噬細(xì)胞應(yīng)答后修復(fù)形成的正常腎實(shí)質(zhì)與導(dǎo)致慢性腎臟病的不良瘢痕的關(guān)系。這突出了體外介導(dǎo)巨噬細(xì)胞修復(fù)腎組織的治療潛力,有待動(dòng)物實(shí)驗(yàn)進(jìn)一步證實(shí)[10]。
1.2 肌成纖維細(xì)胞
肌成纖維細(xì)胞是最開(kāi)始出現(xiàn)在纖維化腎間質(zhì)中的細(xì)胞群[2],其出現(xiàn)是瘢痕形成必不可少的條件,已有研究表明,其數(shù)量與預(yù)后密切相關(guān),其特征為由具有成纖維細(xì)胞形態(tài)特征的間質(zhì)細(xì)胞所分泌的α-平滑肌肌動(dòng)蛋白(αSMA)。有研究證實(shí)肌成纖維細(xì)胞是瘢痕中基質(zhì)蛋白的主要來(lái)源,這表明肌成纖維細(xì)胞的存在是纖維化必不可少的條件。肌成纖維細(xì)胞的來(lái)源已在動(dòng)物模型中被廣泛研究,但仍未達(dá)成共識(shí)。譜系追蹤研究采用了遺傳工程策略和不同的細(xì)胞追蹤方法,最終出現(xiàn)了相悖的結(jié)果[2,11-13]。αSMA本身可能不是促進(jìn)纖維化的蛋白,據(jù)報(bào)道,αSMA遺傳缺陷的小鼠會(huì)發(fā)生更嚴(yán)重的腎纖維化[14]。最近的研究發(fā)現(xiàn)細(xì)胞亞群表達(dá)的甘露糖受體-2可降解細(xì)胞外基質(zhì)[15]。不同細(xì)胞起源的肌成纖維細(xì)胞存在的功能異質(zhì)性還有待探索。
大部分肌成纖維細(xì)胞來(lái)源于內(nèi)源性腎細(xì)胞的遷移、增殖和轉(zhuǎn)化。腎成纖維細(xì)胞和微血管管周細(xì)胞是原始肌纖維母細(xì)胞的主要來(lái)源[16]。當(dāng)少量基質(zhì)產(chǎn)生時(shí),成纖維細(xì)胞也可來(lái)源于髓質(zhì)細(xì)胞,然而在腎臟嚴(yán)重?fù)p害時(shí),腎小管上皮細(xì)胞、內(nèi)皮細(xì)胞也可以轉(zhuǎn)分化為肌成纖維細(xì)胞,其總體數(shù)量較小,并持續(xù)存在至病程后期[17]。
1.3 腎小管上皮細(xì)胞
在慢性腎損傷誘導(dǎo)期,腎小管上皮細(xì)胞通過(guò)產(chǎn)生合成產(chǎn)物(活性氧、炎癥介質(zhì)等)主動(dòng)參與損傷過(guò)程。多種來(lái)源于血漿或腎小球異常過(guò)濾的尿蛋白參與損害腎小管上皮細(xì)胞[3]。尿蛋白可以通過(guò)結(jié)合其相關(guān)受體激活特定的細(xì)胞反應(yīng)。替代激活途徑可被生化修飾或共軛尿白蛋白激活,包括近端小管受體介導(dǎo)蛋白的內(nèi)吞作用和激活其受體具體信號(hào)的反應(yīng)[18]。后一種途徑與刺激炎癥趨化因子(由正常T細(xì)胞表達(dá)和分泌所調(diào)節(jié)的單核細(xì)胞趨化蛋白-1、IL-8、趨化因子、TGF-β、內(nèi)皮素)的合成有關(guān)。在何種程度上尿蛋白會(huì)激活腎小管上皮的細(xì)胞反應(yīng)尚不清楚,但這可解釋蛋白尿的程度與慢性炎癥及纖維化密切相關(guān)這一無(wú)可爭(zhēng)議的事實(shí)。
隨著纖維化的進(jìn)展,腎小管上皮細(xì)胞會(huì)加速凋亡和衰老,這使其失去再生能力。這一轉(zhuǎn)變可能涉及細(xì)胞周期的多種具體因素,例如自噬失敗、內(nèi)質(zhì)網(wǎng)應(yīng)激、氧化應(yīng)激和信號(hào)缺失等[19-21]。腎小管上皮細(xì)胞死亡是腎實(shí)質(zhì)損害的重要特征,非功能性腎小管和腎小球的出現(xiàn)會(huì)導(dǎo)致嚴(yán)重的后果。腎小管上皮細(xì)胞的組織學(xué)指標(biāo)與腎功能密切相關(guān)[22]。保護(hù)并再生功能性上皮細(xì)胞,維持腎單位的完整性和功能性是有效治療慢性腎疾病不可或缺的組成部分。新一代測(cè)序技術(shù)已經(jīng)揭示導(dǎo)致人類(lèi)腎性營(yíng)養(yǎng)不良的基因突變,如無(wú)翅型MMTV整合家族成員4,其為腎功能的再生研究奠定了堅(jiān)實(shí)基礎(chǔ)[23]。
1.4 間質(zhì)毛細(xì)血管
腎臟代謝活動(dòng)是高耗氧過(guò)程,已有研究對(duì)漸進(jìn)性纖維化與缺氧所致的慢性腎臟病進(jìn)行比較[4]。慢性腎損傷的早期,間質(zhì)微血管通透性增加[24]。因此,當(dāng)血漿蛋白如纖維蛋白原和白蛋白結(jié)合物漏入間質(zhì)(腎毛細(xì)血管滲漏綜合征)時(shí),會(huì)發(fā)生炎癥和纖維化反應(yīng)。在慢性腎疾病中,致病的關(guān)鍵血漿蛋白尚未被確定,最可能是纖維蛋白,因?yàn)楫?dāng)腎間質(zhì)中纖維蛋白減少時(shí),αSMA含量會(huì)相應(yīng)降低[25]。雖然許多慢性疾病的特點(diǎn)是血管過(guò)度增生,但慢性腎臟病卻發(fā)生相反的變化——血管生成受阻,有效間質(zhì)毛細(xì)血管數(shù)量顯著下降。這使研究人員考慮使用血管生成因子或阻滯抗血管生成因子治療慢性腎臟病,但在進(jìn)行性腎瘢痕形成過(guò)程中,其作用被證實(shí)為無(wú)益的[26]。
缺氧-氧化應(yīng)激與腎纖維化緊密相關(guān)。腎小管細(xì)胞氧化應(yīng)激是慢性腎臟損傷的普遍特征,這可能是由于活性氧過(guò)度生成和抗氧化能力不足的后果。活性氧的特異性分子靶點(diǎn)對(duì)腎纖維化的作用還有待被探索,在將來(lái)我們可能會(huì)對(duì)其有更多的了解,因?yàn)榇x組學(xué)研究可以確定正常及纖維化腎臟中糖、核苷酸、氨基酸和脂類(lèi)的具體分布。氧作為細(xì)胞信號(hào)分子的作用已被證實(shí),也已證實(shí)其與纖維化途徑有關(guān)[27]。高通量篩選技術(shù)的出現(xiàn)使通過(guò)改善受損腎臟氧化還原能力的治療藥物出現(xiàn)成為可能。最近有實(shí)驗(yàn)表明半胱胺具有抗腎纖維化的作用,其作用機(jī)制可能與減輕氧化應(yīng)激反應(yīng)有關(guān)[28]。
2 纖維化反應(yīng)的遺傳和表觀(guān)遺傳學(xué)調(diào)控
同類(lèi)原發(fā)性腎臟病患者的長(zhǎng)期預(yù)后存在高度差異性是公認(rèn)的。毫無(wú)疑問(wèn),遺傳學(xué)起著重要的作用,最好的例子是腎臟病結(jié)局與種族的相關(guān)差異性。非裔美國(guó)人載脂蛋白L1基因型(G1和G2的風(fēng)險(xiǎn)等位基因)與腎臟病預(yù)后密切相關(guān),這是基因影響腎纖維化嚴(yán)重程度的最新例證[29]。
通過(guò)全基因組研究,探索慢性腎臟病的風(fēng)險(xiǎn)與嚴(yán)重程度的關(guān)系,盡管無(wú)法確定其因果關(guān)系,并且基因的多態(tài)性未必導(dǎo)致蛋白功能改變,但人類(lèi)慢性腎臟病全基因組關(guān)聯(lián)研究提供了鑒別新目標(biāo)人群的無(wú)偏方法,其潛在作用值得進(jìn)一步研究。在最近的幾項(xiàng)人全基因組關(guān)聯(lián)研究中,尿調(diào)節(jié)素(UMOD)被確定為慢性腎臟病的風(fēng)險(xiǎn)及嚴(yán)重程度的重要決定因素[30]。UMOD基因編碼一種蛋白質(zhì),在亨利髓袢升支和早期遠(yuǎn)端小管特異表達(dá)。盡管目前UMOD的基本功能未知,但其在正常人尿液中含量很高,蛋白編碼基因突變是以慢性腎小管間質(zhì)腎炎為特點(diǎn)的家族性腎臟病的已知誘因。隨著人類(lèi)遺傳研究水平的提高,我們可以預(yù)見(jiàn),在慢性腎臟病遺傳學(xué)領(lǐng)域?qū)⒂兄卮笸黄啤?
非蛋白編碼基因序列的改變也可能影響纖維化過(guò)程,其機(jī)制可能包括DNA甲基化、組蛋白修飾和miRNA活動(dòng)等。這些機(jī)制都有改變腎纖維化進(jìn)程的潛能,例如,在腎纖維化的實(shí)驗(yàn)?zāi)P椭校褂萌ゼ谆瘎?、組蛋白去乙酰化酶抑制劑和抗miRNA-21治療后,間質(zhì)的肌成纖維細(xì)胞數(shù)目顯著減少。此外,已有研究證據(jù)表明在一些患病動(dòng)物和人類(lèi)組織樣本中,microRNA-21出現(xiàn)失調(diào)控[31-34]。反應(yīng)性纖維化的表觀(guān)遺傳學(xué)調(diào)控為我們研究環(huán)境對(duì)基因調(diào)控通路的影響提供了新思路。
3 心腎綜合征
大多數(shù)慢性腎臟病患者沒(méi)有達(dá)到需要腎臟替代治療維持生命的地步,但他們中很多卻早卒于心血管疾病。慢性腎臟病風(fēng)險(xiǎn)的上升與心功能衰竭的發(fā)生幾乎呈指數(shù)級(jí)關(guān)系。在DuBose等[5]的一項(xiàng)研究中,eGFR<15 mL/(min·1.73 m2)的人群發(fā)生心血管事件的風(fēng)險(xiǎn)比eGFR>60 mL/(min·1.73 m2)的人群高17倍。內(nèi)皮細(xì)胞功能障礙、炎癥、平滑肌細(xì)胞增殖、氧化應(yīng)激、血管鈣化等多種因素都可促進(jìn)心腎綜合征的發(fā)生。在減輕腎纖維化、高血壓和/或蛋白尿的同時(shí),也應(yīng)減少心血管疾病的發(fā)生率和嚴(yán)重程度,提高患者的生存率。
在過(guò)去的20年中,基礎(chǔ)科學(xué)研究提高了我們對(duì)纖維化細(xì)胞和分子基礎(chǔ)的理解,使我們了解到正常結(jié)構(gòu)和功能的腎通過(guò)纖維化逐漸轉(zhuǎn)變?yōu)楣δ軔夯哪I的過(guò)程。
盡管許多問(wèn)題還有待解答,但我們必須從現(xiàn)在做起,將已有的研究成果轉(zhuǎn)變成有效預(yù)防、治療甚至治愈人類(lèi)慢性腎疾病的策略。
[參考文獻(xiàn)]
[1] Yu F,Wu LH,Tan Y,et al. Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 International Society of Nephrology and Renal Pathology Society system [J]. Kidney Int,2010,77(9):820-829.
[2] Grande MT,Lopez-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy [J]. Nat Rev Nephrol,2009,5(6):319-328.
[3] Zandi-Nejad K,Eddy AA,Glassock RJ,et al. Why is proteinuria an ominous biomarker of progressive kidney disease? [J]. Kidney Int Suppl,2004(92):S76-89.
[4] Mimura I,Nangaku M. The suffocating kidney:tubulointerstitial hypoxia in end-stage renal disease [J]. Nat Rev Nephrol,2010,6(11):667-678.
[5] DuBose TD Jr. American Society of Nephrology Presidential Address 2006:chronic kidney disease as a public health threat--new strategy for a growing problem [J]. J Am Soc Nephrol,2007,18(4):1038-1045.
[6] Eddy AA,Neilson EG. Chronic kidney disease progression [J]. J Am Soc Nephrol,2006,17(11):2964-2966.
[7] Karihaloo A,Koraishy F,Huen SC,et al. Macrophages promote cyst growth in polycystic kidney disease [J]. J Am Soc Nephrol,2011,22(10):1809-1814.
[8] Ricardo SD,van Goor H,Eddy AA. Macrophage diversity in renal injury and repair [J]. J Clin Invest,2008,118:3522-3530.
[9] Duffield JS,F(xiàn)orbes SJ,Constandinou CM,et al. Selective depletion of macrophages reveals distinct,opposing roles during liver injury and repair [J]. J Clin Invest,2005,115(1):56-65.
[10] Wang Y,Harris DC. Macrophages in renal disease [J]. J Am Soc Nephrol,2011,22(1):21-27.
[11] Lin SL,Kisseleva T,Brenner DA,et al. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney [J]. Am J Pathol,2008,173(6):1617-1627.
[12] Lebleu VS,Taduri G,O'Connell J,et al. Origin and function of myofibroblasts in kidney fibrosis [J]. Nat Med,2013,19(8):1047-1053.
[13] Humphreys BD,Lin SL,Kobayashi A,et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis [J]. Am J Pathol,2010,176:85-97.
[14] Takeji M,Moriyama T,Oseto S,et al. Smooth muscle alpha-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. [J]. J Biol Chem,2006,281(52):40193-40200.
[15] Lopez-Guisa JM,Cai X,Collins SJ,et al. Mannose receptor 2 attenuates renal fibrosis [J]. J Am Soc Nephrol,2012,23(2):236-251.
[16] Eddy AA. The origin of scar-forming kidney myofibroblasts [J]. Nat Med,2013,19(8):964-966.
[17] Reich BJ,Smith LB. Bayesian quantile regression for censored data [J]. Biometrics,2013,69(3):651-660.
[18] Christensen EI,Birn H,Storm T,et al. Endocytic receptors in the renal proximal tubule [J]. Physiology(Bethesda),2012,27(4):223-236.
[19] Yang L,Besschetnova TY,Brooks CR,et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury [J]. Nat Med,2010,16(5):535-543.
[20] Li L,Zepeda-Orozco D,Black R,et al. Autophagy is a component of epithelial cell fate in obstructive uropathy [J]. Am J Pathol,2010,176(4):1767-1778.
[21] Humphreys BD,Czerniak S,DiRocco DP,et al. Repair of injured proximal tubule does not involve specialized progenitors [J]. Proc Natl Acad Sci U S A,2011,108(22):9226-9231.
[22] Mackensen-Haen S,Bohle A,Christensen J,et al. The consequences for renal function of widening of the interstitium and changes in the tubular epithelium of the renal cortex and outer medulla in various renal diseases [J]. Clin Nephrol,1992,37(2):70-77.
[23] Vivante A,Mark-Danieli M,Davidovits M,et al. Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signaling [J]. J Am Soc Nephrol,2013,24(4):550-558.
[24] Yamaguchi I,Tchao BN,Burger ML,et al. Vascular endothelial cadherin modulates renal interstitial fibrosis [J]. Nephron Exp Nephrol,2012,120(1):e20-e31.
[25] Sorensen I,Susnik N,Inhester T,et al. Fibrinogen,acting as a mitogen for tubulointerstitial fibroblasts,promotes renal fibrosis [J]. Kidney Int,2011,80(10):1035-1044.
[26] Long DA,Norman JT,F(xiàn)ine LG. Restoring the renal microvasculature to treat chronic kidney disease [J]. Nat Rev Nephrol,2012,8(4):244-250.
[27] Finkel T. Signal transduction by reactive oxygen species [J]. J Cell Biol,2011,194(1):7-15.
[28] Okamura DM,Bahrami NM,Ren S,et al. Cysteamine modulates oxidative stress and blocks myofibroblast activity in CKD [J]. J Am Soc Nephrol,2014,25(1):43-54.
[29] Wasser WG,Tzur S,Wolday D,et al. Population genetics of chronic kidney disease:the evolving story of APOL1 [J]. J Nephrol,2012,25(5):603-618.
[30] Eddy AA. Scraping fibrosis:UMODulating renal fibrosis [J]. Nat Med,2011,17(5):553-555.
[31] Luo Y,Wang C,Chen X,et al. Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome [J]. Clin Chem,2013,59(4):658-666.
[32] Wang G,Kwan BC,Lai FM,et al. Urinary miR-21,miR-29,and miR-93:novel biomarkers of fibrosis [J]. Am J Nephrol,2012,36(5):412-418.
[33] Ben-Dov IZ,Muthukumar T,Morozov P,et al. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis [J]. Transplantation,2012,94(11):1086-1094.
[34] Glowacki F,Savary G,Gnemmi V,et al. Increased circulating miR-21 levels are associated with kidney fibrosis [J]. PLoS One,2013,8(2):e58014.
中國(guó)醫(yī)藥導(dǎo)報(bào)2017年7期