顧亞蘭, 梁音, 曹龍熹, 盧慧中, 張玉剛
(1.土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院南京土壤研究所,210008,南京;2.中國(guó)科學(xué)院大學(xué),100049,北京;3.太湖流域水土保持監(jiān)測(cè)中心站,200434,上海)
紅黏土侵蝕劣地集水區(qū)30年植被恢復(fù)中的水沙特征
顧亞蘭1,2, 梁音1?, 曹龍熹1, 盧慧中1,2, 張玉剛3
(1.土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院南京土壤研究所,210008,南京;2.中國(guó)科學(xué)院大學(xué),100049,北京;3.太湖流域水土保持監(jiān)測(cè)中心站,200434,上海)
為探究紅黏土侵蝕劣地植被恢復(fù)的水土保持效益,在自然降雨條件下,對(duì)紅黏土區(qū)裸地對(duì)照及植被恢復(fù)的2個(gè)自然集水區(qū)進(jìn)行長(zhǎng)期降雨徑流泥沙監(jiān)測(cè),得到30年的產(chǎn)流產(chǎn)沙數(shù)據(jù)。結(jié)果表明:1)植被恢復(fù)第6年裸地對(duì)照和恢復(fù)林地的產(chǎn)流差距顯著,8年后恢復(fù)林地基本不再產(chǎn)沙。年內(nèi)產(chǎn)流產(chǎn)沙集中在雨季4—6月,植被的減流和減沙效益分別超過(guò)40%和90%。在次降雨尺度上,植被能夠顯著降低徑流泥沙曲線斜率,在降雨量相同的條件下減小地表產(chǎn)流產(chǎn)沙量。2)降雨過(guò)程產(chǎn)流產(chǎn)沙與降雨強(qiáng)度I60變化趨勢(shì)一致,呈多峰型,總體上恢復(fù)區(qū)延緩產(chǎn)流1 h以上,產(chǎn)流峰值減小67%~83%,中雨條件下植被延緩徑流和降低產(chǎn)流峰值的效益最好。3)恢復(fù)林地徑流中全N、全P、全K流失量分別減少54.62%、57.53%、56.46%,次降雨過(guò)程中全N和全K流失質(zhì)量濃度高于全P濃度,且隨徑流過(guò)程波動(dòng)較大。植被恢復(fù)后的紅黏土集水區(qū)產(chǎn)流產(chǎn)沙及養(yǎng)分流失顯著減少,水土流失得到有效控制。
紅黏土區(qū); 植被恢復(fù); 水土流失; 降雨過(guò)程; 養(yǎng)分流失
我國(guó)南方紅壤區(qū)降雨強(qiáng)度大且集中,丘陵地形廣泛分布,加之不合理的人類活動(dòng)擾動(dòng),長(zhǎng)期以來(lái)水土流失危害嚴(yán)重,土壤表層乃至亞表層遭到剝蝕而網(wǎng)紋層裸露,演變成紅黏土侵蝕劣地[1]。此類土壤養(yǎng)分貧乏,結(jié)構(gòu)較差,開(kāi)發(fā)利用難度大,至今仍是制約區(qū)域土壤質(zhì)量提高的主要障礙因素之一;因此迫切需要對(duì)紅黏土侵蝕劣地進(jìn)行生態(tài)恢復(fù)并開(kāi)展水土保持效益研究。
植被恢復(fù)是遏制生態(tài)環(huán)境退化和提升脆弱生態(tài)系統(tǒng)功能的有效措施。研究表明植被恢復(fù)與林下土壤恢復(fù)特征呈正向關(guān)系[2-3],并且植被作為大氣與土壤間的保護(hù)層可以增加入滲,減少地表徑流量,減弱雨滴和徑流對(duì)地表泥沙的分離和搬運(yùn)能力,從而減輕土壤侵蝕[4]。學(xué)者們針對(duì)植被恢復(fù)水土保持效益的研究大多是基于徑流小區(qū)觀測(cè)次降雨徑流和泥沙量,研究年尺度的侵蝕量和徑流深[5],而對(duì)恢復(fù)條件下地表產(chǎn)流產(chǎn)沙的響應(yīng)過(guò)程關(guān)注不夠。部分學(xué)者基于林地標(biāo)準(zhǔn)徑流小區(qū)開(kāi)展人工降雨實(shí)驗(yàn),如肖培青等采用模擬降雨試驗(yàn)研究了灌草的減流減沙效益[6-7],孫佳美等在模擬降雨下研究植被蓋度對(duì)坡面流水動(dòng)力學(xué)特性的影響[8]。模擬試驗(yàn)研究對(duì)于理解坡面尺度的植被恢復(fù)水土保持機(jī)制具有重要意義,但在現(xiàn)實(shí)中水土流失是以自然集水區(qū)為單元的水沙過(guò)程,集水區(qū)內(nèi)有坡面和溝道等地類,和坡面上的產(chǎn)流產(chǎn)沙過(guò)程差別較大,而目前以林地集水區(qū)為研究對(duì)象的自然降雨水沙過(guò)程監(jiān)測(cè)研究報(bào)道較少。
筆者基于30年紅黏土侵蝕劣地自然集水區(qū)植被恢復(fù)對(duì)照試驗(yàn),監(jiān)測(cè)天然次降雨條件下的產(chǎn)流產(chǎn)沙和養(yǎng)分流失過(guò)程,對(duì)比林地恢復(fù)和裸地對(duì)照集水區(qū)的水沙變化特征,以期指導(dǎo)紅黏土侵蝕劣地植被恢復(fù),為科學(xué)評(píng)價(jià)該區(qū)域植被恢復(fù)水土保持效益提供依據(jù)。
研究區(qū)選在位于江西省鷹潭市余江縣的中國(guó)科學(xué)院紅壤生態(tài)實(shí)驗(yàn)站(E116°55′30″,N28°15′20″)。研究區(qū)森林植被類型有針葉林、常綠闊葉林、竹林、針闊混交林等,森林覆蓋率為41.9%。成土母質(zhì)為第四紀(jì)紅黏土,土壤類型為紅壤,富含鐵氧化物,黏土礦物以高嶺石為主。區(qū)域內(nèi)地勢(shì)變化平緩,以低丘和崗地為主,坡度為在3°~15°。該區(qū)屬于亞熱帶濕潤(rùn)季風(fēng)氣候,年均氣溫17.6 ℃,極端最高氣溫41.0 ℃,極端最低氣溫-10.4 ℃,>10 ℃的年積溫5 527.6 ℃,無(wú)霜期為258 d,年均日照時(shí)間1 739.4 h,年蒸發(fā)量1 378 mm,年均降水量1 788 mm,但季節(jié)分布不均,雨季為每年的3—6月,雨季降雨量占全年降水的60%。
圖1 研究區(qū)年際降雨產(chǎn)流產(chǎn)沙特征Fig.1 Characteristics of annual mean rainfall and runoff (a) and sediment yield (b)
本研究設(shè)置植被恢復(fù)林地和裸地對(duì)照(CK)2個(gè)集水區(qū),在 1987年建設(shè)時(shí)全部為寸草不生的裸地。其中植被恢復(fù)區(qū)面積為562.5 m2,采用快速植被恢復(fù)技術(shù)進(jìn)行治理[9],至今恢復(fù)的時(shí)間已有30年,植被覆蓋度由零演變?yōu)閱坦嗤耆采w,喬木主要以香樟(Cinnamomumcamphora(L.) Presl.)、楊梅(Myricarubra(Lour.) S. et Zucc. )、喜樹(shù)(Camptothecaacuminata)等為主,在整個(gè)恢復(fù)林地小區(qū)內(nèi)均勻分布,灌木主要以山胡椒(Linderaglauca(Sieb. et Zucc.)Bl)、梔子(GardeniajasminoidesEllis)、胡枝子(LespedezabicolorTurcz)為主。裸地對(duì)照小區(qū)面積146.3 m2,溝道兩側(cè)的坡度為20°~30°,土壤侵蝕一直十分強(qiáng)烈,網(wǎng)紋層出露。試驗(yàn)區(qū)恢復(fù)土壤的有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為27.07 g/kg,與恢復(fù)前相比提高了10倍,與對(duì)照相比提高了近6倍;全氮質(zhì)量分?jǐn)?shù)為1.52 g/kg,與恢復(fù)前比提高了近6倍,與對(duì)照相比提高了近4倍。
小區(qū)建設(shè)時(shí)在集水口處修建徑流池,自1987年開(kāi)始徑流泥沙監(jiān)測(cè),在降雨后先測(cè)量徑流池水深,然后充分?jǐn)噭蛉∫欢ㄋ畼?,?jīng)過(guò)濾收集泥沙樣品分析徑流泥沙特征。2015年開(kāi)始采用無(wú)動(dòng)力水土流失過(guò)程自動(dòng)觀測(cè)裝置(中國(guó)科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所研發(fā),型號(hào)XYZ-III)進(jìn)行水沙過(guò)程監(jiān)測(cè),裝置翻斗儀連接的計(jì)數(shù)器可以實(shí)時(shí)記錄次降雨徑流事件的動(dòng)態(tài)過(guò)程,同時(shí)自動(dòng)采集對(duì)應(yīng)時(shí)刻的徑流泥沙過(guò)程樣品。降雨過(guò)程資料來(lái)自鷹潭紅壤生態(tài)實(shí)驗(yàn)站的氣象觀測(cè)數(shù)據(jù),次降雨間隔為6 h。2015年8月至2016年7月降雨共209次,按照氣象學(xué)規(guī)定的降雨等級(jí)劃分方法(日降雨量R<10 mm為小雨;10 mm≤R<25 mm為中雨;25 mm≤R<50 mm為大雨;50 mm≤R<100 mm為暴雨)進(jìn)行分類,降雨量大于10 mm的65次,其中大雨和暴雨共23次,60%的大雨和暴雨集中在4—6月,是引發(fā)該區(qū)水土流失的主要月份。儀器記錄的監(jiān)測(cè)數(shù)據(jù)共1萬(wàn)736次,其中次降雨產(chǎn)流過(guò)程數(shù)據(jù)95次,其中僅對(duì)照區(qū)產(chǎn)流的有45次,對(duì)照及恢復(fù)區(qū)均產(chǎn)流的有50次。每次降雨停止后采集樣品,共采集樣品251個(gè)。根據(jù)儀器記錄的產(chǎn)流量及測(cè)定出的樣品含沙量推算過(guò)程的產(chǎn)沙量。含沙量測(cè)定采用烘干稱量法,徑流樣品養(yǎng)分測(cè)定選取全N、全P、全K等指標(biāo),全N 采用過(guò)硫酸鉀氧化-紫外分光光度計(jì)法測(cè)定,全P 采用過(guò)硫酸鉀氧化-鉬藍(lán)比色法測(cè)定,全K采用氫氧化鈉熔融-火焰光度法測(cè)定。
本研究使用Excel 2013和SPSS 16.0進(jìn)行數(shù)據(jù)整理和分析,并使用Origin8.5軟件對(duì)分析結(jié)果進(jìn)行作圖。
3.1 產(chǎn)流產(chǎn)沙特征對(duì)比
紅黏土侵蝕劣地集水區(qū)恢復(fù)6年(1993年)后植被覆蓋度超過(guò)80%,形成喬灌草復(fù)合型冠層結(jié)構(gòu),由圖1(a)可以看出,1993年之后對(duì)照和植被恢復(fù)區(qū)的產(chǎn)流差距變大,植被恢復(fù)10年后恢復(fù)區(qū)的產(chǎn)流顯著小于裸地對(duì)照,恢復(fù)8年后產(chǎn)沙得到控制,產(chǎn)沙量幾乎為零(圖1(b)),長(zhǎng)期降雨與產(chǎn)流產(chǎn)沙間呈現(xiàn)相同的變化趨勢(shì)。
年內(nèi)產(chǎn)流產(chǎn)沙主要集中在雨季4—6月(圖2),5月降雨最多,對(duì)照裸地產(chǎn)流、產(chǎn)沙也最多,植被恢復(fù)的減流減沙效益分別達(dá)到78.30%和96.88%。而恢復(fù)林地4月產(chǎn)流產(chǎn)沙量最多,分析原因是由于恢復(fù)林地5月份的植被覆蓋度較4月份高,植被冠層對(duì)降雨的截留及對(duì)徑流傳遞的阻礙作用,可以降低產(chǎn)流量,同時(shí)減輕對(duì)地面的土壤濺蝕能力,因而恢復(fù)林地5月份產(chǎn)流產(chǎn)沙量較4月份少[10]。植被減流效益超過(guò)40%,減沙效果更明顯,總體上超過(guò)90%。
圖2 研究區(qū)年內(nèi)降雨產(chǎn)流產(chǎn)沙特征Fig.2 Characteristics of monthly rainfall (a) runoff (b) sediment yield (c) in the study area
圖3 研究區(qū)年內(nèi)降雨-產(chǎn)流、降雨-產(chǎn)沙及產(chǎn)流-產(chǎn)沙關(guān)系曲線Fig.3 Relationship between rainfall and runoff (a), rainfall and sediment yield (b), and runoff and sediment yield (c)
選取2個(gè)集水區(qū)均產(chǎn)流且降雨量大于10 mm的26次降雨分析降雨因子與產(chǎn)流產(chǎn)沙的關(guān)系。將最大時(shí)段侵蝕性降雨強(qiáng)度I60、降雨量、降雨歷時(shí)與產(chǎn)流量、產(chǎn)沙量進(jìn)行相關(guān)性分析,得出對(duì)照及恢復(fù)集水區(qū)產(chǎn)流產(chǎn)沙量均與降雨量相關(guān)性最好,且裸地對(duì)照降雨-產(chǎn)流、降雨-產(chǎn)沙關(guān)系曲線的斜率顯著大于恢復(fù)林地,表明植被具有減小產(chǎn)流產(chǎn)沙增加趨勢(shì)的作用(圖3(a)和(b)),恢復(fù)林地降雨-產(chǎn)沙關(guān)系曲線斜率近乎為零,表明恢復(fù)林地產(chǎn)沙量很小。分析原因是由于在降雨不斷增加的過(guò)程中,植被有效攔截了一部分雨水,植物通過(guò)葉片降低雨滴動(dòng)能,同時(shí)也降低對(duì)地表的濺蝕力,減少降雨侵蝕,植物的根系具有蓄水?dāng)r沙的作用,減少土壤的流失,這與以往學(xué)者在紅壤區(qū)的研究結(jié)果[11-14]一致。南方紅壤區(qū)雨季暴雨頻發(fā)且降雨集中,因此,通過(guò)恢復(fù)措施可以有效控制水土流失。對(duì)裸地及恢復(fù)林地的產(chǎn)流量與產(chǎn)沙量進(jìn)行統(tǒng)計(jì)分析發(fā)現(xiàn):裸地對(duì)照及恢復(fù)林地的產(chǎn)流-產(chǎn)沙均呈顯著的正相關(guān)關(guān)系,且對(duì)照區(qū)產(chǎn)流-產(chǎn)沙關(guān)系曲線斜率顯著高于恢復(fù)區(qū),表明裸地對(duì)照區(qū)與恢復(fù)林地產(chǎn)流量相同時(shí),對(duì)照區(qū)比恢復(fù)林地產(chǎn)沙量大,表明植被恢復(fù)林地的保水保土效益顯著(圖3(c))。
3.2 典型產(chǎn)流產(chǎn)沙過(guò)程
選擇包含暴雨、大雨、中雨、小雨4種類型的7場(chǎng)典型降雨對(duì)比不同恢復(fù)措施的地表產(chǎn)流產(chǎn)沙過(guò)程(表1)。2個(gè)集水區(qū)的產(chǎn)流產(chǎn)沙量及產(chǎn)流峰值均與降雨量及降雨強(qiáng)度的變化趨勢(shì)一致(暴雨>大雨>中雨>小雨)?;謴?fù)區(qū)產(chǎn)流量較對(duì)照減少33%~65%,裸地對(duì)照徑流系數(shù)是恢復(fù)林地的1.5~3.0倍,恢復(fù)林地降低產(chǎn)流峰值效益顯著,達(dá)到67%~83%。植被可以延緩產(chǎn)流、產(chǎn)流峰值出現(xiàn)時(shí)間降低產(chǎn)流峰值,中雨、小雨條件相較于暴雨、大雨降低產(chǎn)流峰值效益更好,超過(guò)80%。相同降雨量條件下,降雨強(qiáng)度越大延緩產(chǎn)流的時(shí)間越短。另外,由于夏季植被覆蓋度高,2場(chǎng)暴雨及2場(chǎng)大雨中,夏季的延緩產(chǎn)流時(shí)間均高于秋季[15]。
表1 研究區(qū)次降雨過(guò)程降雨產(chǎn)流產(chǎn)沙特征Tab.1 Characteristics of runoff and sediment yield at single rainfall event in the study area
注:PlotⅠ為裸地CK ;PlotⅡ?yàn)榛謴?fù)林地 。Note:PlotⅠis Bare soil as CK;PlotⅡis Restored forest land.
過(guò)程產(chǎn)流趨勢(shì)與降雨強(qiáng)度I60變化趨勢(shì)一致,總體上對(duì)照區(qū)產(chǎn)流時(shí)間早于恢復(fù)區(qū)1 h以上,2個(gè)集水區(qū)產(chǎn)流過(guò)程均呈多峰型(圖4)。產(chǎn)流滯后時(shí)間隨雨強(qiáng)減小而增大,通常坡面產(chǎn)流在僅降雨變化的條件下,與降雨強(qiáng)度小的降雨相比,一般降雨強(qiáng)度高的降雨入滲至土壤的雨水相對(duì)較少,坡面更容易產(chǎn)生徑流,故其產(chǎn)流滯后降雨的時(shí)間較短[15]?;謴?fù)林地次降雨減沙效益顯著,達(dá)到91%~98%,恢復(fù)林地產(chǎn)沙延緩時(shí)間與產(chǎn)流一致(圖5(a)和(b))。次降雨過(guò)程泥沙含量表現(xiàn)為先增大后減小最后趨向穩(wěn)定,恢復(fù)林地徑流中含沙量很小,土壤侵蝕不明顯(圖4(c))。
圖4 研究區(qū)次降雨過(guò)程中降雨強(qiáng)度及產(chǎn)流變化特征Fig.4 Characteristics of rainfall intensity and runoff at single rainfall event in the study area
3.3 養(yǎng)分流失特征
根據(jù)2015年8月至2016年7月對(duì)照區(qū)及恢復(fù)林地均產(chǎn)流且降雨量大于10 mm的26次降雨產(chǎn)流樣品中養(yǎng)分含量均值及月產(chǎn)流量估算徑流中月養(yǎng)分流失量及全年養(yǎng)分流失總量。恢復(fù)林地年內(nèi)徑流中全氮、全磷、全鉀流失量較裸地對(duì)照分別減少54.62%、57.53%和56.46%,表明植被保持水土養(yǎng)分的效益顯著。年內(nèi)2個(gè)集水區(qū)徑流中養(yǎng)分流失量均集中在雨季4—6月且裸地對(duì)照養(yǎng)分流失量顯著高于恢復(fù)林地(圖6),養(yǎng)分流失量與降雨量、徑流量呈現(xiàn)相同的變化趨勢(shì)。對(duì)照區(qū)5月降雨量最大,養(yǎng)分流失量最多,而恢復(fù)林地徑流中養(yǎng)分流失最多的是4月,年內(nèi)變化趨勢(shì)與降雨產(chǎn)流一致。
圖5 研究區(qū)次降雨過(guò)程產(chǎn)沙量及含沙量變化Fig.5 Characteristics of sediment yield(a)(b)and sediment concentration(c) at single rainfall event in the study area
Note:TN:Total nitrogen. TP:Total phosphorus. TK:Total potassium. The same below.圖6 研究區(qū)徑流中全氮、全磷、全鉀流失特征Fig.6 Characteristics of monthly TN(a), TP(b), and TK(c)in the runoff of the study area
次降雨過(guò)程徑流中全P流失質(zhì)量濃度明顯低于全N和全K,且全N及全K濃度波動(dòng)較大,而全P濃度變化較穩(wěn)定(圖7),分析原因是紅壤是富含鐵鋁的酸性土,P容易被其吸附固定,遷移能力低;另外,發(fā)育于第四紀(jì)紅黏土母質(zhì)的紅壤富N缺P(pán),導(dǎo)致徑流中 全P流失量較低,濃度波動(dòng)較小[16-17]。
圖7 研究區(qū)次降雨過(guò)程養(yǎng)分流失含量變化Fig.7 Characteristics content of nutrient loss in the runoff of a single rainfall event in the study area
本文研究表明紅黏土侵蝕劣地植被恢復(fù)6年后覆蓋度達(dá)到80%,開(kāi)始表現(xiàn)出明顯的減流減沙效益,8年后恢復(fù)林地基本不再產(chǎn)沙,而吳雨赤等學(xué)者在紅壤區(qū)的研究也發(fā)現(xiàn)植物恢復(fù)5—6年后覆蓋度顯著提高,水土流失情況得到顯著控制[18-19],這與本研究結(jié)果是一致的。從年尺度上來(lái)看,植被恢復(fù)的減流效益超過(guò)40%,減沙總體上超過(guò)90%,這一效益與紅壤區(qū)其他林灌草綜合恢復(fù)模式的減沙效益也比較接近[20-22]。在次降雨過(guò)程尺度上,總體上恢復(fù)林地延緩產(chǎn)流1 h以上,產(chǎn)流峰值減小67%~83%,且中雨條件下植被延緩徑流和降低產(chǎn)流峰值的效益最好,李鋼等研究發(fā)現(xiàn)恢復(fù)林地的減流減沙效益隨雨強(qiáng)的增大先升后降[22],這一趨勢(shì)和本研究結(jié)果比較吻合。與紅壤區(qū)大面積分布的馬尾松純林相比[22],本研究采用的植被快速恢復(fù)技術(shù)形成了較為穩(wěn)定的喬灌草立體復(fù)合結(jié)構(gòu),可以削弱雨滴動(dòng)能,減少雨滴擊濺而產(chǎn)生的沙源,并可攔截徑流,降低徑流沖刷破壞土體的能量,因而水土保持效益顯著提高。與裸地相比,恢復(fù)林地徑流中的全N、全P、全K流失量均減少50%以上。以上研究結(jié)果說(shuō)明采用植被快速恢復(fù)技術(shù)可以有效地控制紅黏土侵蝕劣地地表產(chǎn)流產(chǎn)沙,延緩徑流泥沙過(guò)程和消減徑流峰值,顯著減少?gòu)搅髂嗌持械酿B(yǎng)分流失。
本研究可為紅壤侵蝕劣地植被恢復(fù)及林地生態(tài)系統(tǒng)的水土保持功能評(píng)價(jià)提供科學(xué)依據(jù),但由于徑流泥沙過(guò)程數(shù)據(jù)不夠豐富,后續(xù)的工作中需要加大徑流泥沙和養(yǎng)分流失過(guò)程的監(jiān)測(cè)力度,通過(guò)獲取過(guò)程參數(shù),為物理模型的構(gòu)建和應(yīng)用提供理論依據(jù)。
[1] 楊艷生. 第四紀(jì)紅粘土區(qū)侵蝕土壤退化機(jī)理研究[J]. 水土保持研究, 1997, 4(1):100. YANG Yansheng. Research on soil deterioration mechanism in quaternary red clay region[J]. Research of Soil and Water Conservation, 1997, 4(1):100.
[2] DANTAS V D L, BATALHA M A. Vegetation structure: Fine scale relationships with soil in a cerrado site[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2011, 206(4):341.
[3] JIAO F, WEN Z M, AN S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China[J]. Catena, 2011, 86(2):110.
[4] OUYANG W, HAO F, SKIDMORE A K, et al. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River[J]. Science of the Total Environment, 2010, 409(2): 396.
[5] 梁娟珠. 不同植被措施下紅壤坡面徑流變化特征[J]. 水土保持通報(bào), 2015, 35(6):159. LIANG Juanzhu. Runoff changes on slope with different vegetation measures in red soil region[J]. Bulletin of Soil and Water Conservation, 2015, 35(6):159.
[6] 肖培青, 姚文藝, 王昌高. 灌木減流減沙效應(yīng)及其水力學(xué)機(jī)理試驗(yàn)研究[J]. 泥沙研究, 2012(5): 33. XIAO Peiqing, YAO Wenyi, WANG Changgao. Experimental study of effect of shrubs on runoff and sediment reduction and its hydrodynamic mechanism[J]. Journal of Sediment Research, 2012(5):33.
[7] 肖培青, 姚文藝, 申震洲, 等. 草被減流減沙效應(yīng)及其力學(xué)機(jī)制分析[J]. 中國(guó)水土保持科學(xué), 2010, 8(2):15. XIAO Peiqing, YAO Wenyi, SHEN Zhenzhou, et al. Reduction effects of grass on runoff and sediment and its mechanical mechanism[J]. Science of Soil and Water Conservation, 2010, 8(2): 15.
[8] 孫佳美, 余新曉, 樊登星, 等. 模擬降雨下植被蓋度對(duì)坡面流水動(dòng)力學(xué)特性的影響[J]. 生態(tài)學(xué)報(bào), 2015, 35(8):2574. SUN Jiamei, YU Xinxiao, FAN Dengxing, et al. Impact of vegetation cover on surface runoff hydraulic characteristics with simulated rainfall[J]. Acta Ecologica Sinica, 2015, 35(8):2574.
[9] 楊艷生. 紅壤生態(tài)系統(tǒng)研究[M]. 南昌:江西科學(xué)技術(shù)出版社, 1992: 251. YANG Yansheng. Research on red soil ecosystem[M]. Nanchang: Jiangxi Science and Technology Publishing House, 1992: 251.
[10] 張興昌, 劉國(guó)彬, 付會(huì)芳. 不同植被覆蓋度對(duì)流域氮素徑流流失的影響[J]. 環(huán)境科學(xué), 2000(6):16. ZHANG Xingchang, LIU Guobin, FU Huifang. Soil nitrogen losses of catchment by water erosion as affected by vegetation coverage[J]. Environmental Science, 2000(6):16.
[11] 左長(zhǎng)清, 馬良. 天然降雨對(duì)紅壤坡地侵蝕的影響[J]. 水土保持學(xué)報(bào), 2005, 19(2):1. ZUO Changqing, MA Liang. Effects of natural rainfall on red soil slope land erosion[J]. Journal of Soil and Water Conservation, 2005, 19(2):1.
[12] 黃鵬飛, 陳曉安, 鄭太輝, 等. 紅壤坡地不同植物措施消減徑流峰值研究[J]. 水土保持學(xué)報(bào), 2016, 30(1):79. HUANG Pengfei, CHEN Xiaoan, ZHENG Taihui, et al. Study on reduction of runoff peaks induced by different vegetation measures on red soil slope[J]. Journal of Soil and Water Conservation, 2016, 30(1):79.
[13] 康佩佩, 查軒,劉家明,等. 不同植被種植模式對(duì)紅壤坡面侵蝕影響試驗(yàn)研究[J]. 水土保持研究, 2016, 23(4):15. KANG Peipei, ZHA Xuan, LIU Jiaming, et al. Analysis of influence of different vegetation planting patterns on soil erosion on the red soil slope[J]. Research of Soil and Water Conservation, 2016, 23(4):15.
[14] 馬琨, 王兆騫, 陳欣. 紅壤坡面產(chǎn)流產(chǎn)沙與養(yǎng)分流失特征研究[J]. 寧夏農(nóng)學(xué)院學(xué)報(bào), 2003, 24(2):3. MA Kun, WANG Zhaoqian, CHEN Xin. Study on the properties of runoff yield and sediment yield and nutrient loss in red soil slope land [J]. Journal of Ningxia Agricultural College, 2003, 24(2):3.
[15] 趙夢(mèng)杰, 姚文藝, 王金花, 等. 植被覆蓋度對(duì)黃土高原地區(qū)土壤入滲及產(chǎn)流影響的試驗(yàn)研究[J]. 中國(guó)水土保持, 2015(6):41. ZHAO Mengjie, YAO Wenyi, WANG Jinhua, et al. Experimental study on influence of vegetation coverage to soil infiltration and runoff-producing of the loess plateau region. [J]. Soil and Water Conservation in China, 2015(6):41.
[16] 奚同行, 左長(zhǎng)清. 天然降雨下紅壤坡地氮磷流失過(guò)程與特征分析[J]. 水土保持通報(bào), 2012, 32(5):136. XI Tonghang, ZUO Changqing. Processes and characteristics of nitrogen and phosphorus losses on red soil sloping land under natural rainfall[J]. Bulletin of Soil and Water Conservation, 2012, 32(5):136.
[17] 呂玉娟, 彭新華, 高磊, 等. 紅壤丘陵崗地區(qū)坡地地表徑流氮磷流失特征研究[J]. 土壤, 2015, 47(2): 297. LYU Yujuan, PENG Xinhua, GAO Lei, et al. Characteristics of nitrogen and phosphorus losses through surface runoff on sloping land, red soil hilly region[J]. Soils, 2015, 47(2): 297.
[18] 吳雨赤. 第四紀(jì)紅粘土侵蝕劣地桃樹(shù)種植試驗(yàn)[J]. 中國(guó)水土保持, 1997(11):21. WU Yuchi. Planting experiment of peach growing in quaternary red clay region[J]. Soil and Water Conservation in China, 1997(11):21.
[19] 張盛鐘. 侵蝕劣地與工程侵蝕區(qū)的快速覆蓋技術(shù)與途徑[J]. 亞熱帶水土保持, 2011, 23(1):36. ZHANG Shengzhong. Technique and approach of rapid cover for eroded badland and engineering erosion area [J]. Subtropical Soil and Water Conservation, 2011, 23(1):36.
[20] 武藝, 楊潔, 汪邦穩(wěn), 等. 紅壤坡地水土保持措施減流減沙效果研究[J]. 中國(guó)水土保持, 2008(10):37. WU Yi, YANG Jie, WANG Bangwen, et al. Effect of runoff and sediment reduction of red soil sloped land through soil and water conservation[J]. Soil and Water Conservation in China, 2008(10):37.
[21] 謝頌華, 鄭海金, 楊潔, 等. 南方丘陵區(qū)水土保持植物措施減流效應(yīng)研究[J]. 水土保持學(xué)報(bào), 2010, 24(3):35. XIE Songhua, ZHENG Haijin, YANG Jie, et al. Effect of runoff reduction through vegetation measures of soil and water conservation in the hilly-land area southern China[J]. Journal of Soil and Water Conservation, 2010, 24(3):35.
[22] 李鋼, 梁音, 曹龍熹. 次生馬尾松林下植被恢復(fù)措施的水土保持效益[J]. 中國(guó)水土保持科學(xué), 2012, 10(6):25. LI Gang, LIANG Yin, CAO Longxi. Effects of different vegetation restoration patterns on soil erosion in secondaryPinusmassonianapure forest[J]. Science of Soil and Water Conservation, 2012, 10(6):25.
Characteristics of runoff and sediment yield of catchment area under 30 yearsvegetation restoration in red clay erosion badland
GU Yalan1, 2, LIANG Yin1, CAO Longxi1, LU Huizhong1, 2, ZHANG Yugang3
(1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China;2.University of Chinese Academy of Sciences, 100049, Beijing, China; 3.Taihu Basin Monitoring Central Station for Soil and Water Conservation,200434, Shanghai, China)
[Background] The red soil region is one of the typical areas suffering serious soil erosion in southern China. The red clay badland is a kind of seriously eroded degradation and is still one of the main obstacle factors in enhancing regional soil quality and ecosystem function. Thus, suitable management is urgently needed, and systematic analysis and evaluation should be carried out. This paper is therefore conducted to evaluate the soil and water conservation benefit of the vegetation restoration measures in red clay badland. [Methods] Two field plots were built according to the natural drainage boundary 30 years ago. One is in the bare land as control and the other is vegetation restoration treatment. Runoff and sediment generation were monitored continuously under the natural rainfall condition. According to the long-term field plot monitoring data and rainfall event process information, the dynamic of runoff and sediment yield can be quantitatively described and the benefits of vegetation restoration can be evaluated. [Results] 1) The runoff yield showed significant differences between the bare land and vegetation treatment at the 6th year of restoration. Sediment yield was approximately zero in the vegetation recovered plot after 8 years. The dynamic characteristics of both runoff and sediment yield throughout a year followed the same trend as rainfall, concentrating from April to June. The efficiencies for vegetation restoration in reducing runoff and soil loss were more than 40% and 90% respectively. The vegetation significantly reduced the coefficients of regression curves, meaning that the runoff and sediment yield in the restored land tended to be less than that of the bare land with the same precipitation. 2) The dynamic of the runoff and sediment yield during a rainfall event process showed multi peak curves and consistent with the trend of the rainfall intensity (I60max). The time to runoff and sediment yield in the vegetation treatment generally 1 hour delayed compared with the bare land. Meanwhile, the peak runoff and sediment in the restored land were also delayed and decreased by 67%-83%. The benefit of vegetation on reducing peak value of the runoff under moderate rain was better than that under rainstorm or heavy rain. 3) Comparing with the bare land, the loss of total nitrogen (TN), total phosphorus (TP) and total potassium (TK) in the restored land were reduced by 54.62%, 57.53%, and 56.46% respectively. During a rainfall and runoff process, the total losses of TP were obviously lower than the TN and TK. The concentration of TN and TK in rainfall process fluctuated and was higher than TP which was relatively stable. [Conclusions] The rapid restoration of vegetation can effectively control the surface runoff and sediment yield, delay runoff generation process and reduce peak flow. Meanwhile, recovery measures can significantly reduce nutrient loss in runoff and sediment. Therefore the vegetation restoration can be applied in local ecology recover and soil management. This study can provide a scientific basis for the assessment of the water and soil conservation benefit of vegetation restoration in red clay badland.
red clay area; vegetation restoration; soil and water losses; rainfall event process; nutrient loss
2017-02-18
2017-03-31
項(xiàng)目名稱: 國(guó)家科技支撐計(jì)劃“大型崩崗的農(nóng)業(yè)綜合開(kāi)發(fā)技術(shù)與示范”(2014BAD15B0302);國(guó)家自然科學(xué)基金“紅壤丘陵區(qū)小流域路網(wǎng)的水沙效應(yīng)作用機(jī)理與模擬”(41571273);江蘇省自然科學(xué)基金“基于GIS的流域坡長(zhǎng)因子自動(dòng)計(jì)算方法研究”(BK2015610)
顧亞蘭(1990—),女,碩士研究生。主要研究方向:土壤侵蝕與水土保持。E-mail:ylgu@issas.ac.cn
?通信作者簡(jiǎn)介: 梁音(1963—),男,博士,研究員。主要研究方向:土壤侵蝕與水土保持。E-mail:yliang@issas.ac.cn
S157.5
A
2096-2673(2017)03-0001-08
10.16843/j.sswc.2017.03.001