雷開宇,劉池洋,張龍,吳柏林,寸小妮,孫莉
1.大陸動力學國家重點實驗室(西北大學),西北大學地質學系,西安 7100692.陜西延長石油(集團)油氣勘探公司延長氣田采氣一廠,陜西延安 716000
鄂爾多斯盆地北部侏羅系泥巖地球化學特征:物源與古沉積環(huán)境恢復
雷開宇1,2,劉池洋1,張龍1,吳柏林1,寸小妮1,孫莉1
1.大陸動力學國家重點實驗室(西北大學),西北大學地質學系,西安 7100692.陜西延長石油(集團)油氣勘探公司延長氣田采氣一廠,陜西延安 716000
鄂爾多斯盆地北部侏羅系泥巖地球化學特征記錄了當時重要的地質信息。通過對該區(qū)中侏羅統(tǒng)直羅組及延安組泥巖的X射線熒光常量元素分析以及ICP-MS微量、稀土元素分析對其源區(qū)構造背景、源巖屬性進行了綜合研究。與此同時,根據(jù)泥巖典型地球化學參數(shù)的垂向變化對其古沉積環(huán)境進行了恢復。研究結果表明:盆地北部侏羅系沉積巖與北鄰陰山—大青山—烏拉山地區(qū)前寒武紀古老基底的片麻巖、麻粒巖、孔茲巖等變質巖系以及各時代侵入巖具有較大的親緣性,是其主要物源。源區(qū)構造背景主要是與大陸島弧相關的活動大陸邊緣。Sr/Cu、Rb/Sr、CIA、Sr/Ba、V/(V+Ni)、Ceanom等泥巖地球化學指標的垂向變化特征對古沉積環(huán)境的反演表明,從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候逐漸變得越來越干旱,水體古鹽度整體上由微咸水相的淡水環(huán)境逐漸向半咸水相的淡水環(huán)境轉變,古氧化還原環(huán)境為水體分層不強的還原環(huán)境。
鄂爾多斯盆地北部;侏羅系;元素地球化學;物源分析;古沉積環(huán)境
鄂爾多斯盆地位于多個構造域的復合疊加部位,盆地演化過程與地球動力學環(huán)境極為復雜,油氣、煤、鈾等資源極為豐富[1]。多年來,依托油氣及煤資源勘探開發(fā)力度的不斷加大,盆地沉積地層物源方面的研究亦主要集中于石炭系—二疊系等產(chǎn)氣層系以及上三疊統(tǒng)延長組及中侏羅統(tǒng)延安組等產(chǎn)油產(chǎn)煤層系,相比之下,對中侏羅統(tǒng)直羅組等上覆地層的物源研究有限。近年來,隨著盆地北部杭錦旗—東勝大型砂巖型鈾礦帶的發(fā)現(xiàn),賦礦層位中侏羅統(tǒng)直羅組地層受到普遍關注。關于盆地北部侏羅系沉積物源,相關學者從巖石學[2-3]、地球化學[4-8]、沉積構造背景[9-10]及鋯石定年[11-13]等不同角度進行了研究。上述研究既有定性方法,也不乏精確的同位素定年物源示蹤予以支持,取得了一些廣泛認識:1)盆地北部物源主要來自北鄰陰山地塊、孔茲巖帶等地;2)盆地北部侏羅系沉積體系的空間配置及古水流向均表明其物源來自北鄰造山帶。值得指出的是,目前為數(shù)不多的利用全巖的主微量、稀土元素參數(shù)對盆地北部鈾礦賦礦層位直羅組沉積期物源的研究均集中于砂巖的相關地球化學分析[4-5,8]。通常情況下,基于砂巖的Dickinson碎屑骨架三角圖[14]投值、主微量地球化學圖解及稀土元素配分曲線對比分析可有效判斷物源區(qū)構造背景及源巖屬性[15-16]。盆地北部地區(qū)前人直羅組砂巖碎屑研究結果表明源區(qū)主要為再旋回造山帶物源區(qū)[4],砂巖主微量系列判別圖解分析表明源巖形成于大陸弧—活動大陸邊緣環(huán)境[5,8],砂巖稀土元素配分曲線對比分析表明母巖主要為花崗片麻巖、斜長角閃巖等變質巖[4]或閃長巖、花崗閃長巖等侵入巖[8]。然而截止目前為止,尚未見利用研究區(qū)直羅組細碎屑巖的相關物源研究。與此同時,也未見通過侏羅系鉆井剖面細粒沉積物地球化學參數(shù)的垂向演化特征對盆地北部侏羅紀古沉積環(huán)境進行系統(tǒng)恢復的研究工作。
巖石地球化學元素示蹤的精確性及高分辨率性使之成為物源示蹤、構造背景判別及重建古沉積環(huán)境的重要手段[17]。在前人研究基礎上,通過對盆地北部杭錦旗地區(qū)侏羅系鉆井剖面泥巖的系統(tǒng)采樣,結合其常量、微量及稀土元素分析結果,對該區(qū)直羅組的源區(qū)構造背景、源巖屬性進行了研究。在物源分析的基礎上,根據(jù)侏羅系鉆井剖面泥巖典型地球化學參數(shù)的垂向演化特征,對賦礦層位直羅組沉積期的古沉積環(huán)境進行了恢復。選擇泥巖一方面是因為地球化學元素在泥巖中分布的均一性更強[18],可能更能反映混合物源的綜合結果,一方面也是對利用粗碎屑巖判斷物源的有益補充和驗證。
1.1 區(qū)域構造演化特征
鄂爾多斯地塊位于華北克拉通西部(圖1),與其北部的陰山地塊以及東部地塊大致在早元古宙先后發(fā)生碰撞[19-20],華北克拉通由此形成。鄂爾多斯盆地的形成始于中晚三疊世,盆地疊加于早古生代及晚古生代大型盆地之上,屬于多重疊合盆地[1]。
在鄂爾多斯盆地侏羅系沉積之前,經(jīng)過印支運動的不均勻構造抬升,延長組頂部遭受較強剝蝕并造就了高低起伏的侵蝕地貌,進而奠定了早侏羅世富縣—延安期的古地貌格局以及沉積相的分布[21]。在延安組地層沉積末期,盆地抬升、沉積間斷,使延安組與上覆直羅組之間形成侵蝕不整合面[1],不整合面之上的直羅組在盆地北部常發(fā)育一套可對比的直羅組底礫巖,而在不整合面之下的延安組頂部則發(fā)育一套白色砂巖(圖2),兩者均為盆地北部重要的地層劃分對比標志層[22]。在中侏羅世直羅—安定期,盆地構造環(huán)境總體較為穩(wěn)定[1]。進入晚侏羅世,受該時期燕山運動的影響,盆地北部普遍存在侏羅系與上覆白堊系的不整合接觸[1,23-24]。
圖1 研究區(qū)及周緣地質圖與采樣位置a.華北克拉通位置簡圖;b.華北克拉通基底構造單元及研究區(qū)(據(jù)文獻[27]修改);c.鄂爾多斯盆地北緣地層分布圖(據(jù)1∶1 500 000內蒙古及鄰區(qū)地質圖修編);d.杭錦旗地區(qū)ZKB39-0井柱狀圖及泥巖樣品位置Fig.1 Geological sketch map of the study and adjacent areas and sampling locationa. location sketch map of the North China Craton; b.tectonic subdivision of the North China Craton and study area(modified after reference[27]); c.distribution map of strata in the northern margin of Ordos Basin(modified after 1∶1 500 000 geological map of the Inner Mongolia and adjacent areas); d.columnar diagram of Well ZKB39-0 in Hangjinqi area and location of mudstone samples
圖2 鄂爾多斯盆地北部杭錦旗地區(qū)ZKB39-0井巖性及沉積相綜合柱狀圖(紅色圓點為泥巖取樣位置)Fig.2 Generalized column of the lithologic section and sedimentary facies of Well ZKB39-0 in Hangjinqi area in the northern Ordos Basin(locations of mudstone samples are indicated by red circles)
1.2 盆地北緣地層沉積特征
鄂爾多斯盆地北緣古老結晶基底主要為太古代—元古代多套變火山—沉積巖構成的古老變質巖系[25],該基底地層主要出露于大青山—烏拉山、色爾騰山、陰山以及狼山等地區(qū),其巖性主要由太古代集寧群的麻粒巖、片麻巖及角閃巖,烏拉山群的片麻巖、角閃巖及深變質巖系,元古代色爾騰山群的片麻巖、混合巖,二道凹群的大理巖及綠片巖,渣爾泰山群的石英巖及變質砂礫巖等組成(表1)。
大營鈾礦床位于鄂爾多斯盆地北部伊盟隆起中部的杭錦旗地區(qū)(圖1c),其北部與河套斷陷盆地接壤,東側與東勝鈾礦床毗鄰。區(qū)內地層整體為一向西南緩傾的單斜構造。中侏羅統(tǒng)直羅組是區(qū)內重要的砂巖型鈾礦賦礦層位,根據(jù)直羅組內部巖性變化特征,可將其分為上段(J2z2)和下段(J2z1)兩段,下段(J2z1)進一步可細分為上、下兩個亞段,鈾礦化主要集中分布在下亞段(J2z1-1)。直羅組沉積時期水體較淺,巖性整體較為單調,早期以辮狀河沉積為主,中晚期以曲流河沉積為主[1],該組巖性以中粗粒砂巖及少量細砂巖為主,局部夾有煤線。直羅組以其底部的含礫砂巖與下伏延安組煤系地層平行不整合接觸,安定組在盆地大部分地區(qū)屬湖相沉積,但在盆地北部則以一套氣候干旱條件下的河流沉積為主,整合覆蓋于直羅組之上。野外露頭及鉆井研究表明盆地北部東勝等地缺失安定組,即直羅組直接與白堊系接觸[22]。本次研究對杭錦旗地區(qū)大營鈾礦巖芯的編錄結果亦顯示該區(qū)可能缺失安定組(圖2)。
用于主量、微量及稀土元素分析的29個直羅組及延安組泥巖樣品采集于鄂爾多斯盆地北部杭錦旗地區(qū)大營鈾礦區(qū)ZKB39-0井鉆井巖芯,巖性柱狀圖及泥巖采樣位置見圖2。本次研究進行地球化學分析的樣品均為新鮮的、受后期成巖作用影響小的泥巖或粉砂質泥巖,這樣可以更好的去挖掘物源信息,也更有助于反演古沉積環(huán)境。
所有泥巖樣品的主量、微量和稀土元素測試均在西北大學大陸動力學國家重點實驗室完成。主量元素采用X射線熒光光譜儀分析,分析誤差<5%。微量和稀土元素測試采用Elan6100DRC等離子體質譜儀(ICP-MS)進行,測試的樣品均采用國際標樣BH-VO-1,BSR-1及AGV-1作為標準,質譜儀對Co、Ni、Zn、Ga、Rb、Zr、Nb、Hf、La、Ce、Pr、Nd、Sm、Eu等元素測試誤差<5%,其他元素測試誤差介于5%~10%。
表1 鄂爾多斯盆地北緣基巖巖性簡表(據(jù)文獻[26]修改)
3.1 常量元素特征與源區(qū)構造背景
杭錦旗地區(qū)侏羅系直羅組及延安組泥巖常量元素與澳大利亞太古代平均頁巖PAAS[28]相比,SiO2、Al2O3、MgO含量基本一致(表2),常量元素特征反映沉積物源巖有酸性巖存在。Roseretal.[29]基于砂、泥巖的K2O/Na2O-SiO2關系圖解常被用于判斷源區(qū)構造背景。研究區(qū)侏羅系泥巖樣品在K2O/Na2O-SiO2圖解上的投點總體主要落在活動大陸邊緣區(qū)域內,個別點落在被動大陸邊緣區(qū)域(圖3)。上述泥巖樣品的常量元素判別圖解投點結果表明,盆地北部源區(qū)構造背景主要為活動大陸邊緣。
注:PAAS為澳大利亞太古代平均頁巖(Tayloretal.[28]);CIA為化學蝕變指數(shù);ICV為成分變異指數(shù)。
圖3 杭錦旗地區(qū)侏羅系泥巖K2O/Na2O-SiO2判別圖解(本圖的數(shù)據(jù)已經(jīng)過燒失量校正,底圖據(jù)文獻[29])Fig.3 K2O/Na2O-SiO2 discrimination diagram of the Jurassic mudstones in Hangjinqi area(data have been rectified by LOI, after reference[29])
3.2 微量—稀土元素特征與源區(qū)構造背景
微量—稀土元素在沉積成巖過程中比較穩(wěn)定,在水中溶解度低且滯留時間短,因而能快速進入細粒沉積物,使細粒沉積物可以較好的反映物源區(qū)地球化學信息[28,30]。Bhatia[30]總結的4種不同構造環(huán)境(大洋島弧、大陸島弧、活動大陸邊緣、被動大陸邊緣)下的雜砂巖稀土元素特征可以歸納為:構造背景為大洋島弧的雜砂巖,其源區(qū)是未切割的巖漿弧,稀土元素特征為低稀土總量、弱的輕稀土富集以及基本無Eu的負異常;構造背景為大陸島弧的雜砂巖,其源區(qū)是切割的巖漿弧,稀土元素特征為較高稀土總量、中等輕稀土富集以及弱的Eu負異常;來自活動大陸邊緣和被動大陸邊緣的雜砂巖,其源區(qū)分別為上隆的基底及克拉通內部構造高地,且具有高稀土總量、高輕稀土富集以及較為明顯的Eu負異常。對于相同構造背景之下的泥巖和雜砂巖,泥巖的∑REE含量要高出雜砂巖的20%左右,因此將泥巖稀土元素特征參數(shù)除以1.2則為同沉積期雜砂巖的對應參數(shù)值,該校正后的稀土元素參數(shù)值可直接與Bhatia總結的4種構造環(huán)境下的雜砂巖稀土元素特征參數(shù)進行對比[17]。通過稀土元素特征參數(shù)的綜合對比分析發(fā)現(xiàn)(表3),直羅組及延安組泥巖稀土元素特征值均與活動大陸邊緣背景下的稀土元素特征值最為相似,并且物源來自上隆的基底。
Bhatiaetal.[31]根據(jù)La、Th、Sc、Co、Zr等更具穩(wěn)定性的微量—稀土元素總結出了適用于砂巖及泥巖樣品的Ti/Zr-La/Sc、La-Th-Sc及Th-Co-Zr/10構造環(huán)境判別圖解,利用這些判別圖解的綜合分析,可以對前述常量元素判別圖解及稀土元素特征參數(shù)對比結果做進一步的補充和論證。本次研究泥巖微量—稀土元素判別圖解如圖4所示(投圖測試數(shù)據(jù)見表4,5),在Ti/Zr-La/Sc圖解中(圖4a),直羅組及延安組泥巖樣品大多數(shù)落在大陸島弧和活動大陸邊緣區(qū)域上方,并且總體更接近活動大陸邊緣;部分泥巖樣品落在活動大陸邊緣區(qū)域內,個別泥巖樣品基本處于大陸島弧與活動陸緣界線處。在La-Th-Sc圖解中(圖4b),除直羅組下段1塊樣品落點偏離4個區(qū)域之外,大多數(shù)直羅組及延安組泥巖樣品比較一致的落在大陸島弧區(qū)域內,還有少量直羅組上下段的樣品落在活動陸緣、被動陸緣混合區(qū)域與大陸島弧區(qū)域之間。在Th-Co-Zr/10圖解中(圖4c),各組樣品落點位置較為分散,絕大多數(shù)樣品落在大陸島弧和活動大陸邊緣區(qū)域內及其周圍,僅1塊直羅組下段樣品落入被動大陸邊緣,另外有1塊直羅組下段樣品遠離各區(qū)域。以上3個構造判別圖解的分析表明,源區(qū)構造背景除主要與活動大陸邊緣相關外,與大陸島弧也有較多聯(lián)系。
表3 不同構造背景稀土元素參數(shù)特征
注:帶*數(shù)據(jù)來自文獻[30];括號內數(shù)據(jù)為對應標準偏差;稀土元素含量單位為×10-6;(La/Yb)N采用Boynton[32]推薦的球粒隕石標準化參數(shù)值計算;δEu=EuN/(SmN×GdN)1/2,其中EuN、SmN、GdN分別為對應元素球粒隕石標準化值。
圖4 杭錦旗地區(qū)侏羅系泥巖Ti/Zr-La/Sc、La-Th-Sc及Th-Co-Zr/10判別圖解(底圖據(jù)文獻[31])Fig.4 Ti/Zr-La/Sc,La-Th-Sc and Th-Co-Zr/10 diagrams of the Jurassic mudstones in Hangjinqi area(after reference[31])
層位樣品號LaCePrNdSmEuGdTbDyHoErTmYbLu∑REECeanom145.997.010.6537.66.081.155.430.704.510.873.260.402.500.42216.470.01243.998.010.5542.78.511.868.451.326.911.434.630.493.550.51232.810.01350.9105.012.0544.78.061.926.870.836.381.013.070.373.140.53244.83-0.01440.882.210.1540.17.611.556.550.915.571.253.020.462.870.40203.44-0.04543.995.110.9037.36.801.365.220.814.840.982.730.452.810.34213.540.01直羅組上段646.198.99.5134.45.871.365.201.076.611.144.270.433.660.64219.160.03744.687.510.6536.66.711.205.780.894.870.792.650.302.270.33205.14-0.03858.2107.514.1048.68.551.556.150.965.741.143.060.403.140.53259.62-0.05951.1107.011.9043.97.901.485.700.824.620.892.470.342.270.30240.690.001050.183.411.8541.17.651.485.030.695.020.732.770.342.450.34212.95-0.101143.487.712.0045.27.181.255.950.844.490.962.570.402.430.34214.71-0.051231.655.37.6127.24.740.874.240.713.940.742.180.302.650.38142.46-0.081341.6122.010.0037.86.361.245.440.863.910.872.640.482.430.34235.970.131452.6113.513.2548.17.881.986.941.065.451.162.770.442.630.36258.120.001551.6115.012.5045.07.561.546.270.924.980.842.390.391.920.33251.240.021661.0127.013.5050.38.441.736.011.014.340.792.560.472.140.31279.60.001750.3112.512.2045.57.591.475.660.914.550.882.430.282.020.35246.640.021852.1113.013.8550.67.931.897.690.996.031.092.840.453.150.53262.14-0.011960.3117.512.2542.47.011.414.690.693.550.842.130.262.280.34255.65-0.01直羅組下段2049.6105.012.0543.08.231.396.400.934.650.902.650.252.460.36237.870.002145.385.810.1537.16.670.915.140.793.380.701.940.331.830.26200.3-0.042244.492.910.1039.46.381.235.230.964.360.732.060.332.310.32210.71-0.012342.486.310.5038.26.421.465.200.693.620.852.210.341.970.29200.45-0.022459.6124.513.9551.38.650.886.360.965.091.093.370.563.110.66280.08-0.012536.772.08.5327.04.250.763.880.552.780.651.400.231.560.31160.6-0.012636.369.27.9526.24.060.883.100.513.120.641.780.181.270.21155.4-0.022734.365.27.6426.43.750.934.460.674.971.283.980.634.390.61159.21-0.032829.655.36.2722.44.110.943.290.432.960.571.900.331.790.26130.15-0.04延安組2945.7101.511.4544.47.911.676.300.834.481.052.990.422.600.42231.720.00球粒隕石(Boynton[32])0.30.80.120.60.170.070.260.050.320.070.210.030.210.03
表5 杭錦旗地區(qū)侏羅系泥巖微量元素含量(×10-6)及特征參數(shù)
綜合上述常量、微量和稀土元素構造背景判別結果的分析,可以認為鄂爾多斯盆地北部杭錦旗地區(qū)侏羅系沉積巖源區(qū)的構造背景主要是與大陸島弧相關的活動大陸邊緣。本研究結論與該區(qū)前人直羅組砂巖主微量元素判別圖解分析結果[5,8]基本吻合。
前文已通過常量、微量及稀土元素綜合分析了杭錦旗地區(qū)直羅組及延安組的源區(qū)構造背景,下面通過稀土元素配分模式及各種源巖判別圖解進一步完善并確定源巖屬性。
沉積巖稀土元素特征主要受控于相應物源區(qū)的巖石組成,因而能夠反映源巖的稀土特征[33]。相同來源的沉積巖具有非常相似的稀土元素配分模式,所以在物源研究中,稀土元素配分曲線總體形態(tài)特征、傾斜程度以及Ce異常和Eu異常等特征的相互對比成為重要的判別指標[16,34]。
為了通過稀土元素配分曲線特征的對比進一步確定物源。筆者統(tǒng)計了近年來前人在盆地北部已經(jīng)發(fā)表的不同時期、不同巖體的稀土元素數(shù)據(jù),并將本次研究數(shù)據(jù)(表4)及前人研究數(shù)據(jù)統(tǒng)一采用Boynton[32]推薦的球粒隕石平均值進行標準化,繪制出相應地區(qū)的稀土元素配分模式曲線(圖5b,c,d)與研究區(qū)(圖5a)進行對比。在空間分布上,數(shù)據(jù)主要來自研究區(qū)周緣的方山地區(qū)[35]、陰山—大青山—烏拉山[36-59]。
鄂爾多斯盆地北部杭錦旗地區(qū)侏羅系直羅組及延安組泥巖樣品的稀土元素配分模式相似,均屬輕稀土富集、重稀土虧損的右傾型,曲線中La-Eu段較陡而Eu-Lu段較平緩,存在明顯的Eu負異常,并顯示出配分曲線相互平行的特征,表明研究區(qū)直羅組及延安組泥巖樣品稀土含量大致呈同步變化(圖5a)。盆地北鄰陰山—大青山—烏拉山地區(qū)的前寒武紀變質巖、侵入巖和海西—印支期侵入巖的稀土元素配分模式均顯示出與杭錦旗地區(qū)泥巖樣品高度相似的特征,即具有輕稀土富集、重稀土虧損的特點(圖5c,d),表明盆地北部侏羅系沉積巖與陰山—大青山—烏拉山地區(qū)前寒武紀古老基底的片麻巖、麻粒巖、孔茲巖等變質巖系以及各時代花崗巖、閃長巖等侵入巖具有親緣性,換言之,盆地北部侏羅系沉積巖物源主要為集寧群(Ar1-2)、烏拉山群(Ar3)、色爾騰山群(Pt1)、二道凹群(Pt2)、渣爾泰山群(Pt2)等古老變質巖系以及各時期侵入巖。與此同時,盆地東北緣方山地區(qū)前寒武紀混合花崗巖及北鄰陰山等地前寒武紀混合花崗巖與杭錦旗地區(qū)樣品稀土元素配分模式差別較大,其中方山地區(qū)前寒武紀混合花崗巖稀土元素配分特征為輕稀土虧損、重稀土富集的左傾型,配分曲線La-Eu段平坦(圖5b);陰山等地前寒武紀混合花崗巖稀土配分特征為輕稀土富集、重稀土虧損的右傾型,但出現(xiàn)Eu的正異常且Eu-Lu段曲線整體形態(tài)與研究區(qū)樣品差別明顯(圖5c),這表明兩者不是研究區(qū)侏羅系沉積巖的母巖。前人對該區(qū)直羅組砂巖的稀土元素配分曲線對比分析結果表明,母巖主要為花崗片麻巖、斜長角閃巖等變質巖[4]或閃長巖、花崗閃長巖等侵入巖[8]。本項研究通過大量統(tǒng)計周鄰造山帶巖體的稀土元素數(shù)據(jù),與研究區(qū)侏羅系泥巖稀土元素配分曲線進行對比,在前人研究基礎上進一步明確和豐富了源巖類型。
圖5 杭錦旗地區(qū)侏羅系泥巖與鄰區(qū)不同巖體稀土元素配分模式(球粒隕石標準化值均采用文獻[32]推薦值)Fig.5 The REE distribution patterns of Jurassic mudstones in Hangjinqi area and various rocks in adjacent areas(chondrite values after reference[32])
杭錦旗地區(qū)侏羅系泥巖的稀土元素配分曲線形態(tài)總體較為相似,說明其具有同源性,可以利用稀土元素特征更進一步判斷物源區(qū)性質。根據(jù)Allegreetal.[60]提出的La/Yb-∑REE源巖判別圖解進行泥巖樣品的投點,絕大多數(shù)研究區(qū)侏羅系泥巖樣品落在沉積巖、花崗巖及堿性玄武巖的交匯區(qū)(圖6),這與上述稀土元素配分曲線的分析結果相一致。
圖6 杭錦旗地區(qū)侏羅系泥巖La/Yb-∑REE源巖判別圖解(底圖據(jù)文獻[60])Fig.6 La/Yb-∑REE source rock discrimination diagram of Jurassic mudstones in Hangjinqi area(after reference[60])
利用Co/Th-La/Sc及La/Th-Hf源巖判別圖解對杭錦旗地區(qū)侏羅系泥巖樣品進行投點(圖7)。在Co/Th-La/Sc圖解中(圖7a),所有直羅組及延安組泥巖樣品的La/Sc比值均高于長英質火山巖,而Co/Th比值大多介于長英質火山巖與安山巖之間。以上落點特征反映源巖主要為長英質巖石并且有安山質巖石的混入。在La/Th-Hf圖解中(圖7b),大多數(shù)泥巖樣品比較集中的分布在長英質源區(qū),部分泥巖樣品落在長英質、基性巖混合物源區(qū),并且直羅組下段泥巖中有1塊落在長英質物源區(qū)域的右側,顯示存在古老沉積物的混入,這與Co/Th-La/Sc圖解的分析結論一致,表明杭錦旗地區(qū)侏羅系沉積地層源巖以長英質巖石為主,同時存在一定量的中—基性巖漿巖以及古老沉積物。
綜上所述,杭錦旗地區(qū)侏羅系泥巖的稀土元素配分曲線、La/Yb-∑REE、Co/Th-La/Sc及La/Th-Hf源巖判別圖解分析結果共同表明了研究區(qū)侏羅系沉積地層源巖主要來自盆地北鄰陰山—大青山—烏拉山前寒武紀基底的片麻巖、麻粒巖、孔茲巖等變質巖系以及各時代侵入巖。
為了對盆地北部侏羅系時期的古沉積環(huán)境進行恢復,筆者通過對杭錦旗地區(qū)直羅組及延安組鉆井泥巖的系統(tǒng)采樣與分析,從古氣候、古鹽度、古氧化還原環(huán)境三個方面對古沉積環(huán)境演化過程進行了相關探討。
5.1 古氣候演化
化學蝕變指數(shù)(CIA)最早由Nesbittetal.[63]提出,用于反映源區(qū)化學風化程度。其計算公式為:CIA={n(Al2O3)/[n(Al2O3)+n(CaO*)+n(Na2O)+n(K2O)]}×100。式中各主成分均以摩爾分數(shù)表示,CaO*指硅酸鹽礦物中的CaO(不包括碳酸鹽以及磷酸鹽礦物中的CaO),本文采用Mclennan[64]提出的假定硅酸鹽Ca與Na比值一定的方法計算CaO*值,具體方法如下:n(CaO剩余)=n(CaO)-n(P2O5),若此n(CaO剩余)
圖7 杭錦旗地區(qū)侏羅系泥巖Co/Th-La/Sc及La/Th-Hf源巖判別圖解(a底圖據(jù)文獻[61];b底圖據(jù)文獻[62])Fig.7 Co/Th-La/Sc and La/Th-Hf source rock discrimination diagram of Jurassic mudstones in Hangjinqi area(a. after reference[61];b. after reference[62])
除成巖過程中的鉀交代作用外,碎屑巖的再循環(huán)沉積作用也會導致其成分發(fā)生改變,因此有必要對樣品進行再沉積作用的判別。Coxetal.[71]提出的成分變異指數(shù)ICV被廣泛用來判斷細屑巖是否為再循環(huán)沉積物,其定義為:ICV=[n(Fe2O3)+n(K2O*)+n(Na2O)+n(CaO*)+n(MgO)+n(MnO)+n(TiO2)]/n(Al2O3),式中各主成分均以摩爾分數(shù)表示,n(CaO*)為硅酸鹽礦物中的CaO,n(K2O*)為校正后的值。當ICV>1時,說明該樣品含少量黏土礦物,指示其為活動構造帶的首次沉積;當ICV<1時,說明該樣品存在大量黏土礦物,代表可能經(jīng)歷了再循環(huán)沉積[72]。從本次研究所有泥巖樣品的ICV值(表2)可知,大多數(shù)樣品的ICV值均接近1或>1,顯示其基本為活動構造帶的首次沉積;少數(shù)直羅組底部樣品的ICV值在0.48~0.68之間,明顯小于1,結合區(qū)域地質背景,這些樣品經(jīng)歷了再循環(huán)沉積作用,從而導致其A-CN-K圖解投點結果的異常。由于上述少量直羅組底部樣品(圖9黃色圓點)受再循環(huán)沉積作用影響較為明顯,其巖石成分存在不同程度的變化,不適宜進行下文的古沉積環(huán)境分析,因此對這些樣品的相關地球化學參數(shù)的變化不做討論。
圖8 杭錦旗地區(qū)侏羅系泥巖A-CN-K三角圖(底圖據(jù)文獻[70])A.Al2O3;CN.(CaO*+Na2O);K·K2O;CIA.化學蝕變指數(shù);UCC.上大陸殼;PAAS.澳大利亞后太古代頁巖Fig.8 A-CN-K ternary diagram of Jurassic mudstones samples in Hangjinqi area(after reference[70])
杭錦旗地區(qū)延安組泥巖CIAcorr.=79.68,指示中等風化強度且氣候溫暖濕潤;直羅組下段泥巖CIAcorr.平均值為75.50,指示中等風化程度且該時期古氣候相對于延安期變的干燥;直羅組上段泥巖CIAcorr.平均值為71.94(圖9綠色區(qū)域),顯示直羅組上段相對于下段的風化程度有所減弱,指示直羅組沉積晚期相對于直羅組沉積早期古氣候變得更加干旱。
Sr/Cu和Rb/Sr比值均被廣泛用于恢復古氣候。通常Sr/Cu>5指示干熱氣候,Sr/Cu<5則指示溫濕氣候[73]。Sr/Cu垂向演化曲線顯示(圖9),杭錦旗地區(qū)延安組泥巖Sr/Cu值為3.3,為所有泥巖樣品的最低值,指示延安期處于溫暖潮濕的氣候;直羅組下段的Sr/Cu平均值為8.3,指示古氣候相對延安期變?yōu)楦蔁釟夂颍恢绷_組上段泥巖樣品(圖9綠色區(qū)域)Sr/Cu平均值為13.4,指示直羅組沉積晚期與沉積早期相比變的更加干熱。
Rb在風化作用中相對穩(wěn)定,而Sr則較易發(fā)生淋失[74]。在氣候濕潤時,由于降水較多、風化較強烈,導致Sr部分淋失,從而使Rb/Sr比值升高;在氣候干旱時,降水較少、風化強度相對降低,母巖中殘留更多的Sr,進而使Rb/Sr比值相對降低[75]。換言之,Rb/Sr高值指示濕潤氣候,Rb/Sr低值指示干旱氣候。對比Rb/Sr和Sr/Cu垂向演化曲線(圖9)可以看出,兩者大致呈鏡像變化趨勢,這與上文所述Sr/Cu與溫濕氣候反相關、與干熱氣候正相關,而Rb/Sr則恰好相反的規(guī)律相一致。因此,Rb/Sr比值進一步揭示了從延安期→直羅組沉積早期→直羅組沉積晚期由溫濕氣候逐漸向干熱氣候轉變的整個古氣候演變過程。
綜上所述,無論是化學蝕變指數(shù)CIA,還是微量元素比值Sr/Cu、Rb/Sr對古氣候的反演均得出較為一致的結論,即從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候逐漸變得越來越干旱。
5.2 古鹽度演化
古鹽度是恢復古沉積環(huán)境及其演化的重要內容。Sr/Ba比值是判別古鹽度的靈敏標志,該比值與古鹽度呈正相關,當Sr/Ba<1時,指示淡水沉積(其中小于0.5為微咸水相,0.5~1為半咸水相);Sr/Ba>1時,指示鹽湖或海相沉積[76-77]。杭錦旗地區(qū)侏羅系泥巖Sr/Ba變化曲線顯示(圖9),直羅組及延安組所有泥巖樣品的Sr/Ba比值均小于1,表明整體為淡水沉積環(huán)境。其中,延安組泥巖Sr/Ba值為0.2,指示延安組沉積期處于微咸水相的淡水環(huán)境;直羅組下段泥巖整體Sr/Ba平均值為0.49,指示直羅組下段沉積期的水體古鹽度較延安組沉積期有所增加,但整體仍為微咸水相的淡水環(huán)境;直羅組上段泥巖Sr/Ba平均值為0.62(圖中綠色區(qū)域),指示直羅組沉積晚期古鹽度相對沉積早期進一步增大,整體變?yōu)榘胂趟嗟牡h(huán)境。古鹽度的變化在一定程度上反映了古氣候的變化,古氣候條件通過蒸發(fā)/降雨量的變化直接控制了水體古鹽度的高低[78]。因此,上述古鹽度變化特征進一步印證了前文關于從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候不斷向干旱氣候演變的分析結果。
圖9 杭錦旗地區(qū)ZKB39-0井侏羅系泥巖地球化學參數(shù)垂向演化圖(數(shù)據(jù)來自表2,表4,表5)Fig.9 The vertical variation of geochemical parameters in Jurassic mudstones of Well ZKB39-0 in Hangjinqi area(data from Table 2 and Table 4 and Table 5)
5.3 古氧化還原環(huán)境
微量元素V/(V+Ni)比值越來越多的被用于沉積水體古氧化還原環(huán)境的研究。當V/(V+Ni)比值>0.84時,指示水體分層且底層水體出現(xiàn)H2S的厭氧環(huán)境;當V/(V+Ni)=0.6~0.84時,指示水體分層不強的厭氧環(huán)境;而當V/(V+Ni)=0.46~0.6時則指示水體分層弱的貧氧環(huán)境[79]。從杭錦旗地區(qū)侏羅系泥巖V/(V+Ni)值垂向變化曲線可以看出(圖9),延安組泥巖V/(V+Ni)值為0.78,直羅組下段泥巖V/(V+Ni)平均值為0.76,直羅組上段泥巖V/(V+Ni)平均值為0.71,即研究區(qū)侏羅系泥巖V/(V+Ni)比值基本保持在0.6~0.84之間,換言之,研究區(qū)侏羅系直羅組及延安組泥巖沉積時期的古氧化還原環(huán)境為水體分層不強的厭氧環(huán)境。與此同時,Elderfieldetal.[80]提出的Ce異常參數(shù)Ceanom也是目前應用較為廣泛的古氧化還原條件判別參數(shù),其計算公式為Ceanom=lg{3CeN/(2LaN+NdN)}。當以北美頁巖作為標準化參數(shù)的前提下,Ceanom>-0.1時,指示缺氧的還原環(huán)境;Ceanom<-0.1時,指示氧化環(huán)境。杭錦旗地區(qū)直羅組及延安組所有泥巖樣品的Ceanom均大于-0.1,亦指示了其處于缺氧的還原環(huán)境。
(1) 鄂爾多斯盆地北部杭錦旗地區(qū)侏羅系直羅組及延安組泥巖的常量、微量及稀土元素構造判別結果綜合分析認為,其源區(qū)構造背景主要是與大陸島弧相關的活動大陸邊緣。
(2) 稀土元素配分曲線特征及各種源巖判別圖解的分析表明,盆地北部侏羅系沉積巖與北鄰陰山—大青山—烏拉山地區(qū)前寒武紀古老基底的片麻巖、麻粒巖、孔茲巖等變質巖系以及各時代侵入巖具有親緣性,即為研究區(qū)侏羅系沉積巖的主要物源。
(3) 研究區(qū)侏羅系泥巖Sr/Cu、Rb/Sr比值及化學蝕變指數(shù)CIA對古氣候的反演均得出較為一致的結論,即從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候逐漸變得越來越干旱。泥巖微量元素Sr/Ba比值表明,從延安期→直羅組沉積早期→直羅組沉積晚期,水體古鹽度整體上由微咸水相的淡水環(huán)境逐漸向半咸水相的淡水環(huán)境轉變。泥巖微量元素V/(V+Ni)比值及Ce異常參數(shù)Ceanom表明,研究區(qū)侏羅系直羅組及延安組泥巖沉積時期的古氧化還原環(huán)境為水體分層不強的還原環(huán)境。
致謝 本論文撰寫過程中得到西北大學地質學系羅金海教授、張龍博士的熱忱指導和幫助;另外,還要感謝審稿專家提出的寶貴意見和有益建議,以及編輯們認真細致的工作,在此一并表示由衷感謝。
References)
[1] 劉池洋,趙紅格,桂小軍,等. 鄂爾多斯盆地演化—改造的時空坐標及其成藏(礦)響應[J]. 地質學報,2006,80(5):617-638. [Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.]
[2] Li R X, Li Y Z. The geologic features of mineralization at the Dongsheng uranium deposit in the northern Ordos Basin (CentralChina)[J]. Russian Geology and Geophysics, 2011, 52(6): 593-602.
[3] 易超,韓效忠,李西得,等. 鄂爾多斯盆地東北部直羅組砂巖巖石學特征與鈾礦化關系研究[J]. 高校地質學報,2014,20(2):185-197. [Yi Chao, Han Xiaozhong, Li Xide, et al. Study on sandstone petrologic feature of the Zhiluo Formation and its controls on uranium mineralization in northeastern Ordos Basin[J]. Geological Journal of China Universities, 2014, 20(2): 185-197.]
[4] 李宏濤,蔡春芳,羅曉容,等. 內蒙古東勝地區(qū)中侏羅統(tǒng)砂巖沉積物源的地球化學證據(jù)[J]. 地質科學,2007,42(2):353-361. [Li Hongtao, Cai Chunfang, Luo Xiaorong, et al. Geochemical evidence for sedimentary provenance of Middle Jurassic sandstones in Dongsheng area, Inner Mongolia[J]. Chinese Journal of Geology, 2007, 42(2): 353-361.]
[5] 趙俊峰. 鄂爾多斯盆地直羅—安定期原盆恢復[D]. 西安:西北大學,2007. [Zhao Junfeng. Restoration of the primary Ordos Basin in Zhiluo-Anding period[D]. Xi’an: Northwest University, 2007.]
[6] 楊曉勇,羅賢冬,凌明星,等. 鄂爾多斯盆地砂巖型鈾礦床地球化學特征及其地質意義[J]. 地質論評,2008,54(4):539-549. [Yang Xiaoyong, Luo Xiandong, Ling Mingxing, et al. Geochemical features of sandstone-type uranium deposits in the Ordos Basin and their geological significances[J]. Geological Review, 2008, 54(4): 539-549.]
[7] 劉漢彬,李子穎,秦明寬,等. 鄂爾多斯盆地北部砂巖型鈾礦地球化學研究進展[J]. 地學前緣,2012,19(3):139-146. [Liu Hanbin, Li Ziying, Qin Mingkuan, et al. Progress in geochemistry of sandstone-type uranium deposit in North Ordos Basin[J]. Earth Science Frontiers, 2012, 19(3): 139-146.]
[8] 吳兆劍,韓效忠,易超,等. 鄂爾多斯盆地東勝地區(qū)直羅組砂巖的地球化學特征與物源分析[J]. 現(xiàn)代地質,2013,27(3):557-567. [Wu Zhaojian, Han Xiaozhong, Yi Chao, et al. Geochemistry of sandstones from the Middle Jurassic Zhiluo Formation, Dongsheng area, northeastern Ordos Basin: implications for provenance and tectonic setting[J]. Geoscience, 2013, 27(3): 557-567.]
[9] 劉池洋,邱欣衛(wèi),吳柏林,等. 中—東亞能源礦產(chǎn)成礦域基本特征及其形成的動力學環(huán)境[J]. 中國科學(D輯):地球科學,2007,37(增刊1):1-15. [Liu Chiyang, Qiu Xinwei, Wu Bolin, et al. Characteristics and dynamic settings of the central-east Asia multi-energy minerals metallogenetic domain[J]. Science China(Seri.D): Earth Sciences, 2007, 37(Suppl.1): 1-15.]
[10] 焦養(yǎng)泉,吳立群,彭云彪,等. 中國北方古亞洲構造域中沉積型鈾礦形成發(fā)育的沉積—構造背景綜合分析[J]. 地學前緣,2015,22(1):189-205. [Jiao Yangquan, Wu Liqun, Peng Yunbiao, et al. Sedimentary-tectonic setting of the deposition-type uranium deposits forming in the Paleo-Asian tectonic domain, North China[J]. Earth Science Frontiers, 2015, 22(1): 189-205.]
[11] Chen Y L, Li D P, Zhou J, et al. U-Pb ages of zircons in western Qinling Shan, China, and their tectonic implications[J]. Earth Science Frontiers, 2008, 15(4): 88-107.
[12] 王盟,羅靜蘭,李杪,等. 鄂爾多斯盆地東勝地區(qū)砂巖型鈾礦源區(qū)及其構造背景分析——來自碎屑鋯石U-Pb年齡及Hf同位素的證據(jù)[J]. 巖石學報,2013,29(8):2746-2758. [Wang Meng, Luo Jinglan, Li Miao, et al. Provenance and tectonic setting of sandstone-type uranium deposit in Dongsheng area, Ordos Basin: evidence from U-Pb age and Hf isotopes of detrital zircons[J]. Acta Petrologica Sinica, 2013,29(8): 2746-2758.]
[13] Bao C, Chen Y L, Li D P, et al. Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC)[J]. Journal of Asian Earth Sciences, 2014, 96: 296-307.
[14] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of Arenites: NATO ASI Series. Netherlands: Springer, 1985, 148: 333-361.
[15] 趙紅格,劉池洋. 物源分析方法及研究進展[J]. 沉積學報,2003,21(3):409-415. [Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415.]
[16] 毛光周,劉池洋. 地球化學在物源及沉積背景分析中的應用[J]. 地球科學與環(huán)境學報,2011,33(4):337-348. [Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348.]
[17] 許中杰,程日輝,王嘹亮,等. 閩西南地區(qū)晚三疊—中侏羅世沉積巖礦物和元素地球化學特征:對盆地構造背景轉變的約束[J]. 巖石學報,2013,29(8):2913-2924. [Xu Zhongjie, Cheng Rihui, Wang Liaoliang, et al. Mineralogical and element geochemical characteristics of the Late Triassic-Middle Jurassic sedimentary rocks in southwestern Fujian province: constraints on changes of basin tectonic settings[J]. Acta Petrologica Sinica, 2013, 29(8): 2913-2924.]
[18] Cullers R L. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A[J]. Chemical Geology, 1995, 123(1/2/3/4): 107-131.
[19] Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 2000, 103(1/2): 55-88.
[20] Wan Y S, Song B, Liu D Y, et al. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research, 2006, 149(3/4): 249-271.
[21] 趙俊興,陳洪德. 鄂爾多斯盆地侏羅紀早中期甘陜古河的演化變遷[J]. 石油與天然氣地質,2006,27(2):152-158. [Zhao Junxing, Chen Hongde. Evolution of Gan-Shaan paleochannel during early and Middle Jurassic in Ordos Basin[J]. Oil & Gas Geology, 2006, 27(2): 152-158.]
[22] 焦養(yǎng)泉,吳立群,楊生科,等. 鈾儲層沉積學[M]. 北京:地質出版社,2006:233. [Jiao Yangquan, Wu Liqun, Yang Shengke, et al. Sedimentology of uranium reservoir[M]. Beijing: Geological Publishing House, 2006: 233.]
[23] 張岳橋,廖昌珍,施煒,等. 論鄂爾多斯盆地及其周緣侏羅紀變形[J]. 地學前緣,2007,14(2):182-196. [Zhang Yueqiao, Liao Changzhen, Shi Wei, et al. On the Jurassic deformation in and around the Ordos Basin, North China[J]. Earth Science Frontiers, 2007, 14(2): 182-196.]
[24] 李振宏,董樹文,馮勝斌,等. 鄂爾多斯盆地中—晚侏羅世構造事件的沉積響應[J]. 地球學報,2015,36(1):22-30. [Li Zhenhong, Dong Shuwen, Feng Shengbin, et al. Sedimentary response to middle-late Jurassic tectonic events in the Ordos Basin[J]. Acta Geoscientica Sinica, 2015, 36(1): 22-30.]
[25] 何自新. 鄂爾多斯盆地演化與油氣[M]. 北京:石油工業(yè)出版社,2003:1-390. [He Zixin. Ordos Basin evolution and oil and gas[M]. Beijing: Petroleum Industry Press, 2003: 1-390.]
[26] 陳全紅,李文厚,胡孝林,等. 鄂爾多斯盆地晚古生代沉積巖源區(qū)構造背景及物源分析[J]. 地質學報,2012,86(7):1150-1162. [Chen Quanhong, Li Wenhou, Hu Xiaolin, et al. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica, 2012, 86(7): 1150-1162.]
[27] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
[28] Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. Palo Alto, CA: Blackwell Scientific Publications, 1985: 321.
[29] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
[30] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[31] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[32] Boynton W V. Cosmochemistry of rare earth elements: meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry: Developments in Geochemistry. Amsterdam: Elsevier, 1984, 2: 63-114.
[33] McLennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Papers, 1993, 284: 21-40.
[34] 張金亮,張鑫. 塔中地區(qū)志留系砂巖元素地球化學特征與物源判別意義[J]. 巖石學報,2007,23(11):2990-3002. [Zhang Jinliang, Zhang Xin. Element geochemistry of sandstones in the Silurian of central Tarim Basin and the significance in provenance discrimination[J]. Acta Petrologica Sinica, 2007, 23(11): 2990-3002.]
[35] 宋凱,呂劍文,杜金良,等. 鄂爾多斯盆地中部上三疊統(tǒng)延長組物源方向分析與三角洲沉積體系[J]. 古地理學報,2002,4(3):59-66. [Song Kai, Lü Jianwen, Du Jinliang, et al. Source direction analysis and delta depositional systems of Yanchang Formation of the Upper Triassic in the central Ordos Basin[J]. Journal of Palaeogeography, 2002, 4(3): 59-66.]
[36] Li Q L, Chen F K, Guo J H, et al. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia): evidence for early Proterozoic evolution of the northern North China Craton[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 573-590.
[37] 鐘長汀,鄧晉福,萬渝生,等. 華北克拉通北緣中段古元古代造山作用的巖漿記錄:S型花崗巖地球化學特征及鋯石SHRIMP年齡[J]. 地球化學,2007,36(6):585-600. [Zhong Changting, Deng Jinfu, Wan Yusheng, et al. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: geochemical characteristics and zircon SHRIMP dating of S-type granitoids[J]. Geochimica, 2007, 36(6): 585-600.]
[38] 張臣,韓寶福,劉樹文,等. 內蒙大青山地區(qū)黑云母花崗巖SHRIMP U-Pb定年及其構造意義[J]. 巖石學報,2009,25(3):561-567. [Zhang Chen, Han Baofu, Liu Shuwen, et al. SHRIMP U-Pb dating of biotite granites in Daqingshan, Inner Mongolia, and its significance[J]. Acta Petrologica Sinica, 2009, 25(3): 561-567.]
[39] 張玉清,王弢,賈和義,等. 內蒙古中部大青山北西烏蘭不浪紫蘇斜長麻粒巖鋯石U-Pb年齡[J]. 中國地質,2003,30(4):394-399. [Zhang Yuqing, Wang Tao, Jia Heyi, et al. U-Pb Ages of zircons from the Xi Ulanbulang hypersthene-plagioclase granulite in the North Daqing Mountains, Central Inner Mongolia[J]. Geology in China, 2003, 30(4): 394-399.]
[40] 張維杰,李龍,耿明山. 內蒙古固陽地區(qū)新太古代侵入巖的巖石特征及時代[J]. 地球科學,2000,25(3):221-226. [Zhang Weijie, Li Long, Geng Mingshan. Petrology and dating of Neo-Archaean intrusive rocks from Guyang area, Inner Mongolia[J]. Earth Science, 2000, 25(3): 221-226.]
[41] 劉建輝,劉福來,丁正江,等. 烏拉山地區(qū)早古元古代花崗質片麻巖的鋯石U-Pb年代學、地球化學及成因[J]. 巖石學報,2013,29(2):485-500. [Liu Jianhui, Liu Fulai, Ding Zhengjiang, et al. Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton[J]. Acta Petrologica Sinica, 2013, 29(2): 485-500.]
[42] 劉平華,劉福來,蔡佳,等. 華北克拉通孔茲巖帶中段大青山—烏拉山變質雜巖立甲子基性麻粒巖年代學及地球化學研究[J]. 巖石學報,2013,29(2):462-484. [Liu Pinghua, Liu Fulai, Cai Jia, et al. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton[J]. Acta Petrologica Sinica, 2013, 29(2): 462-484.]
[43] 馬銘株,董春艷,徐仲元,等. 內蒙古大青山地區(qū)古元古代早期榴云片麻巖(大青山表殼巖)深熔作用:地質、鋯石年代學和地球化學研究[J]. 巖石學報,2015,31(6):1535-1548. [Ma Mingzhu, Dong Chunyan, Xu Zhongyuan, et al. Anatexis of Early Paleoproterozoic garnet-biotite gneisses (Daqingshan supracrustal rocks) in Daqingshan, Inner Mongolia: geology, zircon geochronology and geochemistry[J]. Acta Petrologica Sinica, 2015, 31(6): 1535-1548.]
[44] 趙慶英,劉正宏,吳新偉,等. 內蒙古大青山地區(qū)哈拉合少巖體特征及成因[J]. 礦物巖石,2007,27(1):46-51. [Zhao Qingying, Liu Zhenghong, Wu Xinwei, et al. Characteristics and origin of Halaheshao pluton in Daqingshan region, Inner-Mongolia[J]. Journal of Mineralogy and Petrology, 2007, 27(1): 46-51.]
[45] 趙慶英,李剛,劉正宏,等. 內蒙古大青山地區(qū)沙德蓋巖體特征及成因[J]. 吉林大學學報:地球科學版,2009,39(6):1073-1079. [Zhao Qingying, Li Gang, Liu Zhenghong, et al. Characteristics and origin of the Shadegai Pluton in the Daqingshan area, Inner-Mongolia[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(6): 1073-1079.]
[46] 莫南,郭磊,童英,等. 華北北緣大青山小井溝巖體年代學、地球化學和Hf同位素特征及其地質意義[J]. 北京大學學報:自然科學版,2014,50(6):1021-1034. [Mo Nan, Guo Lei, Tong Ying, et al. Geochronology, geochemistry, Hf isotope of Xiaojinggou pluton in the northern margin of North China craton and its tectonic implications[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1021-1034.]
[47] 張青偉,劉正宏,柴社立,等. 內蒙古烏拉特中旗烏蘭地區(qū)含石榴石花崗巖鋯石U-Pb年齡及地質意義[J]. 吉林大學學報:地球科學版,2011,41(3):745-752. [Zhang Qingwei, Liu Zhenghong, Chai Sheli, et al. Zircon U-Pb dating of the garnet-bearing granite from Wulan area of Urad Zhongqi in Inner Monglia and its geological significance[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 745-752.]
[48] 孟慶鵬,賀元凱,張文,等. 華北板塊北緣古大洋閉合時間的限定——來自四子王旗西后壕子同碰撞花崗巖的證據(jù)[J]. 地質通報,2013,32(11):1749-1759. [Meng Qingpeng, He Yuankai, Zhang Wen, et al. Time constraints on the closure of the Paleo-Asian Ocean on the northern margin of North China Craton: evidence from Xihouhaozisyn-collisional granites in Siziwang Qi area[J]. Geological Bulletin of China, 2013, 32(11): 1749-1759.]
[49] 羅紅玲,吳泰然,李毅. 烏拉特中旗克布巖體的地球化學特征及SHRIMP定年:早二疊世華北克拉通底侵作用的證據(jù)[J]. 巖石學報,2007,23(4):755-766. [Luo Hongling, Wu Tairan, Li Yi, et al. Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongolia: evidence for the Early Permian underplating beneath the North China Craton[J]. Acta Petrologica Sinica, 2007, 23(4): 755-766.]
[50] 羅紅玲,吳泰然,趙磊. 華北板塊北緣烏梁斯太A型花崗巖體鋯石SHRIMP U-Pb定年及構造意義[J]. 巖石學報,2009,25(3):515-526. [Luo Hongling, Wu Tairan, Zhao Lei, et al. Zicron SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance[J]. Acta Petrologica Sinica, 2009, 25(3): 515-526.]
[51] 柳長峰,楊帥師,武將偉,等. 內蒙古中部四子王旗地區(qū)晚二疊—早三疊世過鋁花崗巖定年及成因[J]. 地質學報,2010,84(7):1002-1016. [Liu Changfeng, Yang Shuaishi, Wu Jiangwei, et al. Dating and petrogenesis of Late Permian-Early Triassic Peraluminous granites in the Siziwangqi area, Inner Mongolia[J]. Acta Geologica Sinica, 2010, 84(7): 1002-1016.]
[52] 侯萬榮,聶鳳軍,胡建民,等. 內蒙古烏拉山地區(qū)沙德蓋巖體年代學、地球化學特征及成因探討[J]. 吉林大學學報:地球科學版,2011,41(6):1914-1927. [Hou Wanrong, Nie Fengjun, Hu Jianmin, et al. Geochronology and geochemistry of Shadegai Granites in Wulashan area, Inner Mongolia and its geological significance[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(6): 1914-1927.]
[53] 曾俊杰,鄭有業(yè),齊建宏,等. 內蒙古固陽地區(qū)埃達克質花崗巖的發(fā)現(xiàn)及其地質意義[J]. 地球科學,2008,33(6):755-763. [Zeng Junjie, Zheng Youye, Qi Jianhong, et al. Foundation and geological significance of Adakitic Granite at Guyang of Inner Mongolia[J]. Earth Science, 2008, 33(6): 755-763.]
[54] 周志廣,張華鋒,劉還林,等. 內蒙中部四子王旗地區(qū)基性侵入巖鋯石定年及其意義[J]. 巖石學報,2009,25(6):1519-1528. [Zhou Zhiguang, Zhang Huafeng, Liu Huanlin, et al. Zircon U-Pb dating of basic intrusions in Siziwangqi area of middle Inner Mongolia, China[J]. Acta Petrologica Sinica, 2009, 25(6): 1519-1528.]
[55] 張維,簡平. 內蒙古達茂旗北部早古生代花崗巖類SHRIMP U-Pb年代學[J]. 地質學報,2008,82(6):778-787. [Zhang Wei, Jian Ping. SHRIMP dating of Early Paleozoic granites from North Damaoqi, Inner Mongolia[J]. Acta Geologica Sinica, 2008, 82(6): 778-787.]
[56] 張維,簡平. 華北北緣固陽二疊紀閃長巖—石英閃長巖—英云閃長巖套SHRIMP年代學[J]. 中國地質,2012,39(6):1593-1603. [Zhang Wei, Jian Ping. SHRIMP dating of the Permian Guyang diorite-quartz diorite-tonalite suite in the northern margin of the North China Craton[J]. Geology in China, 2012, 39(6): 1593-1603.]
[57] 章永梅,張華鋒,劉文燦,等. 內蒙古中部四子王旗大廟巖體時代及成因[J]. 巖石學報,2009,25(12):3165-3181. [Zhang Yongmei, Zhang Huafeng, Liu Wencan, et al. Timing and petrogenesis of the Damiao granodiorite, Siziwangqi, Inner Mongolia[J]. Acta Petrologica Sinica, 2009, 25(12): 3165-3181.]
[58] 王挽瓊,徐仲元,劉正宏,等. 華北板塊北緣中段早中二疊世的構造屬性:來自花崗巖類鋯石U-Pb年代學及地球化學的制約[J]. 巖石學報,2013,29(9):2987-3003. [Wang Wanqiong, Xu Zhongyuan, Liu Zhenghong, et al. Early-Middle Permian tectonic evolution of the central-northern margin of the North China Craton: Constraints from zircon U-Pb ages and geochemistry of the granitoids[J]. Acta Petrologica Sinica, 2013, 29(9): 2987-3003.]
[59] 許立權,賈和義,張玉清,等. 白云鄂博地區(qū)堿性正長巖特征及其意義[J]. 地質調查與研究,2004,27(1):43-47. [Xu Liquan, Jia Heyi, Zhang Yuqing, et al. The characters and significance of alkali syenites in Bayan Obo area, Inner Mongolia[J]. Geological Survey and Research, 2004, 27(1): 43-47.]
[60] Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
[61] Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence[J]. Journal of Sedimentary Research, 2002, 72(3): 393-407.
[62] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[63] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[64] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
[65] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[66] 馮連君,儲雪蕾,張啟銳,等. 化學蝕變指數(shù)(CIA)及其在新元古代碎屑巖中的應用[J]. 地學前緣,2003,10(4):539-544. [Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.]
[67] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
[68] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
[69] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
[70] 李雙應,楊棟棟,王松,等. 南天山中段上石炭統(tǒng)碎屑巖巖石學、地球化學、重礦物和鋯石年代學特征及其對物源區(qū)、構造演化的約束[J]. 地質學報,2014,88(2):167-184. [Li Shuangying, Yang Dongdong, Wang Song, et al. Characteristics of petrology, geochemistry, heavy minerals and isotope chronology of upper Carboniferous detrital rocks in the middle segment of south Tianshan and constraints to the provenance and tectonic evolution[J]. Acta Geologica Sinica, 2014, 88(2): 167-184.]
[71] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
[72] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77-93.
[73] 王隨繼,黃杏珍,妥進才,等. 泌陽凹陷核桃園組微量元素演化特征及其古氣候意義[J]. 沉積學報,1997,15(1):65-70. [Wang Suiji, Huang Xingzhen, Tuo Jincai, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 65-70.]
[74] 陳駿,汪永進,陳旸,等. 中國黃土地層Rb和Sr地球化學特征及其古季風氣候意義[J]. 地質學報,2001,75(2):259-266. [Chen Jun, Wang Yongjin, Chen Yang, et al. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate[J]. Acta Geologica Sinica, 2001, 75(2): 259-266.]
[75] 葉荷,張克信,季軍良,等. 青海循化盆地23.1~5.0Ma沉積地層中常量、微量元素組成特征及其古氣候演變[J]. 地球科學,2010,35(5):811-820. [Ye He, Zhang Kexin, Ji Junliang, et al. Major and trace element characters of the sediments and paleoclimatic evolvement during about 23.1-5.0 Ma in Xunhua Basin, Qinghai[J]. Earth Science, 2010, 35(5): 811-820.]
[76] 鄭榮才,柳梅青. 鄂爾多斯盆地長6油層組古鹽度研究[J]. 石油與天然氣地質,1999,20(1):20-25. [Zheng Rongcai, Liu Meiqing. Study on palaeosalinity of Chang-6 oil reservoir set in Ordos Basin[J]. Oil & Gas Geology, 1999, 20(1): 20-25.]
[77] 劉剛,周東升. 微量元素分析在判別沉積環(huán)境中的應用——以江漢盆地潛江組為例[J]. 石油實驗地質,2007,29(3):307-310,314. [Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment—Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.]
[78] 趙俊青,紀友亮,張世奇,等. 陸相高分辨率層序界面識別的地球化學方法[J]. 沉積學報,2004,22(1):79-86. [Zhao Junqing, Ji Youliang, Zhang Shiqi, et al. Geochemical methods of boundary identification in terrigenous high-resolution sequence[J]. Acta Sedimentologica Sinica, 2004, 22(1): 79-86.]
[79] Davis C, Pratt L M, Sliter W V, et al. Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela[M]//Barrera E, Johnson C C. Evolution of the Cretaceous Ocean-Climate System. Geological Society of America, 1999: 203-230.
[80] Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175-197.
Element Geochemical Characteristics of the Jurassic Mudstones in the Northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration
LEI KaiYu1,2,LIU ChiYang1,ZHANG Long1,WU BoLin1,CUN XiaoNi1,SUN Li1
1. State Key Laboratory of Continental Dynamics(Northwest University), Geology Department of Northwest University, Xi’an 710069, China2. The 1st Factory of Yanchang Gas Wells, Oil and Gas Exploration Company of Shaanxi Yanchang Petroleum(Group) Co.LTD, Yan’an, Shaanxi 716000, China
The geochemical characteristics of Jurassic mudstones in the Northern Ordos Basin Hangjinqi Area recorded important geological information at that time. Based on the method of X-ray fluorescence spectrometry of the major element analysis and ICP-MS trace element and rare earth element analysis,the tectonic setting and provenance attribute of Zhiluo Formation and Yan’ an Formation have been comprehensively analyzed. Meanwhile, we restored the evolution of sedimentary setting by the vertical variation characteristics of geochemical parameters.The main conclusions can be drawn as follows:The Jurassic sedimentary rocks in the Northern Ordos Basin have affinities to the Precambrian metamorphotic rocks from old basement,such as gneiss,granulite,khondalite and the intrusive rock which formed in different geological time,so the provenance of the study area mainly came from it.The tectonic setting of source area is the active continental margin associated with the continental island arc. The result of paleoenvironment reconstruction is based on the vertical variation characteristics of mudstone geochemical indexes such as Sr/Cu,Rb/Sr,CIA,Sr/Ba,V/(V+Ni)and Ceanomshows that from Yan’ an period to early Zhiluo period and then to late Zhiluo period, the paleoclimate was warm and humid at the beginning and tended to become increasingly dry and hot,the palaeosalinity transformed from the brackish water phase of the fresh water environment to the brackish-water phase of the fresh water environment,the redox condition belong to the reducing environment and the water column stratification is not obvious.
Northern Ordos Basin; Jurassic; element geochemistry; provenance analysis; paleoenvironment
1000-0550(2017)03-0621-16
10.14027/j.cnki.cjxb.2017.03.019
2016-04-14; 收修改稿日期: 2016-07-05
國家自然科學重點基金項目(41330315);中國地質調查局項目(12120114009201);西北大學大陸動力學國家重點實驗室科技部專項經(jīng)費[Foundation: National Natural Science Foundation of China,No.41330315; China Geological Survey Project, No. 12120114009201;Special Grant of Ministry of Science and Technology of China for State Key Laboratory of Continental Dynamics, Northwest University]
雷開宇,男,1989年出生,碩士研究生,盆地分析與礦產(chǎn)資源勘查研究,E-mail: leiky1989@126.com
劉池洋,男,教授,E-mail: lcy@nwu.edu.cn
P588.22 P595
A