樂西子, 江帆, 薛飛, 方光戰(zhàn)*, 唐業(yè)忠
(1. 中國科學(xué)院成都生物研究所,成都610041; 2. 中國科學(xué)院大學(xué),北京100049)
仙琴蛙廣告鳴叫中不同音節(jié)生物學(xué)意義的差異研究
樂西子1, 2, 江帆1, 薛飛1, 方光戰(zhàn)1*, 唐業(yè)忠1
(1. 中國科學(xué)院成都生物研究所,成都610041; 2. 中國科學(xué)院大學(xué),北京100049)
聲音通訊對發(fā)聲動物的生存和繁殖起著重要作用。但動物鳴聲在時(shí)域上不同組成部分的生物學(xué)意義差異尚無定論。無尾兩棲類的鳴聲一般由音節(jié)和間隔組成,如雄性仙琴蛙Babinadaunchina的廣告鳴叫由一至十余個(gè)音節(jié)及持續(xù)時(shí)間約為150 ms的間隔組成,這為研究不同音節(jié)生物學(xué)意義的差異提供了便利。本研究采用優(yōu)化的失匹配負(fù)波(MMN)范式,在播放標(biāo)準(zhǔn)刺激(白噪聲)和偏差刺激(同一個(gè)廣告鳴叫的5個(gè)音節(jié))時(shí),采集腦電信號,經(jīng)過疊加平均后得到MMN。結(jié)果顯示,第一個(gè)音節(jié)對應(yīng)的MMN幅度最高,而且具有大腦左側(cè)優(yōu)勢。由于MMN幅度表征刺激與記憶痕跡之間的差異,同時(shí)反映投入的大腦資源,據(jù)此推測第一個(gè)音節(jié)在蛙類聲音通訊中起至關(guān)重要的作用。
仙琴蛙; 廣告鳴叫; 音節(jié); 失匹配負(fù)波; 聽覺偏側(cè)性; 偽重復(fù)
聲音通訊是發(fā)聲動物交流的重要手段之一。一般而言,動物鳴聲往往傳遞著物種、個(gè)體特征、繁殖狀態(tài)、所處位置、資源占有等相關(guān)信息(Wells & Schwartz,2007),同時(shí)反映繁殖、領(lǐng)地防衛(wèi)、覓食、反捕食等多種行為狀態(tài)(Ryan,1985;Magnhagen,1991),即動物鳴聲包含極為復(fù)雜的信息(Brillet & Paillette,1991;Doupe & Kuhl,1999;Tangetal.,2001;Brieferetal.,2010;Suzukietal.,2016),但是鳴聲在時(shí)域上各組成部分的功能及其在聲音通訊中的重要程度(即生物學(xué)意義差異)尚無定論。由于鳴聲各部分的時(shí)頻特征具有明顯差異,動物對不同部分表現(xiàn)出不同的行為響應(yīng)(Williams & Staples,1992;Tangetal.,2001;Suzukietal.,2016)。據(jù)此推測,在聲音通訊中,鳴聲各部分的功能及生物學(xué)意義不盡相同。
無尾兩棲類的鳴聲一般由音節(jié)(note)和間隔組成,這為研究鳴聲各部分的功能與生物學(xué)意義提供了便利。與其他多數(shù)蛙類相似,仙琴蛙Babinadaunchina的求偶行為多在夜間進(jìn)行,幾乎完全依賴于聲音通訊。雄性仙琴蛙一般在泥洞內(nèi)鳴叫,也會在洞外鳴叫,雌雄兩性均對前者的響應(yīng)更大(Cuietal.,2012;Fangetal.,2014a)。雄性廣告鳴叫包含一至十余個(gè)音節(jié)及持續(xù)時(shí)間約為150 ms的間隔;由于各音節(jié)均有明顯不同的時(shí)頻特征(Chenetal.,2011),且第一個(gè)音節(jié)可能在聲音識別和鳴叫類型識別中起重要作用(Fangetal.,2015),所以仙琴蛙特別適合用于探究音節(jié)的生物學(xué)意義差異。
事件相關(guān)電位(event-related potential,ERP)是感覺運(yùn)動或認(rèn)知事件在大腦內(nèi)誘發(fā)的、具有鎖時(shí)關(guān)系的腦電(electroencephalogram,EEG)電位變化,與認(rèn)知過程(包括注意、辨別、判斷、選擇和決策等)密切相關(guān),其幅值和潛伏期可用于考察大腦對信息的加工過程、加工效率和時(shí)間進(jìn)程(Luck,2005)。特別地,幅值往往表征著大腦在認(rèn)知過程中所投入的資源。相關(guān)研究顯示,仙琴蛙EEG/ERP信號會對不同聲音刺激表現(xiàn)出顯著差異(Fangetal.,2014b,2015;Xueetal.,2016)。據(jù)此推測,音節(jié)的生物學(xué)意義差異可通過ERP幅度表現(xiàn)出來。
本研究采用優(yōu)化的失匹配負(fù)波(mismatch negativity,MMN;一種ERP成分)實(shí)驗(yàn)范式,在播放不同聲音刺激的同時(shí),采集仙琴蛙的腦電信號;通過疊加平均獲取MMN成分,進(jìn)行統(tǒng)計(jì)比較,以此探討各音節(jié)的生物學(xué)意義及聽覺神經(jīng)回路特性。預(yù)測不同音節(jié)誘發(fā)的MMN幅度存在差異,而第一個(gè)音節(jié)對應(yīng)的幅度最大。
1.1 實(shí)驗(yàn)對象與手術(shù)過程
實(shí)驗(yàn)所用的16只成體仙琴蛙(雌雄各半)采自峨眉山,按性別分開飼養(yǎng)于半透明箱中(45 cm×35 cm×30 cm),箱內(nèi)有適量的泥和水。飼養(yǎng)箱置于12 h光照周期(08∶00開燈)和恒溫(23 ℃±1 ℃)的飼養(yǎng)房中,每3 d投喂活蟋蟀。手術(shù)時(shí),仙琴蛙平均體質(zhì)量11.0 g±0.6 g,平均體長4.6 cm±0.1 cm。實(shí)驗(yàn)在其繁殖期進(jìn)行,所有相關(guān)操作遵守中國科學(xué)院成都生物研究所關(guān)于動物福利的相關(guān)規(guī)定。
使用0.15%魚安定(Metacaine,MS-222)麻醉動物(Smith,1974;Sp?th & Schweickert,1977;Lalonde-Robertetal.,2012),暴露顱骨頂部,埋植電極,16個(gè)電極分別位于端腦、間腦和中腦左右兩側(cè),參考電極在小腦上方。圖1顯示端腦6個(gè)電極(TL1、TR2、TL3、TR4、TL5、TR6)、間腦2個(gè)電極(DL7、DR8)、中腦8個(gè)電極(ML9、ML10、MR11、MR12、ML13、ML14、MR15、MR16)、參考(P)及對應(yīng)的20 s EEG特征波形。用牙托水泥將電極固定在顱骨上,最后用局部消炎止痛藥膏均勻涂抹創(chuàng)口。仙琴蛙清醒后單獨(dú)置于裝有適量純凈水的飼養(yǎng)盒中,并在水中加入適量慶大霉素消炎,恢復(fù)6 d后開始實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)束后,對仙琴蛙進(jìn)行安樂死,并在電極的相應(yīng)位點(diǎn)注射蘇木精染料,檢查電極位置是否與預(yù)期一致。
圖1 電極位置分布圖及相應(yīng)的20 s腦電特征波形
蛙腦中3條加粗虛線的交叉點(diǎn)表示人字縫; 電極坐標(biāo): TL1 (-1.5, 3.8), TR2 (1.5, 3.8), TL3 (-1.5, 2.4), TR4 (1.5, 2.4), TL5 (-1.5, 1), TR6 (1.5, 1), DL7 (-0.8, -0.2), DR8 (0.8, -0.2), ML9 (-2.2, -1.6), ML10 (-0.8, -1.6), MR11 (0.8, -1.6), MR12 (2.2, -1.6), ML13 (-2.2, -3.5), ML14 (-0.8, -3.5), MR15 (0.8, -3.5), MR16 (2.2, -3.5), P (0, -4.5)。
The intersection of the three dashed lines in bold in the frog head denotes the intersection of suture lines corresponding to lambda; the electrodes coordinates: TL1 (-1.5, 3.8), TR2 (1.5, 3.8), TL3 (-1.5, 2.4), TR4 (1.5, 2.4), TL5 (-1.5, 1), TR6 (1.5, 1), DL7 (-0.8, -0.2), DR8 (0.8, -0.2), ML9 (-2.2, -1.6), ML10 (-0.8, -1.6), MR11 (0.8, -1.6), MR12 (2.2, -1.6), ML13 (-2.2, -3.5), ML14(-0.8, -3.5), MR15 (0.8, -3.5), MR16 (2.2, -3.5), P (0, -4.5).
1.2 記錄條件
實(shí)驗(yàn)在隔音室(背景噪音24.3 dB±0.7 dB)內(nèi)的實(shí)驗(yàn)箱中進(jìn)行。實(shí)驗(yàn)箱尺寸為80 cm×60 cm×55 cm,內(nèi)含適量濕泥和少量水,兩端帶有柵欄狀空格以便聲音通過;其外包裹屏蔽銅網(wǎng),消除信號干擾;其正上方架設(shè)具有運(yùn)動檢測功能的紅外攝像頭,記錄動物運(yùn)動。通過多通道動物行為與神經(jīng)信號同步采集分析系統(tǒng)(OmniPlex64-D,Plexon,USA)采集EEG信號,采樣頻率1 000 Hz。
1.3 實(shí)驗(yàn)刺激
為避免偽重復(fù),本研究采用4組聲音刺激(Call1/2/3/4),每組包含6種聲音:作為標(biāo)準(zhǔn)刺激的白噪聲及作為偏差刺激的、同一洞內(nèi)廣告鳴叫的5個(gè)音節(jié)(Note1/2/3/4/5)。每組白噪聲相同,但廣告鳴叫來自不同個(gè)體(圖2)。白噪聲上升/下降沿均為10 ms(正弦調(diào)制),持續(xù)時(shí)間為150 ms,約等于各音節(jié)的持續(xù)時(shí)間均值。16只仙琴蛙隨機(jī)分為4組(每組雌雄各半),每組對應(yīng)1組刺激。
刺激通過放置在實(shí)驗(yàn)箱兩端的音箱(SME-AFS,Saul Mineroff Electronics,Elmont,NY,USA)播放,聲音強(qiáng)度通過聲壓計(jì)(AWA6291,杭州愛華)調(diào)整為65.0 dB±0.5 dB SPL(在實(shí)驗(yàn)箱中心測得,A計(jì)權(quán))。
圖2 聲音刺激的波形圖和頻譜圖
A. 白噪聲; B~E. 來自4個(gè)不同個(gè)體的、包含5個(gè)音節(jié)的廣告鳴叫(5個(gè)音節(jié)依次為Note1/2/3/4/5)。
A. white noise; B-E. 4 advertisement calls containing 5 notes (Note1/2/3/4/5) which are acquired from different individuals.
1.4 MMN實(shí)驗(yàn)范式
聽覺MMN反映聽者注意力向新穎刺激(即偏差刺激)的自動轉(zhuǎn)移,包括聽覺記憶的更新和警覺過程(N??t?nenetal.,2011)。一般通過Oddball范式誘發(fā),即基于被試能察覺小概率呈現(xiàn)的偏差刺激和大概率呈現(xiàn)的標(biāo)準(zhǔn)刺激之間的區(qū)別。
本研究采用MMN優(yōu)化范式(N??t?nenetal.,2004),即標(biāo)準(zhǔn)刺激的呈現(xiàn)概率為50%,其他5個(gè)偏差刺激(Note1/2/3/4/5)的呈現(xiàn)概率均為10%。實(shí)驗(yàn)分為3個(gè)部分(block),共播放1 845個(gè)刺激,2個(gè)block間休息5 min以免仙琴蛙疲乏(Deveney & Pizzagalli,2008)。每個(gè)block以15個(gè)標(biāo)準(zhǔn)刺激開始,用于形成記憶痕跡;之后的刺激序列為每個(gè)標(biāo)準(zhǔn)刺激緊跟一個(gè)隨機(jī)的偏差刺激,直至每個(gè)偏差刺激呈現(xiàn)一次,如此反復(fù)。刺激間隔(inter-stimulus interval,ISI)為500 ms。每個(gè)刺激開始瞬間,通過C++程序?qū)⒂|發(fā)信號送至OmniPlex64-D系統(tǒng),用于后續(xù)的ERP鎖時(shí)分析。
1.5 ERP信號采集
仙琴蛙恢復(fù)6 d后,放入實(shí)驗(yàn)箱并連接到OmniPlex64-D系統(tǒng)適應(yīng)24 h后,在播放聽覺刺激的同時(shí)采集仙琴蛙的腦電信號和行為數(shù)據(jù)。實(shí)驗(yàn)前一天喂食,實(shí)驗(yàn)過程中不進(jìn)食,以保證信號受營養(yǎng)代謝的影響最小。
1.6 數(shù)據(jù)處理
EEG信號經(jīng)過50 Hz陷波和0.25~25 Hz帶通濾波后,從刺激起始點(diǎn)進(jìn)行分段(-100~500 ms),手動去偽跡;然后按刺激類型對epoch進(jìn)行疊加平均,并在被試間進(jìn)行總平均。取50~250 ms為MMN時(shí)間窗(Biermann & Heil,2000;Korpilahtietal.,2001;Ostroffetal.,2003;Yagoetal.,2003;McDonaldetal.,2005;N??t?nenetal.,2007;Fangetal.,2015)。MMN差異波為偏差刺激與標(biāo)準(zhǔn)刺激兩者對應(yīng)波形之差(N??t?nenetal.,1978),后續(xù)統(tǒng)計(jì)分析均基于差異波,幅度和潛伏期分別采用平均幅度算法(Handy,2005)和半面積算法(Luck,2005)測量。
1.7 統(tǒng)計(jì)分析
對MMN差異波的幅度和潛伏期分別進(jìn)行正態(tài)分布檢驗(yàn)(Shapiro-WilkW檢驗(yàn))和方差同質(zhì)檢驗(yàn)(Levene’s檢驗(yàn))。利用四因素(刺激、電極、組別和性別)重復(fù)測量ANOVA分析。若交互顯著,進(jìn)行簡單效應(yīng)分析或簡單-簡單效應(yīng)分析(舒華,張亞旭,2008)。由于后兩個(gè)因素的主效應(yīng)及與其他因素的交互效應(yīng)均不顯著,故改為雙因素重復(fù)測量ANOVA。事后檢驗(yàn)采用LSD;若必要,進(jìn)行Greenhouse-Geisser校正;效應(yīng)度通過partialη2檢測(0.20為低效應(yīng)度,0.50為中效應(yīng)度,0.80為高效應(yīng)度)(Cohen,1992)。統(tǒng)計(jì)分析使用SPSS 20.0。顯著性水平定義為α=0.05。
差異波總平均波形如圖3所示,每種刺激起始后50~250 ms內(nèi)出現(xiàn)一負(fù)向波峰,這與人類聽覺MMN成分的特征類似(N??t?nenetal.,1978),提示仙琴蛙的聽覺系統(tǒng)能自動探測具有差異的聲音信息。
2.1 MMN幅度的統(tǒng)計(jì)結(jié)果
MMN差異波幅度在不同電極下的差異有統(tǒng)計(jì)學(xué)意義[F(15, 225)=1.842,partialη2=0.109,P=0.03],且電極和刺激間交互顯著[F(60, 900)=1.365,partialη2=0.083,P=0.038]。對于不同刺激,不同電極對應(yīng)的幅度趨勢為TR6>ML10>MR11>DL7>TR4>DR8>TL3>MR15>ML9>TL5>ML14>TR2>TL1>ML13>MR12>MR16;其中差異有統(tǒng)計(jì)學(xué)意義的為:TR6a,DR8a,ML9a>MR12b;ML10a,MR11a,DL7a>MR12b,ML13b,MR16b;MR15a,ML14a>MR16b(P<0.05;在每組比較中,不同上標(biāo)字母表示差異有統(tǒng)計(jì)學(xué)意義,相同上標(biāo)字母表示差異無統(tǒng)計(jì)學(xué)意義;圖4)。對于不同電極,5個(gè)音節(jié)對應(yīng)的差異波幅度趨勢大多為:Note1最大、Note5和Note4次之、Note2和Note3相對最小,其中,Note1對應(yīng)的幅度顯著大于Note2和Note3(圖4)。
2.2 MMN潛伏期的統(tǒng)計(jì)結(jié)果
對MMN潛伏期進(jìn)行統(tǒng)計(jì)分析的結(jié)果顯示,MMN的平均潛伏期在刺激、電極、組別和性別間的差異均無統(tǒng)計(jì)學(xué)意義。
3.1 第一個(gè)音節(jié)具有最重要的生物學(xué)意義
統(tǒng)計(jì)結(jié)果顯示,Note1、Note4和Note5能誘發(fā)相對較大的MMN,其中Note1對應(yīng)的幅度最大。由于MMN幅度表征刺激與模板之間的差異(N??t?nenetal.,2007),并反映投入的大腦資源(N??t?nenetal.,1978;N??t?nen & Michie,1979;Sussman,2007),據(jù)此推測,Note1可能在聲音通訊中起著至關(guān)重要的作用,Note4 和Note5亦起著相對重要的作用。
圖3 5種偏差刺激在不同腦區(qū)誘發(fā)的失匹配負(fù)波差異波
DNote1/2/3/4/5表示Note1/2/3/4/5對應(yīng)的差異波。
DNote1/2/3/4/5 are the difference waves for the 5 notes.
圖4 失匹配負(fù)波差異波的平均幅度及標(biāo)準(zhǔn)誤
*P<0.05.
這一推論與Note1在聲音種類識別及鳴叫類型識別中起著關(guān)鍵作用的結(jié)論一致(Fangetal.,2015)。研究發(fā)現(xiàn),MMN幅度與聲音刺激的頻率(Jacobsen & Schr?ger,2001)、持續(xù)時(shí)間(Jaramilloetal.,2000;Todd & Michie,2000;Peteretal.,2010)、諧波數(shù)量(Tervaniemietal.,2000)、包絡(luò)結(jié)構(gòu)(Brunsetal.,2000;Honbolygóetal.,2004)及刺激頻率的復(fù)雜度(N??t?nenetal.,1993)相關(guān),提示當(dāng)前的MMN差異可能是不同音節(jié)間時(shí)頻域特征差異作用的結(jié)果。未來研究可以量化各音節(jié)的時(shí)頻特征,并探討各特征與MMN幅度的關(guān)系。
3.2 蛙類聲音通訊具有大腦偏側(cè)性
統(tǒng)計(jì)結(jié)果顯示,左側(cè)腦區(qū)多數(shù)電極對應(yīng)的MMN幅度大于右側(cè)對應(yīng)腦區(qū)。由于MMN幅度不僅表征刺激與模板之間的差異,同時(shí)反映投入的大腦資源,因此當(dāng)前結(jié)果提示蛙類在進(jìn)行聲音通訊時(shí)具有左側(cè)大腦優(yōu)勢。這一結(jié)果與蛙類存在右耳優(yōu)勢相符(Fangetal.,2014b;Xueetal.,2015;薛飛等,2016);同時(shí)也與既往腦電研究結(jié)果相符,即仙琴蛙在聲音通訊中,左側(cè)腦區(qū)比右側(cè)腦區(qū)更為活躍,EEG模式更為復(fù)雜,EEG能量更大(Fangetal.,2015;Jiangetal.,2015;Liuetal.,2016)。
統(tǒng)計(jì)結(jié)果還顯示,端腦中更靠近間腦的電極的MMN幅度更大。一方面,因?yàn)橥茴惔嬖谟叶鷥?yōu)勢,右耳的聲音信息投射到左側(cè)中腦的半環(huán)隆枕區(qū)并上行至端腦,因此左側(cè)端腦區(qū)域的MMN幅度相對更大;另一方面,端腦靠近間腦的腦區(qū)分布著中隔核與紋狀體,而這2個(gè)核團(tuán)的主要功能是對聲音信息進(jìn)行感知、處理和整合,而端腦的前端靠近嗅球,并未過多參與聲音信息處理(Walkowiak,2007),因此靠近間腦電極的MMN幅度相對更大。中腦中央電極對應(yīng)的MMN幅度顯著大于外圍電極,可能是由于半環(huán)隆枕區(qū)更靠近中央部位。半環(huán)隆枕區(qū)是對來自左右兩側(cè)的聲音信息進(jìn)行感知、整合,并向間腦、端腦傳遞整合結(jié)果的關(guān)鍵腦區(qū)(Walkowiak,2007)。中腦左側(cè)腦區(qū)的MMN幅度大于右側(cè)腦區(qū),同樣可能源于右耳優(yōu)勢。
3.3 動物ERP實(shí)驗(yàn)不受偽重復(fù)影響
偽重復(fù)這一概念源于生態(tài)學(xué)實(shí)驗(yàn)設(shè)計(jì)(Hurlbert,1984),后被延伸至動物行為學(xué)和神經(jīng)科學(xué)等領(lǐng)域的實(shí)驗(yàn)設(shè)計(jì)中(Lazic,2010)。為了驗(yàn)證偽重復(fù)可能存在的影響,本研究采用了4組不同的刺激,每組包含一個(gè)來自不同個(gè)體的廣告鳴叫(含5個(gè)音節(jié))。通過對數(shù)據(jù)進(jìn)行四因素重復(fù)測量方差分析發(fā)現(xiàn),4組刺激之間的差異無統(tǒng)計(jì)學(xué)意義,而音節(jié)之間的差異在4組刺激間保持相對一致和穩(wěn)定,即第一個(gè)音節(jié)對應(yīng)的MMN幅度最大。這說明偽重復(fù)并不影響當(dāng)前的結(jié)果,第一個(gè)音節(jié)確實(shí)具有明顯高于其他音節(jié)的生物學(xué)意義。
舒華, 張亞旭. 2008. 心理學(xué)研究方法: 實(shí)驗(yàn)設(shè)計(jì)與數(shù)據(jù)分析[M]. 北京: 人民教育出版社.
薛飛, 方光戰(zhàn), 唐業(yè)忠. 2016. 大腦聽覺偏側(cè)性的特征與演化[J]. 四川動物, 35(4): 626-631.
Bee MA, Micheyl C. 2008. The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it?[J]. Journal of Comparative Psychology, 122(3): 235-251.
Biermann S, Heil P. 2000. Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex[J]. Journal of Neurophysiology, 84(5): 2426-2439.
Briefer E, Osiejuk TS, Rybak F,etal. 2010. Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach[J]. Journal of Theoretical Biology, 262(1): 151-164.
Brillet C, Paillette M. 1991. Acoustic signals of the nocturnal lizardGekkogecko: analysis of the ‘long complex sequence’[J]. Bioacoustics, 3(1): 33-44.
Bruns A, Eckhorn R, Jokeit H,etal. 2000. Amplitude envelope correlation detects coupling among incoherent brain signals[J]. NeuroReport, 11(7): 1509-1514.
Chen Q, Cui J, Fang G,etal. 2011. Acoustic analysis of the advertisement calls of the music frog,Babinadaunchina[J]. Journal of Herpetology, 45(4): 406-416.
Cherry C. 1958. On human communication: a review, a survey, and a criticism[M]. New York: Springer: 147-150.
Cohen J. 1992. A power primer[J]. Psychological Bulletin, 112(1): 155-157.
Cui J, Tang Y, Narins PM. 2012. Real estate ads in Emei music frog vocalizations: female preference for calls emanating from burrows[J]. Biology Letters, 8(3): 337-340.
Deveney CM, Pizzagalli DA. 2008. The cognitive consequences of emotion regulation: an ERP investigation[J]. Psychophysiology, 45(3): 435-444.
Doupe AJ, Kuhl PK. 1999. Birdsong and human speech: common themes and mechanisms[J]. Annual Review of Neuroscience, 22(1): 567-631.
Fang G, Jiang F, Yang P,etal. 2014a. Male vocal competition is dynamic and strongly affected by social contexts in music frogs[J]. Animal Cognition, 17(2): 483-494.
Fang G, Xue F, Yang P,etal. 2014b. Right ear advantage for vocal communication in frogs results from both structural asymmetry and attention modulation[J]. Behavioural Brain Research, 266(2014): 77-84.
Fang G, Yang P, Xue F,etal. 2015. Sound classification and call discrimination are decoded in order as revealed by event-related potential components in frogs[J]. Brain, Behavior and Evolution, 86: 232-245.
Handy TC. 2005. Event-related potentials: a methods handbook[M]. Cambridge: MIT Press.
Honbolygó F, Csépe V, Ragó A. 2004. Suprasegmental speech cues are automatically processed by the human brain: a mismatch negativity study[J]. Neuroscience Letters, 363(1): 84-88.
Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments[J]. Ecological Monographs, 54(2): 187-211.
Jacobsen T, Schr?ger E. 2001. Is there pre-attentive memory-based comparison of pitch?[J]. Psychophysiology, 38(4): 723-727.
Jaramillo M, Paavilainen P, N??t?nen R. 2000. Mismatch negativity and behavioural discrimination in humans as a function of the magnitude of change in sound duration[J]. Neuroscience Letters, 290(2): 101-104.
Jiang F, Fang G, Xue F,etal. 2015. Male music frogs compete vocally on the basis of temporal sequence rather than spatial cues of rival calls[J]. Asian Herpetological Research, 6(4): 305-316.
Korpilahti P, Krause CM, Holopainen I,etal. 2001. Early and late mismatch negativity elicited by words and speech-like stimuli in children[J]. Brain and Language, 76(3): 332-339.
Lalonde-Robert V, Desgent S, Duss S,etal. 2012. Electroencephalographic and physiologic changes after tricaine methanesulfonate immersion of African clawed frogs (Xenopuslaevis)[J]. Journal of the American Association for Laboratory Animal Science, 51(5): 622-627.Lazic SE. 2010. The problem of pseudoreplication in neuroscientific studies: is it affecting your analysis?[J]. BMC Neuroscience, 11(1): 5-21.
Liu Y, Fan Y, Xue F,etal. 2016. Changes in electroencephalogram approximate entropy reflect auditory processing and functional complexity in frogs[J]. Asian Herpetological Research, 7(3): 180-190.
Luck SJ. 2005. An introduction to the event-related potential technique[M]. Cambridge: MIT Press.
Magnhagen C. 1991. Predation risk as a cost of reproduction[J]. Trends in Ecology & Evolution, 6(6): 183-186.
McDonald JJ, Teder-S?lej?rvi WA, Di Russo F,etal. 2005. Neural basis of auditory-induced shifts in visual time-order perception[J]. Nature Neuroscience, 8(9): 1197-1202.
N??t?nen R, Gaillard AWK, M?ntysalo S. 1978. Early selective-attention effect on evoked potential reinterpreted[J]. Acta Psychologica, 42(4): 313-329.
N??t?nen R, Kujala T, Winkler I. 2011. Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses[J]. Psychophysiology, 48(1): 4-22.
N??t?nen R, Michie PT. 1979. Early selective-attention effects on the evoked potential: a critical review and reinterpretation[J]. Biological Psychology, 8(2): 81-136.
N??t?nen R, Paavilainen P, Rinne T,etal. 2007. The mismatch negativity (MMN) in basic research of central auditory processing: a review[J]. Clinical Neurophysiology, 118(12): 2544-2590.
N??t?nen R, Pakarinen S, Rinne T,etal. 2004. The mismatch negativity (MMN): towards the optimal paradigm[J]. Clinical Neurophysiology, 115(1): 140-144.
N??t?nen R, Schr?ger E, Karakas S,etal. 1993. Development of a memory trace for a complex sound in the human brain[J]. NeuroReport, 4(5): 503-506.
N??t?nen R. 2001. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm)[J]. Psychophysiology, 38(1): 1-21.
Ostroff JM, McDonald KL, Schneider BA,etal. 2003. Aging and the processing of sound duration in human auditory cortex[J]. Hearing Research, 181(1): 1-7.
Peter V, McArthur G, Thompson WF. 2010. Effect of deviance direction and calculation method on duration and frequency mismatch negativity (MMN)[J]. Neuroscience Letters, 482(1): 71-75.
Ryan MJ. 1985. The túngara frog: a study in sexual selection and communication[M]. Chicago: University of Chicago Press.
Smith D. 1974. Sympathetic cardiac stimulation inBufomarinusunder MS-222 anesthesia[J]. American Journal of Physiology, 226(2): 367-370.
Sp?th M, Schweickert W. 1977. The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 297(1): 9-16.
Sussman ES. 2007. A new view on the MMN and attention debate: the role of context in processing auditory events[J]. Journal of Psychophysiology, 21(3-4): 164-175.
Suzuki TN, Wheatcroft D, Griesser M. 2016. Experimental evidence for compositional syntax in bird calls[J]. Nature Communications, 7: 10986.
Tang Y, Zhuang L, Wang Z,etal. 2001. Advertisement calls and their relation to reproductive cycles inGekkogecko(Reptilia, Lacertilia)[J]. Copeia, 2001(1): 248-253.
Tervaniemi M, Ilvonen T, Sinkkonen J,etal. 2000. Harmonic partials facilitate pitch discrimination in humans: electrophysiological and behavioral evidence[J]. Neuroscience Letters, 279(1): 29-32.
Todd J, Michie PT. 2000. Do perceived loudness cues contribute to duration mismatch negativity (MMN)?[J]. NeuroReport, 11(17): 3771-3774.
Walkowiak W. 2007. Call production and neural basis of vocalization[M]. New York: Springer: 87-112.
Wells KD, Schwartz JJ. 2007. The behavioral ecology of anuran communication[M]. New York: Springer: 44-86.
Williams H, Staples K. 1992. Syllable chunking in zebra finch (Taeniopygiaguttata) song[J]. Journal of Comparative Psychology, 106(3): 278-286.
Woldorff MG, Hackley SA, Hillyard SA. 1991. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones[J]. Psychophysiology, 28(1): 30-42.
Xue F, Fang G, Yang P,etal. 2015. The biological significance of acoustic stimuli determines ear preference in the music frog[J]. Journal of Experimental Biology, 218(5): 740-747.
Xue F, Fang G, Yue X,etal. 2016. Resting-state brain networks revealed by granger causal connectivity in frogs[J]. Neuroscience, 334: 332-340.
Yago E, Escera C, Alho K,etal. 2003. Spatiotemporal dynamics of the auditory novelty-P3 event-related brain potential[J]. Cognitive Brain Research, 16(3): 383-390.
Biological Significances of Advertisement Call Notes inBabinadaunchina
YUE Xizi1, 2, JIANG Fan1, XUE Fei1, FANG Guangzhan1*, TANG Yezhong1
(1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;2. University of the Chinese Academy of Sciences, Beijing 100049, China)
Complex acoustic communication sounds play a crucial role in coordinating social and reproductive behaviors in many terrestrial species. However, the biological significance of each component of such complex sounds is still unclear. Most of the calls of male anuran species are composed of a series of notes and intervals. For example, advertisement calls of the male Emei music frog (Babinadaunchina) frequently contain one to ten or more notes that are separated by intervals of approximately 150 ms. Therefore, Emei music frog is an interesting model to explore the biological significance of each note. By using the optimized paradigm of mismatch negativity (MMN), one standard stimulus (white noise) and 5 deviant stimuli(5 notes from one advertisement call) were played back to frogs and multichannel electroencephalogram recordings were then obtained. The results showed that the MMN amplitudes were greater in the left hemisphere, indicating a left brain advantage for perceiving these deviations. While the MMN amplitude of the first note was significantly larger than that of others. Since the MMN amplitude is thought to reflect not only the difference between the standard and deviant stimuli, but also the brain resources devoted to cognitive processing, it is reasonable to speculate that the first note is the most important unit of vocal communication in frogs.
Babinadaunchina; advertisement call; note; mismatch negativity; auditory lateralization; pseudoreplication
2016-11-14 接受日期:2017-01-20
國家自然科學(xué)基金項(xiàng)目(31672305; 31372217)
樂西子, 女, 碩士, 研究方向:動物聲音通訊及其神經(jīng)機(jī)理, E-mail:lexz@cib.ac.cn
*通信作者Corresponding author, E-mail:fanggz@cib.ac.cn
10.11984/j.issn.1000-7083.20160313
Q955; Q959.5
A
1000-7083(2017)03-0241-08