聶帥帥鄭力會(huì),2陳必武侯濤彭睿付毓偉
1.中國(guó)石油大學(xué)(北京)石油工程學(xué)院;2.河北省化工學(xué)會(huì)“化學(xué)封堵材料綜合利用研究與應(yīng)用”重點(diǎn)實(shí)驗(yàn)室;3.中國(guó)石油華北油田分公司煤層氣勘探開(kāi)發(fā)事業(yè)部
鄭3X煤層氣井絨囊流體重復(fù)壓裂控水增產(chǎn)試驗(yàn)
聶帥帥1鄭力會(huì)1,2陳必武3侯濤3彭睿1付毓偉1
1.中國(guó)石油大學(xué)(北京)石油工程學(xué)院;2.河北省化工學(xué)會(huì)“化學(xué)封堵材料綜合利用研究與應(yīng)用”重點(diǎn)實(shí)驗(yàn)室;3.中國(guó)石油華北油田分公司煤層氣勘探開(kāi)發(fā)事業(yè)部
鄭3X煤層氣井水力裂縫溝通含水砂巖層,導(dǎo)致了氣井高產(chǎn)水、低產(chǎn)氣。為此,利用絨囊流體封堵含水砂巖層和原縫,重復(fù)壓裂壓開(kāi)新縫,降低氣井產(chǎn)水量,提高產(chǎn)氣量。室內(nèi)測(cè)試結(jié)果表明,絨囊流體暫堵煤巖裂縫承壓能力21 MPa,降低砂巖水相滲透率52.67 %,傷害煤巖基質(zhì)滲透率恢復(fù)值87 %,滿足轉(zhuǎn)向壓裂和堵水的性能要求?,F(xiàn)場(chǎng)配制密度0.85~0.95 g/cm3、表觀黏度40~60 mPa·s的絨囊流體80 m3。當(dāng)絨囊流體成功封堵含水砂巖層和原縫后,再利用活性水進(jìn)行壓裂。排采結(jié)果表明,重復(fù)壓裂后排水期和產(chǎn)氣期的產(chǎn)水量分別降低79%和68%,而產(chǎn)氣量提高44%,表明絨囊流體在鄭3X井控水增產(chǎn)試驗(yàn)成功。絨囊流體具有良好的封堵能力和控水性能,能夠?qū)崿F(xiàn)水侵煤層氣井堵水壓裂一體化作業(yè),提高煤層氣開(kāi)發(fā)效果。
煤層氣;水力壓裂;重復(fù)壓裂;堵水;儲(chǔ)層傷害;絨囊流體
鄭3X井地處山西省沁水縣鄭莊鎮(zhèn)中鄉(xiāng)村,是沁南晉城斜坡帶鄭莊區(qū)塊一口煤層氣開(kāi)發(fā)直井。完鉆井深710 m,人工井底702 m,采用套管射孔完井。生產(chǎn)層為山西組3#煤層,厚4.1 m。頂板為含砂泥巖,厚7.2 m;底板為含砂泥巖,厚11.8 m。射孔段648.7~653.2 m,厚4.5 m。煤層解吸壓力2.2 MPa,噸煤含氣量23 m3/t,孔隙度4.3 %。因煤層氣賦存條件良好,吸附和解吸能力較強(qiáng),含氣量較高,具有較好的產(chǎn)氣潛能。
鄭3X井于2012年3月12日采用活性水壓裂。2012年9月5日投產(chǎn)試采,至2015年5月17日累計(jì)排采984 d。排采403 d時(shí)見(jiàn)氣,最高日產(chǎn)氣量為313 m3/d,最高日產(chǎn)水量為17.3 m3/d。排采685 d后不產(chǎn)氣,平均日產(chǎn)水量8.08 m3/d。該井累計(jì)產(chǎn)氣量40 574 m3,累計(jì)產(chǎn)水量7 745 m3,是一口高產(chǎn)水、低產(chǎn)氣井。
煤巖作為低孔、低滲儲(chǔ)層,自身的儲(chǔ)水空間有限,長(zhǎng)期的高產(chǎn)水多為外來(lái)水侵入所致。因此,煤層氣井若形成高產(chǎn)水必須同時(shí)滿足2個(gè)條件:一是存在供給的外來(lái)水源;二是存在水源流向煤層的流動(dòng)通道。
鄭莊煤層氣田山西組含水層主要為底部砂巖層和上部碎屑砂巖層。2007年,傅雪海等人發(fā)現(xiàn)上部碎屑砂巖層與3#煤層具有一定水力聯(lián)系[1]。因此,認(rèn)為上部碎屑砂巖層為3#煤層提供外來(lái)水源。
鄭3X井的3#煤體積密度為1.26 g/cm3,深側(cè)向電阻率1531.1 Ω·m,自然伽馬26.1 API,屬于碎裂構(gòu)造煤[2]。煤層壓裂易形成垂直縫,破壞煤層的隔水結(jié)構(gòu)[3-4]。煤層與水層連通后,難以有效降壓,導(dǎo)致氣井高產(chǎn)水、低產(chǎn)氣[5]。鄭3X井首次壓裂共消耗活性水壓裂液711.92 m3,壓裂形成的垂直縫與含水砂巖層溝通的可能性較大,導(dǎo)致3#煤層排水降壓困難,造成氣井高產(chǎn)水、低產(chǎn)氣。
目前,針對(duì)高產(chǎn)水油氣井的增產(chǎn)措施主要有:一是通過(guò)調(diào)剖、堵水措施,實(shí)現(xiàn)穩(wěn)油控水;二是通過(guò)壓裂技術(shù),提高低滲層開(kāi)發(fā)效果[6]。鄭3X井水力裂縫與含水砂巖層溝通,需封堵水層控水;煤層低孔低滲,需壓裂改造儲(chǔ)層,提高產(chǎn)氣量[7]。因此,鄭3X井采用堵水和壓裂聯(lián)合作業(yè),提高開(kāi)發(fā)效果。
Technical difficulties and countermeasures of water plugging and fracturing
1999年,郭大立等人提出了堵壓綜合采油技術(shù),應(yīng)用于新疆油田和長(zhǎng)慶油田[8]。2010年,曹繼虎等人提出堵老縫、壓新縫的堵水轉(zhuǎn)向壓裂技術(shù),應(yīng)用于長(zhǎng)6油藏[9]。2012年,部向軍等人提出改變相滲特性的壓裂液控水技術(shù),但未進(jìn)行現(xiàn)場(chǎng)應(yīng)用[10]。2013年,達(dá)引朋等人提出選擇性堵水壓裂和堵老縫定向射孔壓新縫技術(shù),應(yīng)用于長(zhǎng)慶油田水淹油井[11]。2014年,尹輝等人提出“物理橋堵+化學(xué)溶解”的控水方法,應(yīng)用于準(zhǔn)東油田H1238井[12]。2016年,王玉功等人提出堵水轉(zhuǎn)向壓裂技術(shù),在西峰油田長(zhǎng)8儲(chǔ)層實(shí)現(xiàn)了降水增油[13]。
綜上所述,目前的堵水壓裂技術(shù)主要應(yīng)用在高產(chǎn)水的油井中。不論采用哪種堵水方式,其堵水的本質(zhì)是降低水相的滲透率或封堵所有出水通道。然而,煤層氣形成產(chǎn)量需儲(chǔ)層排水降壓,促使氣體解吸。因此,煤層堵水只需封堵外來(lái)水源和溝通水源的流動(dòng)通道即可,這也正是煤層氣堵水與常規(guī)油氣井堵水的不同之處。
目前,針對(duì)高產(chǎn)水的煤層氣井,主要的解決措施是加大排采強(qiáng)度。但是,由于地層水補(bǔ)給能力強(qiáng),并不能在較大的范圍內(nèi)形成解吸壓力區(qū)域,達(dá)不到增產(chǎn)效果[14]。2013年,黃少華等人提出通過(guò)無(wú)機(jī)堵水或注入CO2等方式排采,但并未現(xiàn)場(chǎng)應(yīng)用[15]。2015年,張沖對(duì)多層合采時(shí)高產(chǎn)水煤層實(shí)施堵水,成功解放了出水量小的層位[16]。然而,對(duì)于人工裂縫溝通水層的高產(chǎn)水井,尤其是堵水和重復(fù)壓裂一體化作業(yè),尚未見(jiàn)到相關(guān)報(bào)道。
鄭3X井是第一口實(shí)施堵水壓裂的煤層氣井。要想成功的實(shí)現(xiàn)堵水壓裂,其關(guān)鍵在于找到一種性能合適的暫堵劑。這種暫堵劑的性能需要滿足以下3個(gè)條件:一是暫堵劑具有良好的堵水性能,暫堵劑能夠進(jìn)入水層和原縫,增加水的流動(dòng)阻力;二是暫堵劑封堵強(qiáng)度高,為轉(zhuǎn)向壓開(kāi)新縫,原則上封堵強(qiáng)度應(yīng)大于天然裂縫的延伸壓力,甚至高于煤巖的破裂壓力;三是暫堵劑對(duì)煤層具有低傷害性,由于壓裂后需要恢復(fù)產(chǎn)氣,暫堵劑不能損害煤層的滲透率。既能堵水,又有強(qiáng)度,且易于返排,目前看來(lái)絨囊是比較適合的暫堵劑。
絨囊是模糊封堵理論指導(dǎo)下開(kāi)發(fā)的一種油氣井用無(wú)固相封堵材料,以分壓、耗壓或撐壓的封堵模式封堵流動(dòng)通道,以堆積、拉抻、堵塞等封堵形式提高地層的承壓能力,曾成功解決了吉X井、沁12-11-3H等煤層氣井的井壁失穩(wěn)問(wèn)題,且不傷害煤層的滲透率[17-22]。同時(shí),絨囊流體已經(jīng)在冀東油田、SZ36-1等油田修井作業(yè)中成功應(yīng)用,產(chǎn)液恢復(fù)后表現(xiàn)出穩(wěn)油控水的現(xiàn)象,表明絨囊流體具有一定的堵水能力[23-26]。
目前,絨囊流體作為暫堵劑,已經(jīng)應(yīng)用在砂巖層轉(zhuǎn)向酸化、LH-1油井和鄭X煤層氣井轉(zhuǎn)向壓裂、高礦化度地層堵水[27-31]。因此,利用絨囊流體作為暫堵劑堵水壓裂鄭3X井,從理論上講是可行的。
Laboratory experiment
室內(nèi)采用常規(guī)攪拌器,煤層氣井堵水壓裂用絨囊4種主處理劑配制絨囊暫堵流體。室內(nèi)配方為:1.5%~2.0%囊層劑(主要成分為羥乙基淀粉)+1.0%~1.5%絨毛劑(主要成分為聚陰離子纖維素)+0.2%~0.4%囊核劑(主要成分為十二烷基磺酸鈉)+0.4%~0.6%囊膜劑(主要成分為十二烷基苯磺酸鈉)。利用滲透率儀評(píng)價(jià)絨囊暫堵流體的封堵能力、堵水性能和煤基質(zhì)滲透率的傷害程度。
2.1 絨囊暫堵流體封堵強(qiáng)度評(píng)價(jià)
Evaluation on plugging strength of fuzzy-ball fluid
考慮到鄭3X井的儲(chǔ)層環(huán)境,室內(nèi)實(shí)驗(yàn)條件為溫度25 ℃,起始圍壓20 MPa,回壓0.5 MPa。先用活性水溶液驅(qū)替直徑38 mm的帶有中間剖縫的煤巖柱塞;再用絨囊暫堵流體封堵中間剖縫;最后用活性水溶液測(cè)試剖縫的封堵強(qiáng)度?;钚运芤鹤⑷雺毫?、絨囊暫堵流體注入壓力、剖縫暫堵后活性水溶液注入壓力與注入時(shí)間關(guān)系如圖 1 所示。從圖1看出,絨囊暫堵流體注入50 min后起壓,70 min后壓力上升到18 MPa,說(shuō)明絨囊暫堵成功封堵剖縫;剖縫封堵后注入活性水溶液50 min,壓力上升至21 MPa,表明剖縫封堵強(qiáng)度高。因此,絨囊暫堵流體封堵強(qiáng)度在20 MPa以上,高于鄭莊煤巖的破裂壓力18 MPa,可以實(shí)現(xiàn)壓裂轉(zhuǎn)向。
圖1 絨囊暫堵流體的封堵強(qiáng)度評(píng)價(jià)Fig.1 Evaluation on plugging strength of fuzzy-ball fluid
2.2 絨囊暫堵流體堵水性能評(píng)價(jià)
Evaluation on water plugging performance of fuzzy-ball fluid
在溫度20 ℃、圍壓20 MPa、回壓0.5 MPa條件下,采用恒流速法評(píng)價(jià)絨囊暫堵流體的堵水性能。先用地層水 0.1 mL/min 流速下正向通入直徑25 mm的人造砂巖柱塞2 h,測(cè)定滲透率和注入壓力;再用絨囊暫堵流體0.1 mL/min流速下反向通入柱塞2 h;最后用地層水0.1 mL/min流速下測(cè)定滲透率和注入壓力。絨囊暫堵前后滲透率損害率如圖 2所示,注入壓力變化率如圖 3所示。從圖2和圖3可以看出,絨囊暫堵流體封堵砂巖柱塞后,砂巖柱塞水相滲透率降低49.04%~55.94%,降低平均值為51.67%;地層水注入壓力提高189.23%~232.84%,提高平均值為211.90%。說(shuō)明絨囊暫堵流體具有增加水流動(dòng)阻力的特點(diǎn),可以實(shí)現(xiàn)堵水。
圖2 絨囊暫堵流體注入前后砂巖水相滲透率Fig.2 Water permeability of sandstone before and after the injection of fuzzy-ball fluid
圖3 絨囊暫堵流體注入前后地層水注入壓力Fig.3 Injection pressure of formation water before and after the injection of fuzzy-ball fluid
2.3 絨囊暫堵流體煤基質(zhì)傷害程度評(píng)價(jià)
Evaluation on coal matrix damage degree of fuzzy-ball fluid
采用驅(qū)替實(shí)驗(yàn)評(píng)價(jià)絨囊暫堵流體儲(chǔ)層傷害程度。選取直徑38 mm的煤巖柱塞,先以氮?dú)鉃轵?qū)替介質(zhì),測(cè)量滲透率;再用絨囊暫堵流體為污染驅(qū)替介質(zhì),反向驅(qū)替2 h;最后再用氮?dú)鉃轵?qū)替介質(zhì),測(cè)量污染后的滲透率,結(jié)果見(jiàn)表1。
表1 絨囊暫堵流體煤基質(zhì)傷害程度評(píng)價(jià)Table 1 Evaluation on coal matrix damage degree of fuzzy-ball fluid
從表1可以看出,絨囊暫堵流體污染煤巖柱塞滲透率恢復(fù)值為84.62%~88.23%,平均恢復(fù)值為86.78 %,表明絨囊暫堵流體對(duì)煤層具有低傷害性。綜上所述,絨囊暫堵流體滿足堵水壓裂的性能要求,可以開(kāi)展堵水壓裂試驗(yàn)。
Water Plugging and Refracture Site Construction
絨囊暫堵流體現(xiàn)場(chǎng)施工的重點(diǎn)有2個(gè)方面:一是配制出符合設(shè)計(jì)性能的絨囊暫堵流體;二是根據(jù)泵注過(guò)程中施工壓力變化情況,決定壓裂程序。
3.1 絨囊暫堵流體的配制過(guò)程
Preparation process of fuzzy-ball fluid
現(xiàn)場(chǎng)利用混砂車和水罐建立循環(huán),采用剪切漏斗加料。依據(jù)室內(nèi)配方,在2個(gè)50 m3的配漿罐中,依次加入40 m3清水、0.75 t囊層劑、0.50 t絨毛劑、0.10 t囊核劑和0.20 t囊膜劑。配制的絨囊暫堵流體密度0.85~0.95 g/cm3,表觀黏度40~60 mPa·s,塑性黏度20~40 mPa·s,動(dòng)切力20~30 Pa,pH值8~10。
3.2 絨囊暫堵流體的泵注過(guò)程
Injection process of fuzzy-ball fluid
依據(jù)鄭莊煤層氣田壓裂施工現(xiàn)狀,采取先封堵后壓裂的施工方式。泵注過(guò)程分為暫堵階段和壓裂階段。暫堵階段向地層泵入絨囊暫堵流體,封堵含水層和原縫;壓裂階段泵入活性水壓裂液,轉(zhuǎn)向壓開(kāi)新縫??紤]到煤層低孔低滲,采用低砂比、低排量的壓裂模式,控制排量在8 m3/min以下,平均砂比低于10 %。絨囊暫堵流體和活性水壓裂液的用量、排量數(shù)據(jù)見(jiàn)表 2。
3.2.1 暫堵階段 先排量2.0~3.0 m3/min注入活性水頂替液12 m3。由于原縫滲透率較高,頂替液首先進(jìn)入原縫,使原縫張開(kāi);再排量2.0~3.0 m3/min注入絨囊暫堵流體25 m3,用于封堵含水砂巖層;再排量3.0~3.5 m3/min注入絨囊暫堵流體52 m3,用于暫堵原縫;最后排量4.0 m3/min注入頂替液13 m3,使絨囊暫堵流體擠入含水砂巖層和原縫端部,提高封堵強(qiáng)度。絨囊暫堵流體注入完成后,為判斷對(duì)原縫的暫堵情況,停泵10~30 min觀察壓降情況。絨囊暫堵流體與活性水壓裂液配伍,無(wú)需泵入隔離液,直接進(jìn)行壓裂。
3.2.2 壓裂階段 采用活性水壓裂液壓裂,支撐劑為20~40目和40~70目的石英砂,平均砂比9 %。
表2 鄭3X井重復(fù)壓裂施工排量和用液量Table 2 Flow rate and liquid consumption of refracturing in Well Zheng 3X
Analysis on water plugging and fracturing effects
由于鄭3X井重復(fù)壓裂過(guò)程未采用微地震監(jiān)測(cè)裂縫形態(tài),只能通過(guò)施工曲線分析地下裂縫起裂和延伸情況。鄭3X井重復(fù)壓裂后排采近1年,這里主要基于排采數(shù)據(jù)分析降水和增產(chǎn)效果。
4.1 重復(fù)壓裂效果分析
Analysis on refracturing effect
為分析絨囊暫堵效果和壓裂過(guò)程中裂縫起裂情況,對(duì)比首次壓裂和重復(fù)壓裂過(guò)程中施工壓力的變化曲線,如圖 4 所示。重復(fù)壓裂過(guò)程中暫堵和壓裂階段的施工壓力變化曲線如圖5所示。
圖4 鄭3X井壓裂首次壓裂和重復(fù)壓裂曲線Fig.4 Initial fracturing curve and refracturing curve of Well Zheng 3X
4.1.1 壓裂曲線類型分析 從圖4可以看出,鄭3X井首次壓裂和重復(fù)壓裂的施工壓力隨時(shí)間的增加逐漸上升,為上升型壓裂曲線[32]。這是因?yàn)樗α芽p在延伸過(guò)程中被支撐劑或煤粉堵塞。鄭3X井首次壓裂和重復(fù)壓裂施工中出現(xiàn)多次砂堵,說(shuō)明水力裂縫延伸過(guò)程中被煤粉或支撐劑堵塞,水力裂縫在橫向上延伸受阻,難以形成長(zhǎng)縫。
圖5 鄭3X井重復(fù)壓裂暫堵和壓裂階段Fig.5 Temporary plugging and fracturing stages of refracturing in Well Zheng 3X
4.1.2 絨囊暫堵效果分析 從圖5可以看出,絨囊暫堵流體注入10 min,施工壓力迅速上升至19 MPa,后逐漸下降到16 MPa,說(shuō)明絨囊暫堵流體進(jìn)入原縫。再泵入13 m3活性水頂替液,停泵。施工壓力從15 MPa突降至13 MPa,這是由于工作液從動(dòng)態(tài)循環(huán)變成靜態(tài)所致。12 min內(nèi)施工壓力由13 MPa降至7 MPa,平均每分鐘降低0.5 MPa。對(duì)比圖4首次壓裂曲線,停泵10 min施工壓力由22 MPa降至7 MPa,平均每分鐘降低1.5 MPa,下降速度是裂縫封堵后的3倍。因此,認(rèn)為絨囊暫堵流體已經(jīng)成功封堵原縫和含水砂巖層,可以進(jìn)入壓裂階段。
4.1.3 壓裂裂縫形態(tài)分析 由于煤層割理、天然裂縫發(fā)育,水力裂縫容易沿割理和天然裂縫發(fā)育的方向轉(zhuǎn)向延伸[33-34]。從圖5可以看出,重復(fù)壓裂在58 min、77 min和134 min出現(xiàn)施工壓力下降的現(xiàn)象,是明顯的破裂顯示[35]。同時(shí),鄭3X井儲(chǔ)層為碎裂狀構(gòu)造煤,非均質(zhì)性強(qiáng),認(rèn)為重復(fù)壓裂在天然裂縫發(fā)育的方向形成了多條徑向裂縫。
當(dāng)施工壓力曲線斜率在0.125~0.200之間時(shí),形成水平縫;當(dāng)曲線斜率大于0.2時(shí),形成垂直縫[36]。從圖5可以看出,重復(fù)壓裂90~120 min時(shí),壓力由16 MPa上升到27 MPa,曲線斜率為0.36,形成垂直縫。重復(fù)壓裂在133 min時(shí),壓力曲線斜率大于1,砂堵。表明煤粉或支撐劑堵塞水力裂縫端部,水力裂縫橫向延伸受阻,為了控制縫高,停泵。
綜上所述,絨囊暫堵流體成功封堵了含水砂巖層和原縫,同時(shí)在壓裂階段沿天然裂縫的發(fā)育方向壓開(kāi)了多條裂縫,堵水壓裂施工成功。
4.2 堵水增產(chǎn)效果分析
Analysis on water plugging and stimulation effect
將重復(fù)壓裂前后的生產(chǎn)階段劃分為排水期和產(chǎn)氣期。通過(guò)對(duì)比重復(fù)壓裂前后的產(chǎn)氣量和產(chǎn)水量,分析堵水和增產(chǎn)效果。鄭3X井日產(chǎn)水和日產(chǎn)氣數(shù)據(jù)如圖 6 所示。
圖6 鄭3X井重復(fù)壓裂前后生產(chǎn)曲線Fig.6 Production curve before and after refracturing in Well Zheng 3X
4.2.1 堵水效果分析 根據(jù)圖6統(tǒng)計(jì)重復(fù)壓裂前后排水期、產(chǎn)氣期的平均日產(chǎn)水量和最高日產(chǎn)水量數(shù)據(jù),如圖 7 所示, 可以看出,重復(fù)壓裂后排水期的最高日產(chǎn)水量降幅80%,平均日產(chǎn)水量降幅78%。產(chǎn)氣期的最高日產(chǎn)水量降幅67%,平均日產(chǎn)水是降幅69%,說(shuō)明絨囊暫堵流體堵水成功。
圖7 鄭3X井重復(fù)壓裂前后產(chǎn)水量對(duì)比Fig.7 Comparison of water production before and after repeated fracturing in Well Zheng 3X
4.2.2 增產(chǎn)效果分析 根據(jù)圖6統(tǒng)計(jì)重復(fù)壓裂前后的平均日產(chǎn)氣量和最高日產(chǎn)氣量數(shù)據(jù)。從圖 8 可以看出,重復(fù)壓裂后的最高日產(chǎn)氣量提高58 %,平均日產(chǎn)氣量提高30 %,且產(chǎn)氣量還在上升,轉(zhuǎn)向壓裂增產(chǎn)成功。綜上所述,絨囊暫堵流體成功封堵水層,且重復(fù)壓裂后煤層氣開(kāi)始解吸,取得了較好的控水增產(chǎn)效果。
Conclusions
(1)在水侵煤層氣井實(shí)施堵水和重復(fù)壓裂一體化作業(yè),即利用暫堵材料封堵外來(lái)水源和原縫,并轉(zhuǎn)向壓裂壓開(kāi)新縫,實(shí)現(xiàn)煤層卸壓,促使煤層氣解吸,可以降低煤層氣井產(chǎn)水量,提高產(chǎn)氣量。
(2)絨囊流體封堵強(qiáng)度高,具有良好的堵水性能,且不傷害煤層的滲透率,滿足煤層氣井堵水壓裂的技術(shù)要求。鄭3X井堵水壓裂試驗(yàn)成功,表明利用絨囊流體進(jìn)行煤層氣井堵水壓裂是可行的。
(3)絨囊流體用量、排量等施工參數(shù)還有進(jìn)一步優(yōu)化的空間,同時(shí),絨囊流體的堵水機(jī)理、重復(fù)壓裂新縫轉(zhuǎn)向角度與絨囊流體的性能、施工參數(shù)等之間的定量關(guān)系也有待進(jìn)一步的研究。
圖8 鄭3X井重復(fù)壓裂前后產(chǎn)氣量對(duì)比Fig.8 Comparison of gas production before and after repeated fracturing in Well Zheng 3X
References:
[1]傅雪海,秦勇,韋重韜,申建,周寶艷.沁水盆地水文地質(zhì)條件對(duì)煤層含氣量的控制作用[C]//雷群,李景明,趙慶波.煤層氣勘探開(kāi)發(fā)理論與實(shí)踐.北京:石油工業(yè)出版社,2007,61-69.FU Xuehai,QIN Yong,WEI Chongtao,SHEN Jian,ZHOU Baoyan.Hydrogeological conditions of Qinshui Basin on the control of methane content in coal seam[C]// LEI Qun,LI Jingming,ZHAO Qingbo.Coalbed methane exploration and development theory and practice.Beijing: Petroleum Industry Press,2007,61-69.
[2]馬火林,汪劍,王文娟,譚青松,張祎然,羅正龍.構(gòu)造煤煤層氣及裂隙的測(cè)井響應(yīng)和敏感參數(shù)分析:以沁水盆地鄭莊地區(qū)為例[J].現(xiàn)代地質(zhì),2015,29(1):171-178.MA Huolin,WANG Jian,WANG Wenjuan,TAN Qingsong,ZHANG Weiran,LUO Zhenglong.Sensitive parameter analysis and logging response characteristics on coalbed methane and fracture of deformed coal: a case study in the Zhengzhuang block of Qinshui Basin[J].Geoscience,2015,29(1): 171-178.
[3]孟召平,侯泉林.煤儲(chǔ)層應(yīng)力敏感性及影響因素的試驗(yàn)分析[J].煤炭學(xué)報(bào),2012,37(3):430-437.MENG Zhaoping,HOU Quanlin.Experimental research on stress sensitivity of coal reservoir and its influencing factors[J].Journal of China Coal Society,2012,37(3):430-437.
[4]郝寧,康靜文,張凌云.沁水盆地鄭莊區(qū)塊煤層氣開(kāi)發(fā)對(duì)地下水環(huán)境的影響分析[J].太原理工大學(xué)學(xué)報(bào),2013,44(4):427-430,451 HAO Ning,KANG Jingwen,ZHANG Lingyun.Analysis of impact of CBM mining in Zhengzhuang block in Qinshui Basin on the groundwater environment[J].Journal of Taiyuan University of Technology,2013,44(4):427-430,451.
[5]KAISER W R,HAMILTON D S,SCOTT A R,TYLER R J,FINLEY R J .Geological and hydrological controls on the productivity of coalbed methane[J].Journal of the Geological Society,1994,151(3): 417-420.
[6]吉德利.水力壓裂技術(shù)新發(fā)展[M].北京:石油工業(yè)出版社,1995.JI Deli.New development of hydraulic fracturing technology[M].Beijing: Petroleum Industry Press,1995.
[7]張斌.沁水盆地鄭莊區(qū)塊煤層氣富集規(guī)律研究[D].北京:中國(guó)地質(zhì)大學(xué)(北京),2014.ZHANG Bin.The CBM enrichment regularity of Zhengzhuang block in Qinshui Basin[D].Beijing:China University of Geosciences( Beijing ),2014.
[8]郭大立,趙金洲,吳剛,彭慧群.堵壓綜合采油技術(shù)研究與應(yīng)用[J].石油鉆采工藝,1999,11(6):73-76.GUO Dali,ZHAO Jinzhou,WU Gang,PENG Huiqun.Research and application of complex plugging and fracturing production technique[J].Oil Drilling &Production Technology,1999,11(6): 73-76.
[9]曹繼虎,杜向前,李冰巖,金學(xué)國(guó),陳英利,杜寧波,雍碩.低滲透油田堵水轉(zhuǎn)向壓裂新技術(shù)研究與應(yīng)用[J].石油化工應(yīng)用,2010,29(1):49-53.CAO Jihu,DU Xiangqian,LI Bingyan,JIN Xueguo,CHEN Yingli,DU Ningbo,YONG Suo.Study and application of new technology of deflection fracturing by water shut-off in low-permeability oilfield[J].Petrochemical Industry Application,2010,29(1): 49-53.
[10]部向軍,張傳華.一種可改變相滲特性的壓裂液在低滲透油田控水挖潛的可行性探討[J].內(nèi)蒙古石油化工,2012(22):41-42.BU Xiangjun,ZHANG Chuanhua.Phase permeability improver in fracturing well application[J].Inner Mongolia Petrochemical Industry,2012(22): 41-42.
[11]達(dá)引朋,卜向前,姚曉翔,張礦生,李志文.低滲透儲(chǔ)層水淹油井堵水壓裂技術(shù)研究與試驗(yàn)[J].石油鉆探技術(shù),2013,41(1):82-86.DA Yinpeng,BU Xiangqian,YAO Xiaoxiang,ZHANGKuangsheng,LI Zhiwen.Experimental study on plugging fracturing technology for water-flooded well in low permeability reservoir[J].Petroleum Drilling Techniques,2013,41(1),82-86.
[12]尹輝,劉進(jìn)軍,郭嬌嬌,葉俊華,唐曉川,江洪.控水轉(zhuǎn)向壓裂技術(shù)在高含水裂縫性油藏開(kāi)發(fā)中的應(yīng)用——以火燒山油田H1238井為例[J].新疆石油地質(zhì),2014,35(3):352-355.YIN Hui,LIU Jinjuna,GUO Jiaojiao,YE Junhua,TANG Xiaochuan,JIANG Hong.Application of water control and steering hydraulic fracturing technology in high water cut fractured reservoir—a case study of H1238 well in Huoshaoshan Oilfield,eastern Junggar Basin[J].Xinjiang Petroleum Geology,2014,35(3): 352-355.
[13]王玉功,李勇,唐冬珠.西峰油田裂縫性油藏堵水壓裂技術(shù)研究與應(yīng)用[J].鉆采工藝,2016,39(2):58-60.WANG Yugong,LI Yong,TANG Dongzhu.Research and application of water shutoff fracturing technology in Xifeng fractured reservoir[J].Drilling & Production Technology,2016,39(2): 58-60.
[14]郝麗,段寶玉.煤層中水對(duì)煤層氣產(chǎn)量的影響[J].中國(guó)煤層氣,2012,9(4):32-34.HAO Li,DUAN Baoyu.The impact of water in coal seam on CBM yield[J].China Coalbed Methane,2012,9(4): 32-34.
[15]黃少華,孫同英,冀昆,鄒婧.柿莊南區(qū)塊煤層氣井早期生產(chǎn)特征及開(kāi)采建議[J].中國(guó)煤炭地質(zhì),2013,25(7):13-17.HUANG Shaohua,SUN Tongying,JI Kun,ZOU Jing.Cbm early stage production characteristics in Shizhuang southern block and exploitation proposals[J].Coal Geology of China,2013,25(7): 13-17.
[16]張沖.阜新劉家區(qū)煤層氣井調(diào)剖堵水研究與實(shí)踐[J].中國(guó)煤層氣,2015,12(4):20-22.ZHANG Chong.Study on profile control and water shutoff for CBM well in Liujia district of Fuxin[J].China Coalbed Methane,2015,12(4): 20-22.
[17]鄭力會(huì),孔令琛,曹園,王慧云,韓子軒,何曉慶.絨囊工作液防漏堵漏機(jī)理[J].科學(xué)通報(bào),2010,55(15):1520-1528.ZHENG Lihui,KONG Lingchen,CAO Yuan,WANG Huiyun,HAN Zixuan,HE Xiaoqing.The mechanism for fuzzy-ball working fluids for controlling & killing lost circulation.[J].Chinese Science Bulletin,2010,55(15):1520-1528.
[18]鄭力會(huì),陳必武,張崢,湯繼丹,孫昊.煤層氣絨囊鉆井流體的防塌機(jī)理[J].天然氣工業(yè),2016,36 (2):72-77.ZHENG Lihui,CHEN Biwu,ZHANG Zheng,TANG Jidan,SUN Hao.Anti-collapse mechanism of the CBM fuzzy-ball drilling fluid [J].Natural Gas Industry,2016,36(2): 72-77.
[19]王德桂,何玉云,卜淵,畢延森,張毅,羅紅兵.吉X井煤層氣絨囊鉆井液實(shí)踐[J].石油鉆采工藝,2011,33(5):93-95.WANG Degui,HE Yuyun,BU Yuan,BI Yanshen,ZHANG Yi,LUO Hongbing.Practice of fuzzy-ball drilling fluid technology in well Ji X coal bed methane[J].Oil Drilling and Production Technology,2011,33(5): 93-95.
[20]王洪關(guān),崔金榜,朱慶忠,陳必武.沁平12-11-3H煤層氣六分支水平井絨囊鉆井液技術(shù)[J].石油鉆采工藝,2014,36(3):39-41.WANG Hongguan,CUI Jinbang,ZHU Qingzhong,CHEN Biwu.fuzzy-ball drilling fluid technology in CBM of multilateral horizontal well Qinping 12-11-3H with six branch holes[J].Oil Drilling and Production Technology,2014,36(3): 39-41.
[21]鄭力會(huì).仿生絨囊鉆井液煤層氣鉆井應(yīng)用現(xiàn)狀與發(fā)展前景[J].石油鉆采工藝,2011,33(3):78-81,90.ZHENG Lihui.Application state and prospects of bionic fuzzy-ball drilling fluids for coalbed methane drilling[J].Oil Drilling and Production Technology,2011,33(3): 78-81,90.
[22]魏攀峰,鄭力會(huì),李博文,張萬(wàn)杰.絨囊鉆井流體在深水油氣井中應(yīng)用的可行性[J].石油鉆采工藝,2015,37(1):80-82.WEI Panfeng,ZHENG Lihui,LI Bowen,ZHANG Wanjie.Rheological properties of fuzzy-ball drilling fluids can be met in deepwater drilling[J].Oil Drilling and Production Technology,2015,37(1): 80-82.
[23]崔金榜,陳必武,顏生鵬,袁光杰,夏焱,王秀梅.沁水盆地在用煤層氣鉆井液傷害沁水3#煤巖室內(nèi)評(píng)價(jià)[J].石油鉆采工藝,2013,35(4):47-50.CUI Jinbang,CHEN Biwu,YAN Shengpeng,YUAN Guangjie,XIA Yan,WANG Xiumei.Lab evaluation on formation damage of No.3 coalbed methane reservoir by drilling fluids in Qinshui Basin [J].Oil Drilling and Production Technology,2013,35(4): 47-50.
[24]李良川,盧淑琴,彭通,張明偉,米凡.冀東油田絨囊修井液控制儲(chǔ)層傷害應(yīng)用研究[J].石油鉆采工藝,2011,33(3):31-34.LI Liangchuan,LU Shuqing,PENG Tong,ZHANG Mingwei,MI Fan.fuzzy-ball workover fluids for formation damage control in Jidong Oilfield[J].Oil Drilling and Production Technology,2011,33(3): 31-34.
[25]張媛.產(chǎn)油趨勢(shì)法評(píng)價(jià)絨囊修井液在海上SZ36-1油田修井效果[J].石油鉆采工藝,2014,36(4):61-63.ZHANG Yuan.Evaluating the effect of fuzzy-ball workover fluid for offshore Oilfield SZ36-1 with oil production tendency method[J].Oil Drilling andProduction Technology,2014,36(4): 61-63.
[26]王珊,曹硯鋒,姜文卷,周定照,靳勇,劉堯.渤海某油田絨囊暫堵流體修井工藝[J].石油鉆采工藝,2015,37(3):114-117.WANG Shan,CAO Yanfeng,JIANG Wenjuan,ZHOU Dingzhao,JIN Yong,LIU Yao.Workover technology using fuzzy-ball temporary plugging fluid in Bohai Oilfield[J].Oil Drilling and Production Technology,2015,37(3): 114-117.
[27]溫哲豪,薛亞斐,白建文,何平,張家富.GX-3井絨囊流體暫堵重復(fù)酸化技術(shù)[J].石油鉆采工藝,2015,37(5):85-88.WEN Zhehao,XUE Yafei,BAI Jianwen,HE Ping,ZHANG Jiafu.Technology of re-acidizing Well GX-3 by temporary plugging with fuzzy-ball fluid [J].Oil Drilling and Production Technology,2015,37(5): 85-88.
[28]鄭力會(huì),翁定為.絨囊暫堵液原縫無(wú)損重復(fù)壓裂技術(shù)[J].鉆井液與完井液,2015,32(3):76-78.ZHENG Lihui,WENG Dingwei.Study on repeating fracturing while causing no damage to original fractures[J].Drilling Fluid & Completion Fluid,2015,32(3):76-78.
[29]鄭力會(huì),崔金榜,聶帥帥,李宗源,付毓偉,劉斌.鄭X井重復(fù)壓裂非產(chǎn)水煤層絨囊流體暫堵轉(zhuǎn)向試驗(yàn)[J].鉆井液與完井液,2016,33(5):103-108.ZHENG Lihui,CUI Jinbang,NIE Shuaishuai,LI Zongyuan,FU Yuwei,LIU Bin.Temporary plugging diverting test with fuzzy ball fluids in non-water producing coal beds in re-fracturing Well Zheng X[J].Drilling Fluid & Completion Fluid,2016,33(5): 103-108.
[30]朱立國(guó),黃波,陳維余,孫亮,廖迪,姜夢(mèng)奇,馮麗娟.適于高礦化度地層水地層的穩(wěn)油控水絨囊流體[J].石油鉆采工藝,2016,38(2):216-220.ZHU Liguo,HUANG Bo,CHEN Weiyu,SUN Liang,LIAO Di,JIANG Mengqi,FENG Lijuan.fuzzy-ball fluid for stabilizing oil production and water control in formations with high-salinity water[J].Oil Drilling and Production Technology,2016,38(2): 216-220.
[31]王金鳳,鄭力會(huì),張耀剛,鄧金根,張儒林.天然氣井的絨囊流體活塞修井技術(shù) [J].天然氣工業(yè),2015,35(12):53-57.WANG Jinfeng,ZHENG Lihui,ZHANG Yaogang,DENG Jingen,ZHANG Rulin.Fuaay-ball fluid piston workover technology for natural gas well[J].Natural Gas Industry,2015,35(12): 53-57.
[32]蔡路,姚艷斌,張永平,魏寧,楊艷磊,劉志華.沁水盆地鄭莊區(qū)塊煤儲(chǔ)層水力壓裂曲線類型及其地質(zhì)影響因素[J].石油學(xué)報(bào),2015,36(增刊1):83-90.CAI Lu,YAO Yanbin,ZHANG Yongping,WEI Ning,YANG Yanlei,LIU Zhihua.Hydraulic fracturing curve types of coal reservoirs in Zhengzhuang block,Qinshui Basin and their geological influence factors[J].Acta Petrolei Sinica,2015,36(S1): 83-90.
[33]陳勉,周健,金衍,張廣清.隨機(jī)裂縫性儲(chǔ)層壓裂特征實(shí)驗(yàn)研究[J].石油學(xué)報(bào),2008,29(3):431-434.CHEN Mian,ZHOU Jian,JIN Yan,ZHANG Guangqing.Experimental study on fracturing features in naturally fractured reservoir [J].Acta Petrolei Sinica,2008,29(3): 431-434.
[34]周健,陳勉,金衍,張廣清.多裂縫儲(chǔ)層水力裂縫擴(kuò)展機(jī)理試驗(yàn)[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,32(4):52-54,59.ZHOU Jian,CHEN Mian,JIN Yan,ZHANG Guangqing.Experiment of propagation mechanism of hydraulic fracture in multifracture reservoir[J].Journal of China University of Petroleum (Edition of Natural Science),2008,32(4): 52-54,59.
[35]王鴻勛.美國(guó)水力壓裂技術(shù)發(fā)展近況[J].石油鉆采工藝,1987,9(4):63-75.WANG Hongxun.Recent development of hydraulic fracturing technology in the United States[J].Oil Drilling and Production Technology,1987,9(4): 63-75.
[36]李亭,楊琦.煤層氣井壓裂施工曲線特征分析及應(yīng)用[J].中國(guó)煤炭地質(zhì),2012,24(9):20-24.LI Ting,YANG Qi.CBM well fracturing operation curve characteristic analysis and application[J].Coal Geology of China,2012,24(9): 20-24.
(修改稿收到日期 2017-03-12)
〔編輯 李春燕〕
An experiment on refracturing with fuzzy-ball fluid for water control and stimulation of CBM Well Zheng 3X
NIE Shuaishuai1,ZHENG Lihui1,2,CHEN Biwu3,HOU Tao3,PENG Rui1,FU Yuwei1
1.College of Petroleum Engineering,China University of Petroleum(Beijing),Beijing102249,China;
2.Key Laboratory of Study and Application on Comprehensive Utilization of Chemical Plugging Material,Hebei Chemical Society,Beijing102299,China;
3.CBM Exploration and Development Division,PetroChina Huabei Oilfield Company,Changzhi046000,Shanxi,China
In CBM Well Zheng 3X,hydraulic fractures connect water bearing sandstone formations,leading to high water production and low gas production.In this paper,fuzzy-ball fluid was used to plug water bearing sandstone formations and primary fractures,and then refracturing was carried out to create new fractures so as to decrease the water production rate of gas well while increasing its gas production rate.It was tested in laboratory.It is shown that after the application of fuzzy-ball fluid,pressure resistance of fractures in coal rocks is 21 MPa,water permeability of sandstones decreases by 52.67% and matrix permeability recovery rate of damaged coal rocks is 87%.It is demonstrated that fuzzy-ball fluid can satisfy the performance requirements for diverting fracturing and water plugging.80 m3fuzzy-ball fluid was prepared on site,and its density and apparent viscosity were 0.85-0.95 g/cm3and 40-60 mPa·s,respectively.After water bearing formations and primary fractures are plugged successfully by fuzzy-ball fluid,fracturing is performed by using active water.It is shown from production results that the water production rate after the refracturing drops by 79% in water drain-age period and 68% in gas production period,and gas production rate increases by 44%.Clearly,fuzzy-ball fluid is successfully applied in the experiment on the water control and stimulation of Well Zheng 3X.To sum up,fuzzy-ball fluid presents good plugging and water control properties,and it can be used for integrated water plugging and fracturing operation in watered CBM wells.
coalbed methane; hydraulic fracturing; refracturing; water plugging; reservoir damage; fuzzy-ball fluid
聶帥帥,鄭力會(huì),陳必武,侯濤,彭睿,付毓偉.鄭3X煤層氣井絨囊流體重復(fù)壓裂控水增產(chǎn)試驗(yàn)[J].石油鉆采工藝,2017,39(3):362-369.
TE377
:B
1000–7393(2017 )03–0362–08DOI:10.13639/j.odpt.2017.03.020
: NIE Shuaishuai,ZHENG Lihui,CHEN Biwu,HOU Tao,PENG Rui,FU Yuwei.An experiment on refracturing with fuzzy-ball fluid for water control and stimulation of CBM Well Zheng 3X[J].Oil Drilling & Production Technology,2017,39(3):362-369.
國(guó)家科技重大專項(xiàng)“煤層氣鉆完井及增產(chǎn)改造技術(shù)示范工程”(編號(hào):2016ZX05064002)。
聶帥帥(1992-),中國(guó)石油大學(xué)(北京)油氣井工程專業(yè)碩士研究生,主要從事動(dòng)態(tài)儲(chǔ)層傷害防治技術(shù)的研究工作。通訊地址:(102249)北京市昌平區(qū)府學(xué)路18號(hào)中國(guó)石油大學(xué)(北京)。E-mail:lihuilab@lihuilab.com。
鄭力會(huì)(1968-),中國(guó)石油大學(xué)(北京)博士生導(dǎo)師,主要從事儲(chǔ)層傷害類生命周期學(xué)的研究工作。通訊地址:(102249)北京市昌平區(qū)府學(xué)路18號(hào)中國(guó)石油大學(xué)(北京)。電話:010-89732207。E-mail:zhenglihui@cup.edu.cn。