樊麗華,莫虹斐,張曉峰,帥江冰*,陳青
(1.浙江工商大學(xué)食品與生物工程學(xué)院,杭州310035;2.浙江省檢驗檢疫科學(xué)技術(shù)研究院,杭州310016)
基于競爭性雜交方法的豬-腸道微生物特異性互作靶點發(fā)掘
樊麗華1,莫虹斐2,張曉峰2,帥江冰2*,陳青11
(1.浙江工商大學(xué)食品與生物工程學(xué)院,杭州310035;2.浙江省檢驗檢疫科學(xué)技術(shù)研究院,杭州310016)
動物腸道中存在著一些參與豬腸道微生物互作的基因,這些基因具有一定的宿主特異性,利用其設(shè)計分子標(biāo)記能準(zhǔn)確識別糞便污染來源。該文共采集6個物種(豬、牛、羊、雞、鴨、鵝)的145個糞便樣品,提取其DNA后利用競爭性雜交的基因片段富集方法(genome fragment enrichment,GFE),靶向篩選參與豬腸道微生物互作的特異性基因。經(jīng)BLASTX分析發(fā)現(xiàn),82%的豬特異性非冗余DNA片段存在相似序列,以擬桿菌綱(Bacteroidetes)(43.2%)、梭菌綱(Clostridia)(19.5%)、芽孢桿菌綱(Bacilli)(8.6%)相似序列為主。從蛋白質(zhì)功能方面分析,61.5%的非冗余序列功能明確,有7.6%的序列與信息貯存及加工有關(guān),12.8%的序列與細(xì)胞加工及信息傳導(dǎo)有關(guān),22%的序列與代謝有關(guān),其中,碳水化合物和氨基酸的轉(zhuǎn)移代謝相關(guān)序列含量最為豐富,均占總特異性序列的6.3%。研究發(fā)現(xiàn),能夠編碼擬桿菌綱(Bacteroidetes)和梭菌綱(Clostridials)等表面蛋白、膜分泌蛋白及碳水化合物代謝蛋白的相關(guān)基因可作為豬特異性分子標(biāo)記篩選的靶點。
非點源污染;競爭性雜交;特異性基因組片段富集;功能注釋;豬特異性分子標(biāo)記
SummaryDue to the rapid development of livestock breeding and poultry raising,non-point source pollution has become a significant threat to environmental management and aquaculture industry development,as well as to human health in the last few decades.Therefore,it is particularly urgent to establish a monitoring method that can be used as the efficient indicator of fecal pollution with high sensitivity and strong specificity.In animal guts,genes which are directly involved in bacterium-host interactions may display increased level of host-associated genetic variation,making them promising candidates for fecal source tracking.Specific markers targeting bacterium-host interaction genes for human,cattle and chicken were reported previously; however,swine-specific marker for fecal source tracking has not been found yet.
We applied a genome fragment enrichment(GFE)method to enrich swine-specific metagenomic regions that differ from those of other animal species.Briefly,a portion of swine fecal DNA was labeled with biotin and pre-hybridized with a composite fecal DNA pool of other animals including cow(n=20),goat(n=20),chicken(n=8),duck(n=20)and goose(n=5)to block nonunique fragments.Then the pre-hybridized product and another portion of swine fecal DNA labeled with K9 primer were takentogether to perform a competitive DNA hybridization.After streptavidin enrichment and long-linker PCR amplification by K9 primer,the products that were assumed as swine-specific fecal DNA were cloned into vectors and were sequenced.Dot blot hybridization with negative control fecal DNA(composite fecal DNA pool of other animals)was used to identify the cloned GFE sequences which were not swine-specific.The cloned GFE sequences were assigned to bacterial class annotations based on the top BLASTX hit(the lowestE-value score)with the GenBank non-redundant database.The putative protein transcript of each sequence was analyzed based on the similarity of gene sequences by using BLASTX with the GenBank non-redundant database,and their biochemical functions were therefrom predicted.
Sequence analyses of five hundred randomly selected clones from the libraries obtained by three rounds of metagenomic GFE revealed that this subset contained a total of 384 non-redundant sequences and most sequences(87%)ranged from 400 bp to 600 bp in size.Dot blot hybridization using DNA composite of non-target animals as probes showed that only eight clones exhibited cross-reaction,indicating a very low false-positive rate of 2.8%.BLASTX searches identified homologous sequences in GenBank database for 315 non-redundant DNA inserts,with other 69(17.9%of 384 swine fecal DNA sequences)inserts showed no homology with any previously reported genes.Based on top BLASTX hits,the sequences were putatively grouped into 20 bacterial classes including the predominant group of Bacteroidetes-like sequences(43.2%),among which,120 sequences were similar to Bacteroidetes-Prevotella.Clostridia-like sequences were the second most abundant group(19.5%),and Bacillilike sequences represented 8.6%of the clones.Moreover,three sequences exhibited identity to genes in Archaea.Biochemical function annotation revealed that 38.5%of the total analyzed sequences were predicted as genes with unknown functions.Among the fragments associated with characterized function genes(61.5%),the sequences were most frequently assigned to putative proteins associated with metabolism(22%,e.g.,carbohydrate metabolism and amino acid metabolism),cellular process (12.8%,e.g.,membrane transport and DNA repair/replication/recombination)and information storage and processing(7.6%).
It is concluded that gene encoding surface proteins,membrane associated proteins,secretary proteins and carbohydrate metabolism proteins of dominant bacterial classes could be regarded as putative targets for swine-specific microbial genetic markers.
近年來,豬肉制品作為深受國內(nèi)消費者喜愛的肉制品之一,其龐大的需求量導(dǎo)致生豬產(chǎn)業(yè)迅猛發(fā)展。據(jù)農(nóng)業(yè)部統(tǒng)計,我國生豬出欄量近年來一直占世界第一,占比維持在56%左右,并保持增長態(tài)勢。由于缺乏對迅猛發(fā)展的集約化畜禽養(yǎng)殖業(yè)廢棄物排放的有效管理,豬、牛、雞等畜禽糞便及其污水多以非點源的方式進(jìn)入環(huán)境,引發(fā)污染并帶來健康威脅。豬糞便排泄物中不僅含有大量的病原菌,如沙門菌(Salmonella)、李斯特菌(Listeria)、空腸彎曲菌(Campylobacterspp.)等,而且含有氮、磷等物質(zhì),未經(jīng)有效處理任意排放,一方面會造成土壤地下水、地表水及灌溉水的污染[1];另一方面會使水體富營養(yǎng)化,進(jìn)而導(dǎo)致水產(chǎn)品蓄積大量的有害物質(zhì),影響水產(chǎn)品品質(zhì),直接威脅到人類健康。因此,建立一種靈敏度高、特異性強(qiáng)并能高效指示糞便污染源的監(jiān)測方法顯得尤為迫切。
很多研究熱衷于從宿主糞便源厭氧菌群如擬桿菌綱(Bacteroidetes)、厚壁菌門(Firmicutes)、雙歧桿菌屬(Bifidobacteriaspp.)、史氏產(chǎn)甲烷桿菌(Methanobrevibacter smithii)等的相關(guān)基因(16S rRNA、毒基因等)篩選特異性標(biāo)記分子來判別污染來源。目前已鑒定的豬特異性分子標(biāo)記大多基于豬腸道優(yōu)勢菌擬桿菌16S rRNA的保守區(qū)[2-4],也有從史氏產(chǎn)甲烷桿菌中篩選特異性基因mcrA[5],從大腸埃希菌中篩選ST II毒基因[6]及豬腸道腺病毒基因(PAdV)[7]來判斷豬糞便污染來源。然而,盡管上述特異性分子標(biāo)記具有一定的特異性和靈敏性,但也存在較大的局限性:1)宿主特異性不夠高,2)不同宿主間存在交叉反應(yīng)性,3)有地理地域差異性,4)判別動物來源的精確性不夠高;因此會帶來較高的錯判率[8-9]。
有研究者認(rèn)為,腸道微生物群落與其宿主是共同進(jìn)化的,經(jīng)宿主與其腸道微生物之間強(qiáng)烈選擇和協(xié)同進(jìn)化可形成宿主微生物相互作用的、對宿主有益的功能保留區(qū)(互作靶點),這些互作靶點是形成腸道微生物多樣性及特異性的重要因素[10-11]。因此,越來越多的研究從人、牛、雞等的腸道微生物群落中篩選宿主微生物互作基因作為宿主特異性分子標(biāo)記,并證明此類分子標(biāo)記具有較高的特異性和靈敏性[12-14]。然而,目前尚未見以宿主微生物互作基因作為特異性分子標(biāo)記進(jìn)行水體或食品中豬糞便非點源污染示蹤的相關(guān)研究。鑒于此,本研究首次采用競爭性雜交的基因片段富集方法(genome fragment enrichment,GFE)富集豬特異性宏基因組,構(gòu)建宏基因文庫,對文庫進(jìn)行序列菌群分類及功能預(yù)測分析,并與不同物種(人、牛、雞、鼠、魚、白蟻等)的腸道宏基因組文庫結(jié)果進(jìn)行比對分析,從而明確靶向篩選宿主(豬)腸道微生物互作靶點有關(guān)的特異性基因,為進(jìn)一步對豬特異性分子標(biāo)記設(shè)計和豬糞污染源示蹤奠定基礎(chǔ)。
1.1 樣品采集和處理
從長江三角洲不同地區(qū)8個規(guī)模養(yǎng)豬場及其他10個主要的畜禽養(yǎng)殖場(牛、羊、雞、鴨、鵝)采集新鮮動物糞便樣品。將新鮮樣品置于無菌容器中,每200 mg(濕質(zhì)量)樣品中加入3 mL GITC緩沖液[5 mol/L異硫氰酸胍、100 mmol/L EDTA(pH 8.0)、0.5%十二烷基肌氨酸鈉],低溫保存。
共采集6個物種145個糞便樣品,其中包括豬糞便樣品72個、牛糞便樣品20個、羊糞便樣品20個、雞糞便樣品8個、鴨糞便樣品20個、鵝糞便樣品5個。糞樣DNA的提取按試劑盒DNA Stool Kit,Qiagen,Valencia,CA,美國)說明書進(jìn)行,并在ND-2000紫外分光光度計上測定其濃度和純度(NanoDrop,賽默飛世爾科技公司,美國)。
1.2 宿主(豬)特異性基因組富集(GFE)
將所有單個豬源樣品基因組DNA混合形成基因組混合庫,以增加基因組的多樣性(待富集組),并以牛、羊、雞、鴨、鵝源樣品基因組混合庫作為對照組;富集流程見圖1。
1.2.1 富集組DNA的準(zhǔn)備
將待富集組分為2個組(待富集組A和B)。
A組DNA的準(zhǔn)備:將72個純度在1.8~2.0范圍內(nèi)的豬糞便樣DNA各取56 ng混合,聲波振蕩至150~900 bp,經(jīng)瓊脂糖凝膠電泳鑒定后用7.5 mol/L醋酸銨和100%乙醇沉淀,溶于5 μL TE(10 mmol/L Tris,0.1 mmol/L EDTA,pH 7.5)中,并與4.5 μgK9引物[15](表1)混合放置在95℃下5 min,迅速轉(zhuǎn)至冰上冷卻5 min。按照50 U KlenowⅠ聚合酶(新英格蘭生物實驗室公司)說明書延伸3.5 h。被K9標(biāo)簽標(biāo)記的DNA片段用試劑盒PCR Purification Kit, Qiagen,Valencia,CA,美國)純化。利用K9-PCR引物(表1)將純化產(chǎn)物進(jìn)行擴(kuò)增,反應(yīng)體系100 μL:1×Eaq緩沖液、2.5 mmol/L dNTP、0.2 μmol/LK9-PCR引物、1%乙酰胺、0.6 UEx Taq、K9標(biāo)記DNA(10 ng)。PCR程序包括:94℃預(yù)變性3 min,94℃變性40 s,53℃退火1 min,72℃延伸30 s,共28個循環(huán);最后,在72℃下反應(yīng)15 min。將5個PCR擴(kuò)增管內(nèi)的產(chǎn)物合并,以獲得足夠量的帶有K9隨機(jī)引物的DNA片段。
表1 引物序列Table 1 Primer sequences used in the test
B組DNA的準(zhǔn)備(生物素標(biāo)記DNA片段):將72個純度在1.8~2.0范圍內(nèi)的豬糞便樣DNA各取25 ng混合,聲波振蕩至150~900 bp,經(jīng)瓊脂糖凝膠電泳鑒定后用醋酸銨(7.5 mol/L)和無水乙醇沉淀,并用15 μL TE(pH 7.5)溶解。將溶解后的DNA與1.8 μg生物素(PAB,Sigma-Aldrich,Atlanta,GA,美國)混合,等體積分裝至3個PCR微型管(200 μL)中,并將每個PCR微型管放置在距白熾燈(200 W)5 cm下照射20 min,進(jìn)而生物素化DNA。將以上3個PCR微型管中的DNA混合,經(jīng)TE(pH 9.0)稀釋10倍后用3倍體積的正丁醇萃取以除去未結(jié)合的PAB,棄去上清液,將剩余溶液均分成3份,用醋酸銨和乙醇沉淀后溶解于TE中。
1.2.2 對照組DNA的準(zhǔn)備
將5種純度在1.8~2.0范圍內(nèi)的對照組動物糞樣DNA分別混合,各取6 μg混勻后聲波振蕩至150~900 bp,經(jīng)瓊脂糖凝膠電泳鑒定后平均分成3份,經(jīng)7.5 mol/L醋酸銨和無水乙醇沉淀后用30 μL TE(pH 7.5)溶解。
圖1 豬糞便特異性基因組富集流程Fig.1 Schematic representation of the DNA enrichment method used to select for swine fecal community DNA sequences
1.2.3 DNA競爭性雜交及富集
將10 μg對照組DNA與0.6 μg B組DNA(生物素標(biāo)記)混合,經(jīng)乙醇沉淀后,加入20 μL丙磺酸(EPPS 10 mmol/L,1 mmol/L EDTA),并用礦物質(zhì)油(Sigma-Aldrich公司,美國)覆蓋其表面,在98℃變性2 min,當(dāng)溫度降至55℃時,立即添加5 mol/L NaCl(4 μL),低溫雜交30 min。將丙磺酸溶液中的5 μg A組(帶有K 9引物)PCR產(chǎn)物經(jīng)98℃變性2 min后,與已雜交的溶液混合,放置在55℃的恒溫箱中過夜進(jìn)行競爭性雜交。經(jīng)生物素鏈親和素(streptavidin)酶聯(lián)免疫吸附捕獲反應(yīng),將標(biāo)記有生物素的雜交雙鏈DNA(即至少含1條待富集組單鏈的雙鏈DNA)捕獲。利用K9引物擴(kuò)增所有捕獲的雜交雙鏈DNA,擴(kuò)增條件同1.2.1節(jié)。富集過程共3輪,上一輪PCR產(chǎn)物經(jīng)純化合并之后用于下一輪的預(yù)雜交和雜交,最終獲得高豐度的豬源特異性糞樣基因組DNA樣品。
1.3 非冗余序列分析
1.4 斑點雜交
利用斑點雜交鑒定所富集的序列是否為豬特異性序列。實驗方法參見文獻(xiàn)[12],簡述如下:
1.5 宏基因組文庫構(gòu)建
根據(jù)斑點雜交結(jié)果,將假陽性率較低的富集輪中的PCR純化產(chǎn)物克隆至載體pCR TOPO 4.0上,方法步驟同1.3節(jié);挑取陽性克隆送上海生工生物工程股份有限公司進(jìn)行測序,構(gòu)建宏基因組文庫。
1.6 DNA序列分析
利用DNAStar對所得序列進(jìn)行拼接及比對。在GenBank數(shù)據(jù)庫中利用BLASTX進(jìn)行比對分析,根據(jù)相似序列的生物功能對每條非冗余序列進(jìn)行蛋白質(zhì)功能預(yù)測;其中,E值≤1×10-3、識別率≥30%的序列被認(rèn)為是相似蛋白[16]。通過蛋白相鄰類的聚簇(cluster of orthologous groups of proteins,COG)數(shù)據(jù)庫將所得DNA序列進(jìn)行功能基因分類。根據(jù)在GenBank數(shù)據(jù)庫中BLASTX比對的結(jié)果(最小E值)對富集的非冗余序列進(jìn)行菌群分類。
2.1 非冗余序列及其假陽性分析
對3輪富集所得的克隆序列進(jìn)行分析,共獲得382個非冗余序列,片段長度為130~924 bp,其中87%為400~600 bp的基因序列。在GFE中第2輪和第3輪所獲得的非冗余序列含量較高,而第1輪富集的冗余序列數(shù)量較多(表2),其原因可能與克隆增菌培養(yǎng)時間相對較長有關(guān)。
表2 3輪富集克隆序列信息歸納表Table 2 Summary of sequenced DNA clones obtained over three rounds of genome fragment enrichment(GFE)
利用對照組(牛、羊、雞、鴨、鵝)混合DNA制作探針,從每輪富集的豬非冗余序列中隨機(jī)挑選29個進(jìn)行斑點雜交以判斷各輪克隆序列的假陽性率(圖2)。結(jié)果發(fā)現(xiàn),3輪富集只有8個序列能與對照組DNA探針雜交:表明通過競爭性雜交方式富集能獲得較低假陽性率(2.8%)的特異性序列。此外,第1輪(n=3)和第2輪(n=0)富集的特異性序列的假陽性率較第3輪低(n=5),且各輪之間假陽性率差異不顯著:說明各輪富集的非冗余序列的特異性與富集輪數(shù)沒有直接相關(guān)性。
圖2 斑點雜交分析所富集的豬特異性DNA片段Fig.2 Dot blot hybridization analysis of putative swine-specific DNA fragments
2.2 豬特異性基因文庫菌群多樣性分析
挑取假陽性率較低的前2輪富集基因重組菌進(jìn)行測序分析,共獲得384個非冗余豬特異性序列。BLASTX比對結(jié)果顯示,315個序列(82%)在數(shù)據(jù)庫中具有相似性,而相似序列被編碼后共包括19個單元(綱)以及1個古生菌單元(圖3)。擬桿菌綱(Bacteroidetes)相似序列含量最多,占43.2%,其中大部分序列(n=120)對普氏菌屬(Prevotella)蛋白存在較高的相似性。其次是梭菌綱(Clostridia),占富集的豬特異性基因庫序列的19.5%,大多對梭狀桿菌屬(Clostridials)(3.92%)、羅氏菌屬(Roseburia)(3.7%)、毛螺菌屬(Lachnospira)(3.7%)中的蛋白表現(xiàn)出相似性。芽孢桿菌綱(Bacilli)相似性序列(8.6%)中多數(shù)與乳酸菌屬(Lactobacillus)、腸球菌屬(Enterococcus)中的蛋白存在相似性。其他序列與來自放線菌綱(Actinobacteria)(1.1%)、變形菌綱(Alphaproteobacteria)(1.1%)、衣原體綱(Chlamydia)(1.3%)等的蛋白相似性較高。此外,還有0.78%的序列與古生菌(Archaea)蛋白相似。上述基于GFE的豬特異性基因文庫菌群多樣性分析結(jié)果與豬腸道微生物的16S rRNA基因組高通量測序結(jié)果(圖4)相比:擬桿菌綱序列占比基本一致(43.2%與36.8%);但基于GFE的豬特異性基因文庫中梭菌綱相似序列的含量顯著較低,而芽孢桿菌綱相似序列的含量顯著較高。造成這種差異的原因可能與特異性基因在富集過程中引物選擇、PCR反應(yīng)條件及克隆的選擇有關(guān)[17]。
圖3 豬特異性DNA片段克隆文庫的菌類分析圖Fig.3 Bacterial groups associated with the identified swine fecal metagenomic fragments
圖4 16S rRNA高通量測序在綱水平上分析豬腸道菌群結(jié)構(gòu)Fig.4 Classes of microbial community structure of swine analyzed by high-throughput sequencing
2.3 豬特異性基因文庫功能預(yù)測分析
經(jīng)過BLASTX比對分析,根據(jù)相似序列的生物功能對每條非冗余序列進(jìn)行蛋白質(zhì)功能預(yù)測,并通過蛋白相鄰類的聚簇(COG)數(shù)據(jù)庫將所得DNA序列進(jìn)行功能基因分類。結(jié)果(圖5)顯示:在富集的豬特異性基因文庫中,功能明確的基因序列占61.5%,其中與擬桿菌綱、梭菌綱相似的序列分別占62.6%、27.2%;29條(7.6%)與信息貯存及加工有關(guān)(例如DNA的修復(fù)、重組),49條(12.8%)基因序列與細(xì)胞加工及信息傳導(dǎo)有關(guān),84條(22%)與代謝有關(guān)(例如碳水化合物的代謝)。另外有73條(19.1%)與假定蛋白相似。碳水化合物和氨基酸的轉(zhuǎn)移代謝相關(guān)序列在功能預(yù)測中含量最為豐富,均占總克隆序列的6.3%,這可能與本研究中供試豬攝取高碳水化合物及高蛋白食物有關(guān)。其他與細(xì)胞膜及細(xì)胞壁、DNA復(fù)制/重組/修復(fù)、保護(hù)機(jī)制和能量產(chǎn)生及轉(zhuǎn)換的相關(guān)基因序列含量也較為豐富。
將本研究中經(jīng)GFE富集的豬腸道微生物特異性基因文庫與近期關(guān)于各個物種(人、牛、雞、鼠、魚、白蟻等)[18]的腸道微生物宏基因組文庫功能預(yù)測研究結(jié)果進(jìn)行比對,發(fā)現(xiàn)在糖基轉(zhuǎn)移酶系統(tǒng)及碳水化合物代謝系統(tǒng)中一些蛋白(如糖基水解酶、纖維二糖水解酶、麥芽糊精水解、果膠裂解酶等)具有一定的豬特異性。
圖5 豬腸道特異性克隆序列的功能預(yù)測圖Fig.5 Function annotation of enriched swine fecal DNA sequences
已有研究表明,擬桿菌綱中具有大量的宿主特異性基因,其中一些參與宿主腸道微生物互作[9,19],例如脆弱擬桿菌(B.fragilis)作為一種革蘭氏陰性菌普遍棲息于大多數(shù)低血糖哺乳動物中,并具有促進(jìn)宿主免疫系統(tǒng)細(xì)胞的成熟及功能的完善,從而使宿主免受實驗性結(jié)腸炎威脅的能力[20-21]。梭菌綱也存在參與宿主腸道微生物互作的宿主特異性基因,例如柔嫩梭菌群(Faecalibacterium prausnitzii)作為腸道中最重要的丁酸鹽產(chǎn)生菌,它對宿主能量代謝及保持黏膜的完整性影響很大[22]。另有研究證明,每個宿主腸道微生物菌群均有對應(yīng)的核心菌群和可變菌群,而其含量在個體間存在差異,且造成差異的原因因糞便裂解及DNA提取方法的偏差很難確定,但經(jīng)過宿主-微生物互作后各個宿主腸道中可變菌群含量普遍較多,且此類菌含有更多的宿主特異性基因[18]。本研究通過2輪生物素鏈親和素捕獲,將豬基因組中與其他動物基因序列相匹配的去除,從而獲得豬特異性序列。從斑點雜交驗證性分析可知,GFE是一種能高效率富集并篩選特異性基因的方法。SHANKS等[23]和LU等[14]曾利用競爭性雜交方法分別富集牛和雞的特異性基因組,結(jié)果同樣表明經(jīng)過1輪或者2輪基因組富集就足夠獲得特異性較高的克隆文庫,其特異性與富集輪數(shù)未見直接的相關(guān)性。經(jīng)BLASTX分析發(fā)現(xiàn),豬腸道微生物菌群中擬桿菌綱和梭菌綱為優(yōu)勢菌群,可作為宿主腸道微生物互作靶點發(fā)掘的目標(biāo)菌群。此外,對經(jīng)富集的豬特異性基因庫菌群分析表明,古生菌雖含量較低,但是作為共生菌,同樣存在著較為密切的宿主微生物互作[9]。例如,作為富集的豬腸道微生物特異性基因庫中古生菌的主要組成部分產(chǎn)甲烷古生菌(0.5%),在腸道環(huán)境中會消耗氫氣進(jìn)而創(chuàng)造一個有利于發(fā)酵型細(xì)菌生長的環(huán)境,以導(dǎo)致更高能量的攝入。此種現(xiàn)象在肥胖動物群中普遍存在[24],因此,在后續(xù)研究中從古生菌類共生菌中挖掘宿主微生物互作基因也是值得探索的。
功能基因組學(xué)研究證明,有些功能蛋白如代謝功能蛋白、生理功能蛋白等對宿主具有一定的特異性,即可用于宿主糞便源微生物示蹤。目前設(shè)計特異性分子標(biāo)記用于微生物源示蹤(microbial source tracking,MST)的功能蛋白主要有微生物表面蛋白(如擬桿菌綱表面的莢膜多糖合成酶、腸球菌表面蛋白esp)、細(xì)胞加工(如膜有關(guān)分泌蛋白)及一些代謝功能蛋白(如α-1-6甘露聚糖酶、β-葡萄糖醛酸酶)等[12,18,25-26]。將豬特異性基因組文庫與牛特異性基因組文庫[23]及雞特異性基因組文庫[14]功能預(yù)測結(jié)果進(jìn)行比對分析,發(fā)現(xiàn)各個功能分類大致相同:說明GFE富集的特異性基因組文庫的功能預(yù)測種類與實驗物種具有相關(guān)性,而且各功能序列的相對含量在一定程度上與實驗組物種存在一定的聯(lián)系。將豬與各物種腸道宏基因組蛋白質(zhì)功能進(jìn)行比對分析發(fā)現(xiàn),具有豬特異性的蛋白一方面能賦予豬腸道表面多糖結(jié)構(gòu)多樣化,使宿主免疫系統(tǒng)適應(yīng)腸道中微生物的多樣性環(huán)境;另一方面,使豬腸道攝取利用更多物質(zhì),這些特異性蛋白大部分與擬桿菌綱中的蛋白相似,且與宿主微生物互作存在一定的聯(lián)系[18]。SHANKS等[23]及LU等[14]分別利用擬桿菌綱表面蛋白和參與細(xì)胞加工的膜蛋白基因序列設(shè)計牛和雞的特異性分子標(biāo)記,其MST效果是用16S rRNA作為分子標(biāo)記所達(dá)不到的。鑒于此,在本研究中表面蛋白、膜分泌蛋白及碳水化合物代謝蛋白的相關(guān)功能基因可作為豬特異性分子標(biāo)記研發(fā)的靶點。
本研究首次利用競爭性雜交的方法富集豬特異性基因,建立了豬腸道微生物特異性基因文庫,并結(jié)合16S rRNA基因文庫和近期各個物種腸道微生物宏基因組文庫,對豬腸道微生物特異性基因文庫進(jìn)行菌群分類和功能預(yù)測比對分析表明,能夠編碼優(yōu)勢菌綱(擬桿菌綱和梭菌綱)表面蛋白、膜分泌蛋白及一些碳水化合物代謝蛋白的相關(guān)基因可作為豬特異性分子標(biāo)記篩選的靶點。此研究結(jié)果為基于豬特異性分子標(biāo)記的非依賴型數(shù)據(jù)庫微生物源示蹤方法的探索奠定了基礎(chǔ),并對食品和水體安全管理體系和預(yù)警體系的發(fā)展具有重要意義。進(jìn)一步工作將在盡量提高富集豬特異性基因方法效率的同時,從豬特異性功能基因中篩選特異性強(qiáng)、靈敏度高的豬特異性分子標(biāo)簽。
[1]CASANOVAS-MASSANA A,GóMEZ-DO?ATE M,SáNCHEZ D,et al.Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods.Journal of Environmental Management,2015,151:317-325.
[2]MIESZKIN S,F(xiàn)URET J P,CORTHIER G,et al.Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers.Applied&Environmental Microbiology,2009,75(10):3045-3054.
[3]OKABE S,OKAYAMA N,SAVICHTCHEVA O,et al.Quantification of host-specificBacteroides-Prevotella16S rRNA genetic markers for assessment of fecal pollution in freshwater.Applied Microbiology&Biotechnology,2007,74(4):890-901.
[4]DICK L K,BERNHARD A E,BRODEUR T J,et al.Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification.Applied& Environmental Microbiology,2005,71(6):3184-3191.
[5]UFNAR J A,UFNAR D F,WANG S Y,et al.Development of a swine-specific fecal pollution marker based on host differences in methanogenmcrAgenes.Applied&Environmental Microbiology,2007,73(16):5209-5217.
[6]KHATIB L A,TSAI Y L,OLSON B H.A biomarker for the identification of swine fecal pollution in water,using theST IItoxin gene from enterotoxigenicEscherichia coli.Applied Microbiology&Biotechnology,2003,63(2):231-238.
[7]HUNDESA A,MOTES C M D,ALBINANA-GIMENEZ N,et al.Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment.Journal of Virological Methods,2009,158(1/2):130-135.
[8]WITTY M,NICKELS J,LISA J,et al.Ecology,DNA,and the future of microbial source tracking.Water,Air,and Soil Pollution,2009,201(1):219-232.
[9]MCLELLAN S L,EREN A M.Discovering new indicators of fecal pollution.Trends in Microbiology,2014,22(12):697-706.
[10]PANDEYA D R,D'SOUZA R,RAHMAN M M,et al.Hostmicrobial interaction in the mammalian intestine and theirmetabolic role inside.Biomedical Research,2012,23(1):9-21.
[11]VIVEKANANDA M R,RAVINDRA S,SHIVPRASAD D.Oral Host Microbial Interaction.Germany:Lap Lambert Academic Publishing,2015:73-75.
[12]SHANKS O C,DOMINGO J W S,GRAHAM J E.Use of competitive DNA hybridization to identify differences in the genomes of bacteria.Journal of Microbiological Methods,2006,66(2):321-330.
[13]SHANKS O C,DOMINGO J W,LU J,et al.Identification of bacterial DNA markers for the detection of human fecal pollution in water.Applied&Environmental Microbiology,2007,73(8): 2416-2422.
[14]LU J,DOMINGO J S,SHANKS O C.Identification of chickenspecific fecal microbial sequences using a metagenomic approach.Water Research,2007,41(16):3561-3574.
[15]GROTHUES D,CANTOR C R,SMITH C L.PCR amplification of megabase DNA with tagged random primers(T-PCR).Nucleic Acids Research,1993,21(5):1321-1322.
[16]BREITBART M,HEWSON I,F(xiàn)ELTS B,et al.Metagenomic analyses of an uncultured viral community from human feces.Journal of Bacteriology,2003,185(20):6220-6223.
[17]CHANDLER D P,F(xiàn)REDRICKSON J K,BROCKMAN F J. Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries.Molecular Ecology,1997,6(5):475-482.
[18]LAMENDELLA R,DOMINGO J W S,GHOSH S,et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut.BMC Microbiology,2011,11(10):1-17.
[19]XUB,XUWJ,YANGFY,etal.Metagenomic analysisofthe pygmy loris fecal microbiome reveals unique functional capacity related to metabolismofaromaticcompounds.PLoS One,2013,8(2):118-125.
[20]MAZMANIAN S K,HUA L C,TZIANABOS A O,et al.An immunomodulatory molecule of symbiotic bacteria directs maturation ofthe hostimmune system.Cell,2005,122(1):107-118.
[21]MAZMANIAN S K,ROUND J L,KASPER D L.A microbial symbiosis factor prevents intestinal inflammatory disease.Nature,2008,453(7195):620-625.
[22]PRYDE S E,DUNCAN S H,HOLD G L,et al.The microbiology of butyrate formation in the human colon.FEMS Microbiology Letters,2002,217(2):133-139.
[23]SHANKS O C,DOMINGO J W S,LAMENDELLA R,et al.Competitive metagenomic DNA hybridization identifies hostspecific microbial genetic markers in cow fecal samples.Applied &Environmental Microbiology,2006,72(6):4054-4060.
[24]ZHANG H,DIBAISE J K,ZUCCOLO A,et al.Human gut microbiota in obesity and after gastric bypass.Proceedings of the National Academy of Sciences of the USA,2009,106(7):2365-2370.
[25]XU J,BJURSELL M K,HIMROD J,et al.A genomic view of the human-Bacteroides thetaiotaomicronsymbiosis.Science,2003,299(5615):2074-2076.
[26]RAM J L,RITCHIE R P,F(xiàn)ANG J,et al.Sequence-based source tracking ofEscherichia colibased on genetic diversity of betaglucuronidase.Journal of Environmental Quality,2004,33(3): 1024-1032.
Identification of swine-specific microbial genetic markers using competitive DNA hybridization.
FAN Lihua1,MO Hongfei2,ZHANG Xiaofeng2,SHUAI Jiangbing2*,CHEN Qing1(1.School of Food Science and Biotechnology,Zhejiang Gongshang University,Hangzhou 310035,China;2.Zhejiang Academy of Science and Technology for Inspection and Quarantine,Hangzhou 310016,China)
non-point source pollution;competitive DNA hybridization;genome fragment enrichment;function annotation; swine-specific molecular marker
S 182;X 172
A
10.3785/j.issn.1008-9209.2016.06.151
JournalofZhejiang University(Agric.&Life Sci.),2017,43(2):163-172
國家自然科學(xué)基金(31301492);浙江省重點研發(fā)計劃(2015C02044)。
帥江冰(http://orcid.org/0000-0001-6540-1962),Tel:+86-571-81100649,E-mail:sjb@ziq.gov.cn
(First author):樊麗華(http://orcid.org/0000-0002-8534-0914),E-mail:afanlihua@163.com
(Received):2016-06-15;接受日期(Accepted):2016-10-17;
日期(Published online):2017-01-22
浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版)2017年2期