劉在倫,陳小昌,王東偉,侯祎華
(1.蘭州理工大學(xué)能源與動(dòng)力工程學(xué)院,蘭州730050; 2.蘭州理工大學(xué)溫州泵閥工程研究院,溫州325105)
離心泵平衡孔液體泄漏量試驗(yàn)與分析
劉在倫1,2,陳小昌1,王東偉1,2,侯祎華1
(1.蘭州理工大學(xué)能源與動(dòng)力工程學(xué)院,蘭州730050; 2.蘭州理工大學(xué)溫州泵閥工程研究院,溫州325105)
針對(duì)離心泵上葉輪平衡孔的實(shí)際液體泄漏量難以測量的問題,設(shè)計(jì)了通過調(diào)節(jié)平衡腔液體壓力來測量平衡孔液體泄漏量的試驗(yàn)裝置,在平衡孔直徑4、6、8、11 mm條件下對(duì)泵性能、平衡孔液體泄漏量和平衡腔液體壓力進(jìn)行了測試及分析,獲得了不同直徑平衡孔下泵的性能曲線、平衡孔泄漏量系數(shù)和軸向力系數(shù)與比面積的關(guān)系曲線。試驗(yàn)結(jié)果表明:加大葉輪平衡孔直徑會(huì)使泵的揚(yáng)程降低、輸入功率增大和效率降低;平衡孔液體泄漏量系數(shù)與比面積關(guān)系曲線有明顯的規(guī)律性,其隨著比面積增大而減小,且揚(yáng)程系數(shù)對(duì)其有較大的影響;軸向力系數(shù)曲線是非線性曲線,在比面積小于2.5時(shí),軸向力系數(shù)隨比面積增大而急劇減小;比面積大于等于2.5小于等于4.5時(shí),軸向力系數(shù)曲線趨于平坦,其均值為0.112;比面積大于4.5時(shí),軸向力系數(shù)曲線幾乎與橫坐標(biāo)平行,其均值為0.067。該研究為較精確計(jì)算平衡孔液體泄漏量與平衡腔區(qū)域的軸向力提供了參考。
離心泵;試驗(yàn);葉輪;平衡孔泄漏量;軸向力
劉在倫,陳小昌,王東偉,侯祎華. 離心泵平衡孔液體泄漏量試驗(yàn)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):67-74.doi:10.11975/j.issn.1002-6819.2017.07.009 http://www.tcsae.org
Liu Zailun, Chen Xiaochang, Wang Dongwei, Hou Yihua. Experiment and analysis of balance hole liquid leakage in centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 67-74. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.009 http://www.tcsae.org
開平衡孔雙密封環(huán)葉輪具有能平衡大部分軸向力的特性,至今仍廣泛應(yīng)用于離心泵中[1-4]。平衡孔液體泄漏量對(duì)開平衡孔雙密封環(huán)葉輪平衡軸向力的能力有著決定性的作用,這對(duì)泵的容積效率、輪阻損失、泵腔內(nèi)液體壓力分布及軸向力的計(jì)算都有較大的影響[5-10],因此研究平衡孔液體泄漏量的測量及計(jì)算方法就顯的格外必要。
文獻(xiàn)[11]基于泵腔液體以葉輪角速度一半作剛體旋轉(zhuǎn)的假設(shè),在密封環(huán)正常工作的條件下,推導(dǎo)出了設(shè)計(jì)工況下平衡孔液體泄漏量理論計(jì)算公式,但這一假設(shè)與泵腔液體實(shí)際流動(dòng)不符。文獻(xiàn)[12]測量出了直徑為70 mm、長度為35 mm、徑向間隙為0.15 mm的密封環(huán)在前后壓差在 0~0.7 MPa范圍內(nèi)的泄漏量為 0~4.2×10-4m3/s,該研究為計(jì)算離心泵密封環(huán)泄漏量提供了試驗(yàn)數(shù)據(jù)。文獻(xiàn)[13]通過測量平衡腔和泵進(jìn)口的液體壓力,給出了不同揚(yáng)程時(shí)平衡孔液體泄漏量與比面積的關(guān)系曲線,其不足之處是未測量平衡孔實(shí)際泄漏量?;诤竺芊猸h(huán)徑向間隙與平衡孔是通過平衡腔連通的,文獻(xiàn)[14]采用封死葉輪進(jìn)口和外界水泵供壓力水的方法來模擬離心泵運(yùn)行工況,通過測試不同結(jié)構(gòu)形式密封環(huán)的泄漏量,獲得了密封環(huán)間隙泄漏液體的流量系數(shù)與泵揚(yáng)程的關(guān)系曲線。上述的研究成果對(duì)平衡孔液體泄漏量計(jì)算有重要的參考價(jià)值。由于離心泵葉輪高速旋轉(zhuǎn)以及泵結(jié)構(gòu)的限制,實(shí)測平衡孔液體泄漏量一直是泵研究領(lǐng)域的難題。
本文設(shè)計(jì)了通過調(diào)節(jié)平衡腔液體壓力來測量平衡孔液體泄漏量的試驗(yàn)裝置,采用改變平衡孔直徑的方法,通過測試不同直徑平衡孔的液體泄漏量、平衡腔液體壓力和泵揚(yáng)程,研究不同直徑平衡孔的平衡孔液體泄漏量及泄漏量系數(shù)的特性以及其對(duì)平衡腔區(qū)域軸向力的影響規(guī)律。
1.1 試驗(yàn)裝置
試驗(yàn)是在蘭州理工大學(xué)浮動(dòng)葉輪離心泵閉式試驗(yàn)臺(tái)上進(jìn)行的[15],如圖1a所示。被測泵為IS80-50-315型離心泵,其設(shè)計(jì)參數(shù)為:設(shè)計(jì)流量Qd=25 m3/h,設(shè)計(jì)揚(yáng)程Hd=32 m,轉(zhuǎn)速n=1 450 r/min,效率η=52%,葉輪外徑D2=316 mm。
圖1b為平衡孔液體泄漏量的測試裝置。在悶蓋上開有6個(gè)液體泄漏孔,平衡腔內(nèi)液體經(jīng)6個(gè)泄漏孔引至外界。為了實(shí)現(xiàn)同一個(gè)葉輪及后密封環(huán)徑向間隙下不同直徑平衡孔液體泄漏量的測試,葉輪后密封環(huán)、平衡孔套可組裝在葉輪上,并保證后密封徑向間隙b為0.2 mm,葉輪后密封環(huán)裝配圖如圖 2所示。該測試裝置的主要幾何尺寸:后密封間隙長度L1=18 mm,后密封環(huán)半徑rm=44.5 mm,輪轂半徑rh=25 mm,平衡孔套內(nèi)徑(即平衡孔直徑)d分別為0、4、6、8、11 mm,不同內(nèi)徑平衡孔套長度(即葉輪平衡孔長度)L為15 mm。通過更換不同內(nèi)徑平衡孔套來改變平衡孔直徑。
圖1 測試試驗(yàn)臺(tái)及裝置Fig.1 Test bench and device
圖2 葉輪后密封環(huán)裝配圖Fig.2 Assembly diagram of impeller rear seal ring
1.2 平衡孔液體泄漏量測量原理及方法
在圖2b中,葉輪上安裝不同內(nèi)徑的平衡孔套,并將6個(gè)液體泄漏孔管路上的閘閥關(guān)閉,調(diào)節(jié)泵出口管路上的調(diào)節(jié)閥,使泵在不同工況下運(yùn)行,測量出平衡腔液體壓力。試驗(yàn)完畢后,將圖2b中的葉輪平衡孔堵死,重新啟動(dòng)水泵,首先使 6個(gè)液體泄漏孔管路上的閘閥處于關(guān)閉狀態(tài),調(diào)節(jié)泵出口管路上的調(diào)節(jié)閥開度,使泵運(yùn)行工況與葉輪有平衡孔時(shí)運(yùn)行工況相同。然后分別調(diào)節(jié) 6個(gè)液體泄漏孔管路上的閘閥開度,分別觀測平衡腔液體壓力和流量計(jì)的讀數(shù)變化情況。據(jù)此,反復(fù)多次調(diào)節(jié)泵出口管路上的調(diào)節(jié)閥開度和 6個(gè)液體泄漏孔閘閥的開度,最終使泵運(yùn)行工況和平衡腔液體壓力與葉輪有平衡孔時(shí)泵運(yùn)行工況和平衡腔液體壓力相同,則 6個(gè)液體泄漏孔流出的液體流量即為對(duì)應(yīng)此泵工況的液體泄漏量。
在堵死葉輪平衡孔時(shí),平衡腔液體經(jīng)泄漏孔引至外界的儲(chǔ)水箱。通過測量Δt時(shí)間內(nèi)流入儲(chǔ)水箱液體的體積V就可以得到葉輪平衡孔液體泄漏量qv,其計(jì)算公式為
式中qv為平衡孔液體泄漏量,m3/s;V為Δt時(shí)間內(nèi)流入儲(chǔ)水箱液體體積,m3;Δt為測量時(shí)間,s。
2.1 平衡孔直徑對(duì)泵性能的影響
在平衡孔直徑d為0、4、6、8、11 mm條件下,對(duì)泵性能進(jìn)行了測試。為使圖 3顯示清楚,僅給出了平衡孔直徑d為0、6、11 mm時(shí)泵性能曲線,如圖3所示。
圖3 不同平衡孔直徑的離心泵性能曲線Fig.3 Performance curves of centrifugal pump with different balance hole diameters
由圖 3可知,不同平衡孔直徑的泵性能曲線有一定的規(guī)律性。以該泵葉輪平衡孔的設(shè)計(jì)直徑d=6 mm時(shí)的泵性能為基準(zhǔn),平衡孔直徑d=0 mm相對(duì)于平衡孔直徑d=6 mm下,在0.8Qd即Q=20 m3/h時(shí),揚(yáng)程增加了0.35%,輸入功率減小了2.00%,效率增加了2.44%;在1.0Qd即Q=25m3/h時(shí)揚(yáng)程增加了0.70%,輸入功率減小了1.44%,效率增加了2.13%;在1.2Qd即Q=30 m3/h時(shí)揚(yáng)程增加了0.51%,輸入功率減小了0.88%,效率增加了1.35%??梢?,平衡孔直徑0<d<6 mm,其對(duì)泵的揚(yáng)程、輸入功率和效率的影響程度較小。
平衡孔直徑d=11 mm相對(duì)于d=6 mm下,在0.8Qd時(shí)揚(yáng)程降低了0.87%,輸入功率增加了2.85%,效率下降了3.20%;在1.0Qd時(shí)揚(yáng)程降低了0.73%,輸入功率增加了 3.07%,效率下降了 2.68%;在 1.2Qd時(shí)揚(yáng)程降低了1.67%,輸入功率增加了2.68%,效率下降了4.11%。這是因?yàn)槿~輪存在平衡孔,使葉輪出口的一部分高壓流體未能由泵出口處排出而是經(jīng)葉輪平衡孔又流回到葉輪流道中,從而形成回流。再者從葉輪平衡孔流出的射流流體擾亂了葉輪進(jìn)口水流的流態(tài),在一定程度上使作用在葉輪上的輸入功率增大[16-18]。上述原因?qū)е铝吮幂斎牍β试龃螅式档?。隨著葉輪平衡孔直徑的增大,其對(duì)泵的揚(yáng)程、輸入功率和效率的影響程度變大。
2.2 平衡孔泄漏量與揚(yáng)程的關(guān)系
在平衡孔直徑d為4、6、8、11 mm條件下,分別對(duì)平衡孔液體泄漏量qv、泵進(jìn)口液體壓力P1、平衡腔液體壓力P2和泵揚(yáng)程H進(jìn)行了測試。圖4為葉輪有平衡孔且6個(gè)液體泄漏孔管路上的閘閥關(guān)閉時(shí),平衡腔液體壓力與揚(yáng)程的試驗(yàn)曲線。
圖4 不同平衡孔直徑的平衡腔液體壓力與揚(yáng)程的試驗(yàn)曲線Fig.4 Test curves of balance chamber liquid pressure and head with different balance hole diameters
依據(jù)圖 4試驗(yàn)結(jié)果,在葉輪平衡孔堵死條件下,同時(shí)調(diào)節(jié)泵出口管路上的調(diào)節(jié)閥和 6個(gè)液體泄漏孔管路上的閘閥開度,使泵運(yùn)行工況和平衡腔液體壓力與葉輪有平衡孔時(shí)泵運(yùn)行工況和平衡腔液體壓力相同時(shí),實(shí)測得到不同平衡孔直徑的泵進(jìn)口液體壓力和平衡孔液體泄漏量與揚(yáng)程的試驗(yàn)曲線,如圖5所示。
圖5 不同平衡孔直徑的泵進(jìn)口液體壓力和平衡孔液體泄漏量與揚(yáng)程的試驗(yàn)曲線Fig.5 Test curves of head and pump inlet liquid pressure and balance hole fluid leakage with different balance hole diameters
從圖5a可知,在相同平衡孔直徑條件下,隨著揚(yáng)程降低,泵進(jìn)口液體壓力在先保持一段零壓力后急劇降低;在相同揚(yáng)程條件下,不同平衡孔直徑的泵進(jìn)口液體壓力之間最大差值僅為2.12 kPa,說明平衡孔直徑的變化對(duì)泵進(jìn)口液體壓力影響較小。
從圖4和圖5b中看出,從圖4和圖5b中看出,在不同直徑平衡孔下,平衡孔液體泄漏量和平衡腔液體壓力與揚(yáng)程的曲線的變化趨勢近似一條傾斜的直線,即平衡孔液體泄漏量和平衡腔液體壓力隨揚(yáng)程增大而增大;在相同的揚(yáng)程下,平衡孔直徑增大其液體泄漏量明顯增大而平衡腔液體壓力明顯降低。其原因是,在泵工況和后密封環(huán)間隙b不變條件下,當(dāng)泵工況一定時(shí),因葉輪進(jìn)口液體壓力和泵腔進(jìn)口液體壓力基本不變,增大葉輪平衡孔直徑,平衡孔的過流能力及液體泄漏量增大,會(huì)引起平衡腔液體壓力降低,這樣就降低了平衡腔區(qū)域液體壓力差值,進(jìn)一步驗(yàn)證了加大平衡孔直徑有明顯平衡軸向力效果[19-22]。
2.3 平衡孔泄漏量系數(shù)與比面積的關(guān)系
文獻(xiàn)[23]對(duì)平衡腔液體壓力分布的數(shù)值計(jì)算表明,不同直徑平衡孔的平衡腔液體壓力沿著徑向方向逐漸增大,但沿著軸向和切向方向基本保持不變。平衡腔體徑向和軸向尺寸一般都較小,為了研究問題方便,認(rèn)為平衡腔液體壓力和泵進(jìn)口液體壓力都沿著徑向方向均勻分布[24]。試驗(yàn)泵的平衡孔的長徑比1.5≤L/d<4,所以液體流經(jīng)葉輪平衡孔的泄漏量可按短壁孔口出流來計(jì)算[25-26],其泄漏量qv為
式中cq為平衡孔泄漏量系數(shù);FB為平衡孔總面積,F(xiàn)B=πd2z/4,m2;d為平衡孔直徑,m;z為平衡孔數(shù)量,z=5;p2為平衡腔液體壓力,Pa;p1為泵進(jìn)口液體壓力,Pa;ρ為液體密度,kg/m3;g為重力加速度,m/s2。
為了計(jì)算相似泵的平衡孔液體泄漏量及泄漏量系數(shù),引入泵揚(yáng)程系數(shù)ψ、比面積K,其中比面積K為平衡孔總面積與后密封環(huán)間隙斷面面積的比值,其計(jì)算公式分別為
式中H為泵揚(yáng)程,m;u2為葉輪出口圓周速度,u2=πD2n/60,m/s;n為泵轉(zhuǎn)速,r/min;D2為葉輪直徑,m。
式中FB為平衡孔總面積,F(xiàn)B=d2πz/4,m2;Fm為葉輪后密封環(huán)間隙斷面面積,F(xiàn)m=2πrmb,m2;d為平衡孔直徑,m;z為平衡孔數(shù)量,z=5;rm為后密封環(huán)半徑,m;b為后密封環(huán)徑向間隙,m。
在圖5b中,取不同的揚(yáng)程值,可獲得多組的平衡孔直徑值及其對(duì)應(yīng)的泄漏量值。本文選取了揚(yáng)程分別為24、26、28、30、32 m,并代入式(3)可得揚(yáng)程系數(shù)分別為0.409、0.443、0.477、0.511、0.545。平衡孔直徑d為4、6、8、11 mm時(shí),由式(4)計(jì)算出的比面積分別為1.12、2.53、4.49、8.50,并結(jié)合式(2),從而獲得不同揚(yáng)程系數(shù)的平衡孔液體泄漏量、平衡孔泄漏量系數(shù)與比面積K的關(guān)系曲線,如圖6所示。
圖6 不同揚(yáng)程系數(shù)的平衡孔液體泄漏量及其系數(shù)與比面積的關(guān)系曲線Fig.6 Curves of balance hole liquid leakage and its coefficient and specific area with different head coefficients
由圖6a可知,當(dāng)比面積K<2.5時(shí),平衡孔液體泄漏量隨比面積的增大而急劇增大;當(dāng)比面積K>2.5時(shí),平衡孔液體泄漏量隨比面積的增大而緩慢增大。這表明較小直徑的平衡孔的液體泄漏量更易受流動(dòng)黏性層和葉輪轉(zhuǎn)速的影響,而對(duì)于較大直徑的平衡孔,其直徑的變化對(duì)平衡孔的泄漏量同樣有影響,但影響相對(duì)較小。
從圖6b看出,同一揚(yáng)程系數(shù)下,平衡孔液體泄漏系數(shù)隨比面積的增大而降低;且當(dāng)比面積K>4.5時(shí),平衡孔液體泄漏系數(shù)的降幅減小。同一比面積下,揚(yáng)程系數(shù)越大,平衡孔泄漏量系數(shù)越小。
由平衡腔和葉輪平衡孔構(gòu)成的流道結(jié)構(gòu)簡單,但其內(nèi)液體運(yùn)動(dòng)非常復(fù)雜。其流道阻力系數(shù)取決于其內(nèi)的流體動(dòng)力學(xué)特性,而流體動(dòng)力學(xué)特性受到其幾何結(jié)構(gòu)的影響[27-28]。流道液體阻力系數(shù)由進(jìn)口阻力系數(shù)、沿程阻力系數(shù)和出口動(dòng)能損失系數(shù)等組成,所有這些因素的影響,難以通過理論計(jì)算精確求得。圖6b是通過試驗(yàn)測出平衡腔液體壓力、泵出口液體壓力和平衡孔液體泄漏量,得到的不同揚(yáng)程系數(shù)下平衡孔泄漏量系數(shù)與比面積的關(guān)系曲線。對(duì)相似的開平衡孔的雙密封環(huán)葉輪離心泵,如已知泵揚(yáng)程、平衡腔液體壓力、泵進(jìn)口液體壓力,由圖 6b及式(2)即可方便計(jì)算出平衡孔液體泄漏量,這對(duì)研究泵的容積效率、輪阻損失、泵腔內(nèi)液體壓力分布及軸向力的計(jì)算都有十分重要的意義。
文獻(xiàn)[11]給出了這種開平衡孔雙密封環(huán)葉輪在設(shè)計(jì)工況下平衡孔液體泄漏量的計(jì)算公式,其數(shù)學(xué)表達(dá)式為
式中Hp為葉輪勢揚(yáng)程,m;ηh為泵水力效率;Qd為泵設(shè)計(jì)流量,m3/h;uB為平衡孔中心距的圓周速度,m/s;ξm為密封環(huán)間隙阻力系數(shù),λ=0.04~0.06;ξB為平衡孔阻力系數(shù);L1為后密封環(huán)間隙長度,m。
本文在平衡孔直徑d為4、6、8、11 mm條件下,測得泵設(shè)計(jì)工況的平均流量為 24.63 m3/h,平均揚(yáng)程為29.84 m。將設(shè)計(jì)工況的流量揚(yáng)程的平均值及后密封環(huán)幾何尺寸代入式(5),并依據(jù)文獻(xiàn)[11]推薦的λ=0.04,ξB=2,可計(jì)算得到平衡孔液體泄漏量的理論曲線。再由圖5b查出平均揚(yáng)程為 29.84 m下不同直徑平衡孔的泄漏量試驗(yàn)值,從而獲得平衡孔液體泄漏量與比面積的試驗(yàn)和理論曲線,如圖7所示。
圖7 平衡孔液體泄漏量與比面積的關(guān)系曲線Fig.7 Curves of balance hole liquid leakage and specific area
由圖7可知,相同比面積時(shí)平衡孔液體泄漏量的理論值與實(shí)測值相差較大。比面積K>2.5,即平衡孔直徑d>6 mm時(shí),平衡孔液體泄漏量的理論曲線幾乎為平行橫坐標(biāo)的直線,其原因是,按式(5)計(jì)算直徑較大的平衡孔液體泄漏量時(shí),變量FB對(duì)qv幾乎無影響,可見按式(5)校核計(jì)算平衡孔液體泄漏量值得商榷。
對(duì)于使用開平衡孔雙密封環(huán)葉輪的單級(jí)單吸離心泵,在前后密封環(huán)直徑相同條件下,其平衡腔區(qū)域葉輪蓋板前后液體壓力差造成的蓋板力是葉輪軸向力的主要組成部分[29-35]。平衡腔區(qū)域軸向力計(jì)算公式為[13,23]
式中F為平衡腔區(qū)域軸向力,N。
對(duì)試驗(yàn)泵rm=44.5 mm。圖8是依據(jù)圖4和圖5a計(jì)算得到不同直徑平衡孔的平衡腔軸向力與揚(yáng)程關(guān)系曲線。
圖8 不同平衡孔直徑的平衡腔軸向力與揚(yáng)程關(guān)系曲線Fig.8 Curves of balance chamber axial force and head with different balance hole diameters
從圖8中看出,在相同平衡孔直徑下,平衡腔區(qū)域軸向力隨揚(yáng)程增大而增大。由于在設(shè)計(jì)流量Qd條件下,不同平衡孔直徑的試驗(yàn)泵揚(yáng)程不同,為定量分析相同揚(yáng)程下平衡腔區(qū)域軸向力與平衡孔直徑的變化規(guī)律,由圖3得到設(shè)計(jì)流量Qd下,平衡孔直徑為0、6、11 mm時(shí)試驗(yàn)泵的平均揚(yáng)程為29.8m,在該揚(yáng)程下,平衡孔直徑d為4、6、8、11 mm較平衡孔直徑d=0,平衡腔區(qū)域軸向力分別降低了 53.9%、81.9%、87.8%、88.36%??梢姡霉r一定時(shí),隨著平衡孔直徑的增大,平衡腔區(qū)域軸向力明顯降低,但會(huì)造成平衡孔液體泄漏量增大。
為了計(jì)算相似泵的平衡腔區(qū)域軸向力,參考文獻(xiàn)[11]引入軸向力系數(shù),其定義為
式中cF為軸向力系數(shù)。
在圖8中,選取了揚(yáng)程H為24、26、28、30、32 m,由圖 8及式(4)和式(7),計(jì)算獲得不同揚(yáng)程系數(shù)的軸向力系數(shù)與比面積K的關(guān)系曲線,如圖9所示。
圖9 不同揚(yáng)程系數(shù)的軸向力系數(shù)與比面積關(guān)系曲線Fig.9 Curves of axial force coefficient and specific area with different head coefficients
由圖9可知,不同揚(yáng)程系數(shù)的軸向力系數(shù)與比面積K的關(guān)系曲線都具有明顯的相似規(guī)律性,0<K<2.5時(shí),軸向力系數(shù)隨比面積增大而急劇減??;2.5≤K≤4.5,軸向力系數(shù)曲線趨于平坦,其均值為0.112;K>4.5時(shí),軸向力系數(shù)曲線幾乎與橫坐標(biāo)平行,其均值為 0.067,說明K>4.5,即平衡孔直徑d>8 mm時(shí),平衡孔平衡軸向力的效果不明顯。因此,從減少平衡孔液體泄漏量和軸向力的角度,試驗(yàn)泵的比面積取2.5≤K≤4.5,即平衡孔直徑取6~8 mm較為合適。
1)提出了調(diào)節(jié)平衡腔液體壓力來測量平衡孔液體泄漏量裝置,解決了長期困擾泵行業(yè)離心泵葉輪平衡孔液體泄漏量的測試難題。
2)平衡孔直徑增大會(huì)影響泵的性能,使其揚(yáng)程降低,功率增加,效率降低。在設(shè)計(jì)流量下,相較于平衡孔直徑為6 mm時(shí)泵的性能,平衡孔直徑為0 mm時(shí),其揚(yáng)程增加了 0.70%,輸入功率減小了 1.44%,效率增加了2.13%;平衡孔直徑為11 mm時(shí),揚(yáng)程降低了0.73%,輸入功率增加了3.07%,效率下降了2.68%,說明平衡孔直徑越大,其對(duì)泵性能的影響越明顯。
3)平衡孔液體的泄漏量及泄漏量系數(shù)與比面積的關(guān)系曲線變化具有明顯的規(guī)律性,比面積小于4.5時(shí),平衡孔泄漏量迅速增大,而平衡孔泄漏量系數(shù)快速減小,比面積大于4.5時(shí),平衡孔泄漏量增速減緩,而平衡孔泄漏量系數(shù)緩慢降低,但不同揚(yáng)程系數(shù)時(shí)平衡孔泄漏量及泄漏量曲線有一定的差別。
4)軸向力系數(shù)曲線是非線性曲線,它建立了泵的揚(yáng)程、平衡孔直徑大小及數(shù)量和葉輪后密封環(huán)直徑及間隙的關(guān)系。比面積介于2.5到4.5之間時(shí),軸向力系數(shù)的均值為 0.112,比面積大于 4.5時(shí),軸向力系數(shù)的均值為0.067,其為計(jì)算平衡腔區(qū)域葉輪蓋板前后液體壓力差造成的軸向力提供了參考。
[1] Cao Weidong, Dai Xun, Hu Qixiang. Effect of impeller reflux balance holes on pressure and axial force of centrifugal pump[J]. Journal of Central South University, 2015(5): 1695-1706.
[2] Budea S. Axial balance in centrifugal pumps-back labyrinth versus dorsal vanes[J]. Hidraulica, 2015, (1): 19-24.
[3] Lefor D, Kowalski J, Kutschelis B, et al. Optimization of axial thrust balancing swirl breakers in a centrifugal pump using stochastic methods[C]// ASME 2014, Joint Us-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014, International Conference on Nanochannels, Microchannels, and Minichannels, 2014: V01BT10A018.
[4] 施衛(wèi)東,李啟鋒,陸偉剛,等. 基于CFD的離心泵軸向力計(jì)算與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(1):60-63. Shi Weidong, Li Qifeng, Lu Weigang, et al. Estimation and experiment of axial thrust in centrifugal pump based on CFD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 60-63. (in Chinese with English abstract)
[5] Florjancic D, Sirok B. Hydraulic axial thrust in multistage pumps-origins and solutions[J]. Journal of Fluids Engineering-transactions of the ASME, 2002, 124(2): 336-341.
[6] 陸偉剛,張金鳳,袁壽其. 離心泵葉輪軸向力自動(dòng)平衡新方法[J]. 中國機(jī)械工程,2007,18(17):2037-2040. Lu Weigang, Zhang Jinfeng, Yuan Shouqi. A new method to axial thrust self-balance for centrifugal pump impeller[J]. China Mechanical Engineering, 2007, 18(17): 2037-2040. (in Chinese with English abstract)
[7] 孔繁余,劉建瑞,施衛(wèi)東,等. 高速磁力泵軸向力平衡計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(7):69-72. Kong Fanyu, Liu Jianrui, Shi Weidong, et al. Calculation of axial force balance for high-speed magnetic drive pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(7): 69-72. (in Chinese with English abstract)
[8] 李偉,施衛(wèi)東,蔣小平,等. 屏蔽泵軸向力平衡新方法[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(7):86-90. Li Wei, Shi Weidong, Jiang Xiaoping, et al. New method for axial force balance of canned motor pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 86-90. (in Chinese with English abstract )
[9] 汪國慶,王英,王兆興. 多級(jí)離心泵創(chuàng)建壓力室平衡軸向力的試驗(yàn)研究[J]. 流體機(jī)械,2016(8):10-15. Wang Guoqing, Wang Ying, Wang Zhaoxing. Multistage centrifugal pump to create pressure chamber equilibrium of axial force experiment research[J]. Fluid Machinery, 2016(8): 10-15. (in Chinese with English abstract)
[10] 張?jiān)獎(jiǎng)?,唐倩,李忠華,等. 基于流體力學(xué)泄漏模型的螺桿泵泄漏機(jī)理分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):326-332. Zhang Yuanxun, Tang Qian, Li Zhonghua, et al. Leakage mechanism of screw pump based on leakage model in fluid mechanics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 326-332. (in Chinese with English abstract)
[11] 關(guān)醒凡. 現(xiàn)代泵理論與設(shè)計(jì)[M]. 北京:中國宇航出版社,2011.
[12] 劉延君,王偉,陸雄. 一種測量微小流量的方法[J]. 甘肅工業(yè)大學(xué)學(xué)報(bào),2001,27(3):44-46. Liu Yanjun, Wang Wei, Lu Xiong. A measuring method of small flow-rate[J]. Journal of Gansu University of Technology, 2001, 27(3): 44-46 (in Chinese with English abstract)
[13] 劉在倫,王東偉,梁森. 離心泵葉輪平衡孔液體泄漏量特性試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(7):85-88. Liu Zailun, Wang Dongwei, Liang Sen. Fluid leakage characteristic test on balance aperture of centrifugal pump impeller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(7): 85-88. (in Chinese with English abstract)
[14] 陳茂慶,陳超. 離心泵密封環(huán)泄漏量特性試驗(yàn)[J]. 石油機(jī)械,1993,21(1):23-26. Chen Maoqing, Chen Chao. Characteristic test of the leakage ring on centrifugal pump[J]. CPM, 1993, 21(1) :23-26. (in Chinese with English abstract)
[15] 劉在倫,孫雨,王東偉,等. 離心泵泵腔流道液體泄漏量試驗(yàn)與計(jì)算方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):97-101. Liu Zailun, Sun Yu, Wang Dongwei, et al. Experiment and calculation method of fluid leakage in flow passage of pump chamber on centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 97-101. (in Chinese with English abstract)
[16] 劉在倫,石福翔,王仁忠,等. 葉輪平衡孔直徑對(duì)離心泵水力性能的影響[J]. 蘭州理工大學(xué)學(xué)報(bào),2016(6):57-61. Liu Zailun, Shi Fuxiang, Wang Renzhong, et al. Influence of impeller balancing hole diameter on hydraulic performance of centrifugal pump[J]. Journal of Lanzhou University of Technology, 2016(6): 57-61. (in Chinese with English abstract)
[17] 孔繁余,高翠蘭,張旭鋒,等. PBN65-40-250型屏蔽泵軸向力平衡計(jì)算及其試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(5):68-72. Kong Fanyu, Gao Cuilan, Zhang Xufeng, et al. Computation and experiment for axial force balance of canned motor pump PBN65-40-250[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 68-72. (in Chinese with English abstract)
[18] 嚴(yán)俊峰,陳煒,蒲光榮. 葉輪蓋板側(cè)的流動(dòng)對(duì)離心泵泄漏量的影響[J]. 火箭推進(jìn),2007,33(3):20-25. Yan Junfeng, Chen Wei, Pu Guangrong. The effect of flow in the impeller shroud on the leakage rate in a centrifugal pump[J]. Journal of Rocket Propulsion, 2007, 33(3): 20-25. (in Chinese with English abstract)
[19] 劉在倫,許立中,賈曉,等. 離心泵浮動(dòng)葉輪軸向間隙的液體流動(dòng)分析及軸向力計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):79-85. Liu Zailun, Xu Lizhong, Jia Xiao, et al. Analysis of liquid flow and axial force calculation in axial clearance for floating impeller of centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 79-85. (in Chinese with English abstract)
[20] 劉在倫,曾繼來,邵安燦,等. 離心泵軸向力計(jì)算方法研究與試驗(yàn)驗(yàn)證[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(12):1019-1025. Liu Zailun, Zeng Jilai, Shao Ancan, et al. Calculation method and experimental verification for axial thrust on centrifugalpump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(12): 1019-1025. (in Chinese with English abstract)
[21] 李合,許洪元,張文達(dá),等. 立式屏蔽泵的軸向力及石墨軸承耐磨性試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(1):128-131. Li He, Xu Hongyuan, Zhang Wenda, et al. Experimental research on axial thrust and the wear ability of graphite bearing of a vertical canned motor pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 128-131. (in Chinese with English abstract)
[22] 凌瑋,高良鳳,沙毅. 比轉(zhuǎn)速185的離心泵研制及平衡孔對(duì)泵性能影響的試驗(yàn)研究[J]. 水泵技術(shù),2013(2):20-22.
[23] 董瑋,楚武利. 平衡孔直徑對(duì)離心泵性能及平衡腔壓力的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):73-77. Dong Wei, Chu Wuli. Influence of balance hole diameter on performance and balance chamber pressure of centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 72-77. (in Chinese with English abstract)
[24] 劉在倫,張森,邵安燦,等. 離心泵泵腔液體壓力分布理論計(jì)算及驗(yàn)證[J]. 機(jī)械工程學(xué)報(bào),2016(4):178-184,191. Liu Zailun, Zhang Sen, Shao Ancan, et al. Theoretical computation and verification for fluid static pressure in centrifugal pump side chamber[J]. Journal of Mechanical Engineering, 2016(4): 178-184, 191. (in Chinese with English abstract)
[25] 劉在倫,魏烈江,齊學(xué)義,等. 新型軸向力平衡裝置間隙泄漏量的計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(12):74-76. Liu Zailun, Wei Liejiang, Qi Xueyi, et al. Calculation of gap leakage flow rate in new axial trust device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(12): 74-76. (in Chinese with English abstract)
[26] 陸敏恂,李萬莉. 流體力學(xué)與液壓傳動(dòng)[M]. 上海:同濟(jì)大學(xué)出版社,2006.
[27] 蔣慶磊,戴維平,吳大轉(zhuǎn),等. 離心泵內(nèi)泄漏流計(jì)算及其對(duì)轉(zhuǎn)子振動(dòng)的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2010,28(3):202-206. Jiang Qinglei, Dai Weiping, Wu Dazhuan, et al. Computation of leakage flow in centrifugal pumps and its effects on rotor's vibration[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(3): 202-206. (in Chinese with English abstract)
[28] 劉在倫,王保明,梁森. 浮動(dòng)葉輪平衡腔內(nèi)壓力的試驗(yàn)分析[J]. 排灌機(jī)械,2007,25(5):6-8. Liu Zailun, Wang Baoming, Liang Sen. Experimental study on the pressure in the balance of floating impeller[J]. Drainage and Irrigation Machinery, 2007, 25(5): 6-8. (in Chinese with English abstract)
[29] 李景悅,嚴(yán)敬,賴喜德,等. 離心葉輪平衡機(jī)構(gòu)軸向力的計(jì)算與分析[J]. 西華大學(xué)學(xué)報(bào):自然科學(xué)版,2015(3):73-76. Li Jingyue, Yan Jing, Lai Xide, et al. Calculation and analysis of axial thrust due to balance mechanics of centrifugal impellers[J]. Journal of Xihua University: Natural Science Edition, 2015, (3): 73-76. (in Chinese with English abstract)
[30] 陸雄,范宗霖,薛建欣. 用改變平衡孔位置改善離心泵軸向力[J]. 水泵技術(shù),1998(6):7-13.
[31] 牟介剛,趙錦靖,鄭水華,等. 離心泵平衡孔位置對(duì)軸向力及外特性的影響[J]. 機(jī)械設(shè)計(jì)與制造,2012,49(6):173-175. Mou Jiegang, Zhao Jinjing, Zheng Shuihua, et al. The influence of balance hole position of centrifugal pump on axial force and external characteristics[J]. Machinery Design & Manufacture, 2012, 49(6): 173-175. (in Chinese with English abstract)
[32] 李彩虹,薛志寬,李紅. 葉輪前蓋板與泵體軸向間隙對(duì)軸向力的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(4):295-300. Li Caihong, Xue Zhikuan, Li Hong. Effects of axial clearances between impeller front shroud and pump body on axial force[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(4): 295-300. (in Chinese with English abstract)
[33] 董瑋,楚武利. 離心泵葉輪平衡腔內(nèi)液體流動(dòng)特性及圓盤損失分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(4):29-35. Dong Wei, Chu Wuli. Analysis of flow characteristics and disc friction loss in balance chamber of centrifugal pump impeller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 29-35. (in Chinese with English abstract)
[34] 劉在倫,王東偉,侯祎華,等. 離心泵泵腔和平衡腔液體壓力試驗(yàn)與計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(8):42-47,324. Liu Zailun, Wang Dongwei, Hou Yihua, et al. Experiment and calculation of fluid pressure in pump chamber and balance chamber of centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 42-47, 324. (in Chinese with English abstract)
[35] 牟介剛,李思,鄭水華,等. 多級(jí)離心泵葉輪級(jí)間泄漏對(duì)軸向力的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(7):40-44. Mu Jiegang, Li Si, Zheng Shuihua, et al. Influence of interstage leakage on the axial force of the multistage centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 40-44. (in Chinese with English abstract)
Experiment and analysis of balance hole liquid leakage in centrifugal pump
Liu Zailun1,2, Chen Xiaochang1, Wang Dongwei1,2, Hou Yihua1
(1.College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou730050,China; 2.Engineering Institute of Wenzhou Pump & Valve, Lanzhou University of Technology, Wenzhou325105, China)
Balancing and reducing the axial force is one of the most significant subjects in the research of the centrifugal pump. The most frequently-used method to balance the axial force is to use the double seal ring impeller with the balance hole the single-stage single-suction centrifugal pump. And the liquid leakage has a decisive role for the ability to balance the axial force of the double seal ring impeller with the balance hole. Therefore, it is indispensable to study the measurement and calculation method of liquid leakage in balance hole of centrifugal pump. Aiming at the problem that the actual liquid leakage of impeller balance hole is difficult to be measured, a special testing apparatus was designed by adjusting the liquid pressure of the balance chamber. Pump performance, balance hole liquid leakage and liquid pressure in the balance chamber was tested and analyzed when the diameters of balance hole were 4, 6, 8 and 11 mm. Some important test curves such as curves of axial force coefficient and specific area in different head coefficient and their variation characteristics were obtained by calculating and analyzing the experimental data. Results showed that when the diameters of balance hole were less than 6 mm, the diameter of balance hole had little change on the head, input power and efficiency of pump. Increasing the diameter of impeller balance hole would reduce the head and efficiency of pump and enlarge the input power. The pump inlet liquid pressure had a sharp reduction after the first stage of zero pressure with decreases of head in the same diameter of balance hole. The maximum difference between the pump inlet liquid pressures of different balance hole diameters were only 2.2 kPa in the same head, which showed that the diameter of balance hole had little effect on the pump inlet liquid pressure. The liquid leakage of the balance hole and the pressure of the balance chamber increased with the increase of the head. The liquid leakage increased significantly and the liquid pressure of balance chamber reduced significantly with increase of the diameter of balance hole in the same head. The axial force of the balance chamber increased with the increase of the head in the same diameter of balance hole. The axial force of the balance chamber reduced obviously with the increase of diameter of the balance hole in the same head, but the decreasing amplitude of axial force of the balance chamber decreased. The relational curves between the liquid leakage of balance hole and the specific area (the ratio of the total area of the balance hole to the clearance area of the rear seal ring) had obvious pattern, the balance hole leakage coefficient decreased with the increase of specific area in the same head coefficient. Under the same specific area, the larger head coefficient, the smaller leakage coefficient of the balance hole. The test curves of axial force coefficient and specific area were the non-linear curves, when the specific area under less than 2.5, the axial force coefficient decreased sharply with the increase of the specific area. When the specific area was between 2.5 and 4.5, the curves tended to be flat, and the mean value of axial force coefficient was 0.112. When the specific area was more than 4.5, the curves of axial force coefficient were almost parallel to the abscissa, and the mean value of axial force coefficient was 0.067. This study provides a new way to calculate accurately liquid leakage amount of the balance hole and axial force in the balance chamber region. It also has a great influence on the volumetric efficiency of the pump, the loss of the wheel resistance, the liquid pressure distribution in the pump chamber and the calculation of the axial force.
centrifugal pumps; experiments; impellers; balance hole leakage; axial force
10.11975/j.issn.1002-6819.2017.07.009
TH311
A
1002-6819(2017)-07-0067-08
2016-10-20
2017-03-17
國家自然科學(xué)基金資助項(xiàng)目(51269010);甘肅省自然科學(xué)基金
資助項(xiàng)目(1508RJYA077);浙江省自然科學(xué)基金資助項(xiàng)目(LY12E09002)
劉在倫,男,甘肅景泰人,教授,主要從事流體機(jī)械設(shè)計(jì)理論與測試技術(shù)研究。蘭州 蘭州理工大學(xué)能源與動(dòng)力工程學(xué)院,730050。
Email:liuzl88@sina.com