国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Banach空間中的完備集

2017-06-10 08:09吳森林張新玲計(jì)東海

吳森林+張新玲+計(jì)東海

摘要:針對(duì)Banach空間中完備集的相關(guān)問(wèn)題, 回顧了完備集這一概念的來(lái)源:等寬集的一些基本性質(zhì), 介紹了完備集的一些性質(zhì)以及與完備集相關(guān)的若干研究問(wèn)題和相關(guān)結(jié)果。 結(jié)果表明, 圍繞Banach空間中的完備集及其相關(guān)問(wèn)題還有很多待完成的工作。

關(guān)鍵詞:Banach空間; 等寬集; 完備集; 完備化集

DOI:10.15938/j.jhust.2017.02.016

中圖分類號(hào): O177

文獻(xiàn)標(biāo)志碼: A

文章編號(hào): 1007-2683(2017)02-0083-05

Abstract:For the related problems of complete sets in Banach spaces, some fundamental properties of sets of constant width which is the origin of the concept of complete sets are reviewed, and properties of complete sets and research problems and corresponding results related to complete sets are also presented. It is shown that there are much research to be done concerning complete sets and related problems in Banach spaces.

Keywords:Banach spaces; sets of constant width; complete sets; completion of sets

6完備化集與其他特殊凸集類的關(guān)系

設(shè)A是有限維Banach空間中的一個(gè)凸體, 若任何一個(gè)真包含于A的凸體的最小寬度均嚴(yán)格小于A的最小寬度(A的平行的支撐超平面之間距離的下確界), 該凸體稱為不可縮的(reduced)。顯然的, 任意一個(gè)等寬集都是不可縮的。文[46]中聲稱有限維Banach空間中任何一個(gè)完備集均是不可縮的, 然而, Martini和吳森林已經(jīng)給出一個(gè)反例說(shuō)明該結(jié)論是不正確的(參見文[45])。因此, 在有限維Banach空間乃至無(wú)窮維Banach空間中考慮不可縮凸集與完備集的關(guān)系十分有必要。關(guān)于

瘙 綆 n和有限維Banach空間中不可縮凸體的更多內(nèi)容請(qǐng)參見文[46]和[47]以及這兩篇綜述文章中所列文獻(xiàn)。

7結(jié)語(yǔ)

盡管很多數(shù)學(xué)家在一般的實(shí)Banach空間特別是有限維實(shí)Banach空間中圍繞著完備集及其相關(guān)性質(zhì), 集合的完備化映射以及與完備集有關(guān)的若干問(wèn)題已經(jīng)做了一系列重要的工作, 但是關(guān)于完備集仍然有很多未解決的問(wèn)題, 希望本文對(duì)完備集相關(guān)問(wèn)題的介紹能讓更多的人關(guān)注并嘗試解決這些問(wèn)題。

參 考 文 獻(xiàn):

[1]JIN Hailin, GUO Qi. Asymmetry of Convex Bodies of Constant Width[J]. Discrete Comput. Geom., 2012, 47:415-423.

[2]WEBSTER R J. Convexity[M]. New York: Oxford University Press, 1994.

[3]BRNY I, SCHNEIDER R. Typicalcurvature Behaviour of Bodies of Constant Width[J]. Adv. Math., 2015, 272:308-329.

[4]CHAKERIAN G D, GROEMER H. Convex Bodies of Constant Width[M]. Basel: Birkhuser, 1983:49-96.

[5]KAWOHL B, WEBER C.Meissners mysterious bodies[J]. Math. Intell., 2011(33):94-101.

[6]HEIL E, MARTINI H. Special Convex Bodies[C]. GRUBER P, WILLS J. Handbook of Convex Geometry. Amsterdam: NorthHolland, 1993:347-385.

[7]MARTINI H, SWANEPOEL K J. The Geometry of Minkowski Spaces—A Survey. Part II.[J]. Expo. Math., 2004(22):93-144.

[8]MORENO J, PAPINI P, PHELPS R.Diametrically Maximal and Constant Width Sets in Banach Spaces[J]. Canad. J. Math., 2006, 58(4):820 -842.

[9]PAY R, RODRGUEZPALACIOS A.Banach Spaces Which are SemiLsummands in Their Biduals[J]. Math. Ann., 1991, 289(3):529-542.

[10]YOST D. Irreducible Convex Sets[J]. Mathematika, 1991(38):134-155.

[11]MEISSNER E.ber Punktmengen konstanter Breite[J]. Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich, 1911, 56:42-50.

[12]MORENO J P, SCHNEIDER R. Structure of the Space of Diametrically Complete Sets in a Minkowski Space[J]. Discrete Comput. Geom., 2012(48):467-486.

[13]EGGLESTON H G. Sets of Constant Width in Finite Dimensional Banach Spaces[J]. Isr. J. Math., 1965(3):163-172.

[14]MORENO J P, SCHNEIDER R. Diametrically Complete Sets in Minkowski Spaces[J]. Israel J. Math., 2012, 191:701-720.

[15]CASPANI L, PAPINI P L.On Constant Width Sets in Hilbert Spaces and Around [J]. J. Convex Anal., 2015, 22(3):889-900.

[16]MORENO J P, SCHNEIDER R. LocalLipschitz Continuity of the Diametric Completion Mapping[J]. Houston J. Math., 2012(38):1207-1223.

[17]MORENO J P, SCHNEIDER R.Lipschitz Selections of the Diametirc Completion Mapping in Minkowski Spaces[J]. Adv. Math., 2013(233):24 8-267.

[18]KARASЁV R N. On the Characterization of Generating Sets[J]. Model. iAnaliz Inform. Sistem, 2001, 8(2):3-9.

[19]BALASHOV M V, POLOVINKIN E S. Mstrongly Convex Subsets and Their Generating Sets [J]. Mat. Sb., 2000, 191(1):27-64.

[20]SALLEE G. Pairs of Sets of Constant Relative Width[J]. J. Geom., 1987, 29.

[21]MARTINI H, RICHTER C, SPIROVA M.Intersections of Balls and Sets of Constant Width in Finite Dimensional Normed Spaces[J]. Mathematika, 2013(59):477-492.

[22]GROEMER H. On Complete Convex Bodies[J]. Geom.Dedic., 1986(20):319-334.

[23]MORENO J P. Porosity and Diametrically Maximal Sets in c(K)[J]. Monatsh. Math., 2007, 152:255-263.

[24]MORENO J P. Porosity and Unique Completion in Strictly Convex Spaces[J].Math.Z., 2011, 267: 173-184.

[25]PL J.ber Ein Elementares Variationsproblem [J]. Danske Vid. Selskab. Mat.Fys. Medd., 1920, III(2):35.

[26]LEBESGUE H. Sur Quelques Questionsde Minimum, Relatives Aux Courbes Orbiformes,et Surleurs Rapports Avecle Calculdes Variations[J]. J. Math. Pures Appl. (8), 1921, 4:67-96.

[27]BONNESEN T, FENCHEL W.Theorie Der Konvexen 〖AKK¨〗orper[M]. Berlin: Springer, 1934.

[28]BCKNER H.ber Flchenvon Fester Breite [J]. Jahresber. Deutsch. Math.Verein., 1936(46):96-139.

[29]EGGLESTON H G. Convexity[M]. Cambridge: Cambridge University Press, 1958.

[30]SCOTT P R. Sets of Constant Width and Inequalities[J]. Quart. J. Math., 1981(32):345-348.

[31]VRE〖KG-1mm〗C〖DD(-1.2mm〗'〖DD)〗ICA S. A Noteon Sets of Constant Width [J]. Publ. Inst. Math., 1981(29): 289-291.

[32]GROEMER H.Extremal Convex Sets[J]. Monatsh. Math., 1983(96):29-39.

[33]MAEHARA H. Convex Bodies Forming Pairs of Constant Width[J]. J. Geom., 1984, 22:101-107.

[34]SALLEE G.Preassigning the Boundary of Diametricallycomplete Sets[J]. Monatsh. Math., 19 88, 105.

[35]LACHANDROBERT T, OUDET E. Bodies of Constant Width in Arbitrary Dimensions[J]. Math.Nachr., 2007(280):740-750.

[36]PAPINI P L, WU SENLIN. Constructions of complete sets[J]. Adv. Geom., 2015, 15(4):485- 498.

〖LL〗[37]BAVAUD F.Adjoint Transform, Overconvexity and Sets of Constant Width[J]. Trans. Amer. Math. Soc., 1992(333):315-324.

[38]MORENO J P, SCHNEIDER R. Some Geometry of Convex Bodies in C(K) Spaces[J]. J. Math. Pures Appl., 2015(103):352-373.

[39]MORENO J P. Convex Values andLipschitz Behavior of the Complete Hull Mapping[J]. Trans. Amer. Math. Soc., 2010(362):3377-3389.

[40]MALUTA E, PAPINI P L. Diametrically Complete Sets and Normal Structure[J]. J. Math. Anal. Appl., 2015(424):1335-1347.

[41]MARTINI H, PAPINI P L, SPIROVA M. Complete Sets and Completion of Sets in Banach Spaces[J]. Monatsh. Math., 2014, 174:587-597.

[42]MORENO J, PAPINI P, PHELPS R. New Families of Convex Sets Related to Diametral Maximality[J]. J. Convex. Anal., 2006(13):823-837.

[43]CASPANI L, PAPINI P L. Complete Sets, Radii, and Inner Radii[J].Beitr. Algebra Geom., 2011(52):163-170.

[44]PAPINI P L. Completions and Balls in Banach Spaces[J]. Ann. Funct. Anal., 2015, 6(1):24-33.

[45]MARTINI H, WU SENLIN. Complete Sets Need not be Reduced in Minkowski Spaces[J]. Beitr. Algebra Geom., 2015, 56(2):533-539.

[46]LASSAK M, MARTINI H. Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey[J]. Results Math., 2014(66):405-426.

[47]LASSAK M, MARTINI H. Reduced Convex Bodies in Euclidean Space—A Survey[J]. Expo. Math., 2011(29):204-219.

(編輯:溫澤宇)