国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

原液著色滌綸交織混色織物的顏色預(yù)測(cè)模型

2017-07-21 05:01:24李啟正朱煒婧金肖克祝成炎
紡織學(xué)報(bào) 2017年7期
關(guān)鍵詞:交織色差紗線

李啟正,朱煒婧,金肖克,祝成炎

(1. 浙江理工大學(xué) 材料與紡織學(xué)院、絲綢學(xué)院,浙江 杭州 310018;2. 浙江理工大學(xué) 雜志社,浙江 杭州 310018;3. 浙江科技學(xué)院 藝術(shù)設(shè)計(jì)學(xué)院,浙江 杭州 310023)

?

原液著色滌綸交織混色織物的顏色預(yù)測(cè)模型

李啟正1,2,朱煒婧1,3,金肖克1,祝成炎1

(1. 浙江理工大學(xué) 材料與紡織學(xué)院、絲綢學(xué)院,浙江 杭州 310018;2. 浙江理工大學(xué) 雜志社,浙江 杭州 310018;3. 浙江科技學(xué)院 藝術(shù)設(shè)計(jì)學(xué)院,浙江 杭州 310023)

為準(zhǔn)確預(yù)測(cè)色紗交織后形成的空間混合顏色,對(duì)以往圓柱形紗線的織物幾何結(jié)構(gòu)模型進(jìn)行了改進(jìn),并提出了織物幾何結(jié)構(gòu)模型中紗線壓扁系數(shù)的計(jì)算方法;在現(xiàn)有有色纖維混合和色紗交織混合顏色預(yù)測(cè)模型的基礎(chǔ)上,構(gòu)建了一個(gè)帶經(jīng)驗(yàn)系數(shù)和中間函數(shù)的新模型用于原液著色滌綸交織混色織物的顏色預(yù)測(cè),并提出采用牛頓迭代確定經(jīng)驗(yàn)系數(shù)的方法。為檢驗(yàn)?zāi)P偷臏?zhǔn)確性和有效性,設(shè)計(jì)并織造了單組緯顯色和雙組緯顯色,4種經(jīng)緯密度組合以及32種組織結(jié)構(gòu)共288塊原液著色滌綸長(zhǎng)絲交織混色織物。研究結(jié)果表明:與以往固定形式的顏色預(yù)測(cè)模型相比,新模型的預(yù)測(cè)精度良好;在不同場(chǎng)合下,新模型可調(diào)整經(jīng)驗(yàn)系數(shù),以適用于不同類(lèi)型色紗交織混合顏色的更準(zhǔn)確預(yù)測(cè)。

機(jī)織物;原液著色滌綸;交織混色;空間混色;顏色預(yù)測(cè);顏色模型;織物幾何結(jié)構(gòu)

將數(shù)種基本色的有色紗線進(jìn)行交織,可獲得豐富的織物空間混合顏色,如能實(shí)現(xiàn)顏色的準(zhǔn)確預(yù)測(cè)和色差的有效控制,交織混色技術(shù)可替代大部分織物的印染工序。原液著色紡絲屬于纖維本體著色,整個(gè)過(guò)程不產(chǎn)生印染廢水,能耗低。采用原液著色纖維生產(chǎn)有色面料并替代傳統(tǒng)織物的水印染工藝,這是清潔紡織的重要發(fā)展方向。原液著色滌綸織物色牢度好、挺括耐用,在軍隊(duì)服裝、職業(yè)服、戶外紡織品、窗簾等領(lǐng)域的應(yīng)用日益廣泛。原液著色纖維織物空間混合顏色的數(shù)字化表征、預(yù)測(cè)和計(jì)算機(jī)配色是交織混色技術(shù)推廣和應(yīng)用的關(guān)鍵[1]。色紗交織后的空間混合顏色可通過(guò)小樣法、圓盤(pán)混色法、圖像平均計(jì)算和比例法等進(jìn)行預(yù)測(cè)。但圓盤(pán)混色和圖像平均計(jì)算法預(yù)測(cè)精度較低,小樣法費(fèi)時(shí)費(fèi)工;比例法根據(jù)織物表面各色紗的比例、線密度和顏色,以及織物經(jīng)緯密度等的數(shù)學(xué)運(yùn)算進(jìn)行顏色預(yù)測(cè),是一種快速且可通過(guò)計(jì)算機(jī)執(zhí)行的顏色預(yù)測(cè)方法[2]。典型的研究有:Dimitrovski等[3]基于CIEL*a*b*色空間計(jì)算的交織顏色預(yù)測(cè)模型(簡(jiǎn)稱LAB模型);Kiyosawa等[4]基于色深K/S值(簡(jiǎn)稱K/S模型)和反射率R(簡(jiǎn)稱R模型)[5]計(jì)算的交織顏色預(yù)測(cè)模型;Mathur等[6]基于log(K/S)計(jì)算的交織顏色預(yù)測(cè)模型(簡(jiǎn)稱LOG(K/S)模型);陳子晗等[7]基于三刺激值(XYZ)計(jì)算的交織顏色預(yù)測(cè)模型(簡(jiǎn)稱XYZ模型);Chae等[8]基于反射率指數(shù)加權(quán)的Warburton-Oliver顏色預(yù)測(cè)模型(簡(jiǎn)稱W-O模型)。

以上相關(guān)研究以其特定的交織混色織物為例,基于不同的顏色特征值進(jìn)行交織混合顏色的計(jì)算和預(yù)測(cè)。但上述研究所用的織物幾何結(jié)構(gòu)都是理想的圓柱體紗線交織結(jié)構(gòu),顏色預(yù)測(cè)模型的形式也是固定的。文獻(xiàn)[8-9]對(duì)已報(bào)道的機(jī)織物顏色預(yù)測(cè)模型進(jìn)行了初步的優(yōu)化和比較認(rèn)為,大部分模型在預(yù)測(cè)精度和適用性方面還有不少局限。本文以具有廣闊應(yīng)用前景的原液著色滌綸長(zhǎng)絲交織織物為例,研究適合其使用的、具有較好預(yù)測(cè)精度的,并具有一定適用性的顏色預(yù)測(cè)方法及計(jì)算模型。

1 織物幾何結(jié)構(gòu)模型的設(shè)計(jì)

1.1 模型的假設(shè)

為便于計(jì)算,以往交織混色織物顏色預(yù)測(cè)所用的幾何結(jié)構(gòu)模型中,通常假設(shè)紗線為理想的圓柱形,在交織過(guò)程中,紗線不發(fā)生壓扁和扭曲變形。早在1937年,Peirce就提出了織物的幾何結(jié)構(gòu)模型設(shè)計(jì)理論,認(rèn)為織物中經(jīng)緯紗線的截面為圓形,但在經(jīng)緯紗相互交織的地方會(huì)有弧形形變,其余為直線線段,織物中經(jīng)緯紗交織處的屈曲波高等于經(jīng)緯紗理論直徑之和乘以壓扁系數(shù)[10]。為考慮紗線在交織后的壓扁情況,Kemp和Hearle等分別提出了跑道形[11]和透鏡形[12]紗線截面理論。為簡(jiǎn)化模型且使模型具有一定的適應(yīng)性,紗線形態(tài)的一致性仍是重要的假設(shè);但需引入紗線壓扁系數(shù)對(duì)紗線理論直徑進(jìn)行修正,因此,本織物幾何結(jié)構(gòu)模型的建立基于以下假設(shè):

1) 織物中的紗線在交織后不發(fā)生彎曲和滑移等形態(tài)變化;

2) 織物中紗線各部分的顏色均勻一致,不受光照和交織屈曲的影響;

3) 織物中紗線的直徑為理論直徑乘以壓扁系數(shù),經(jīng)緯紗線的壓扁系數(shù)一致。

1.2 色紗比例的計(jì)算

以緯面5枚緞紋組織為例,推導(dǎo)織物表面經(jīng)緯色紗比例(覆蓋率)的計(jì)算公式。理想的二維織物幾何結(jié)構(gòu)如圖1所示。

圖1 緯面5枚緞紋織物幾何結(jié)構(gòu)示意圖Fig.1 Schematic diagram of filling faced satin weave with unit of 5×5 repeat

圖1中:dj為經(jīng)紗直徑;dw為緯紗直徑;pj為織物中相鄰經(jīng)紗的間距;pw為織物中相鄰緯紗的間距;Aj、Aw和Ao分別為經(jīng)紗、緯紗和間隙在織物表面所占的比例,%;nj為1個(gè)組織循環(huán)內(nèi)的經(jīng)組織點(diǎn)數(shù),示例中為5;nw為1個(gè)組織循環(huán)內(nèi)的緯組織點(diǎn)數(shù),示例中為20;n為組織循環(huán)數(shù),示例中為5,如經(jīng)緯組織循環(huán)相等,則存在關(guān)系n2=nj+nw。

因此,織物表面的經(jīng)緯色紗及間隙比例可通過(guò)式(1)~(3)進(jìn)行計(jì)算。

(1)

(2)

(3)

式中:ρj和ρw分別為織物成品的經(jīng)、緯密度,根/cm;d為紗線直徑,cm。其中ρ=1/p,Aj+Aw+Ao=1。

根據(jù)上述理想的織物幾何結(jié)構(gòu),織物表面經(jīng)緯紗線和間隙所占的理論色紗比例可通過(guò)紗線的真實(shí)直徑、織物成品的經(jīng)緯密度和織物組織進(jìn)行計(jì)算。

1.3 紗線壓扁系數(shù)的計(jì)算

本文研究中的原液著色滌綸長(zhǎng)絲沒(méi)有捻度,在交織和不交織的情況都會(huì)發(fā)生壓扁形變,因此,不宜直接使用理想色紗比例進(jìn)行交織混合顏色的預(yù)測(cè)。紗線壓扁系數(shù)引入的主要目的在于修正理論色紗比例,因此,研究關(guān)鍵點(diǎn)在于找到可用于參照的織物表面真實(shí)色紗比例。

織物表面的真實(shí)色紗比例受紗線壓扁、扭曲、滑移和遮蓋等復(fù)雜因素的影響,本文提出基于圖像處理技術(shù)的色紗真實(shí)比例統(tǒng)計(jì)方法。以實(shí)際織造的雙緯顯色織物色卡Ⅰ為例。首先采用高精度掃描儀(掃描分辨率為1 200像素)將織物色塊與印刷膠片尺(精度為0.01 cm)一起進(jìn)行掃描,再將掃描圖放大到足夠程度,采用圖像處理軟件框選單位面積內(nèi)各色紗所占的圖像像素,形成專(zhuān)色圖,再采用直方圖統(tǒng)計(jì)各專(zhuān)色在單位面積內(nèi)所占的像素,計(jì)算各色紗所占的面積比例(圖2)。本例中,雙組緯顯色織物共需要對(duì)16種組合的織物表面真實(shí)色紗比例進(jìn)行統(tǒng)計(jì)。實(shí)際操作中發(fā)現(xiàn),只要掃描稿精度足夠,嚴(yán)格按照?qǐng)D像邊緣進(jìn)行顏色框選,不同操作人員統(tǒng)計(jì)得到的色紗比例誤差在3%以內(nèi),證實(shí)本文方法用于統(tǒng)計(jì)真實(shí)色紗比例是準(zhǔn)確可行的。

圖2 色紗真實(shí)比例的統(tǒng)計(jì)方法Fig.2 Statistical method of yarn coverage actual percentage. (a) Diagram of pixel unit selected; (b) Histogram statistics results

將紗線壓扁系數(shù)θ引入紗線直徑的計(jì)算公式中,如式(4)所示。

(4)

式中:d為紗線直徑,cm;Nt為紗線線密度,tex;δ為紗線的體積密度,g/cm3。

假設(shè)A為理論色紗比例,A′為圖像統(tǒng)計(jì)得到的真實(shí)色紗比例,△A為理論色紗比例和真實(shí)色紗比例之間的偏差,則

(5)

式中:下標(biāo)j、w、o分別代表經(jīng)紗、緯紗和間隙;下標(biāo)1和2代表甲緯和乙緯。

以織物色卡Ⅱ?yàn)槔捎玫?jì)算可得到壓扁系數(shù)θ取值為1.21時(shí),△A有最小值0.056。經(jīng)過(guò)壓扁系數(shù)的修正,理論色紗比例與真實(shí)色紗比例之間的偏差從修正前的14.1%降低到了5.6%。研究結(jié)果表明,壓扁系數(shù)的引入大大提高了理論色紗比例的準(zhǔn)確性,此壓扁系數(shù)可應(yīng)用于其他規(guī)格交織混色織物的色紗比例修正中。

2 實(shí)驗(yàn)部分

2.1 織物色卡的設(shè)計(jì)與制作

為使本文研究構(gòu)建的顏色預(yù)測(cè)模型對(duì)于原液著色滌綸長(zhǎng)絲織物具有較好的適用性,以常規(guī)原液著色滌綸FDY全拉伸絲為原料,設(shè)計(jì)了2種類(lèi)型4種經(jīng)緯密度組合共288塊織物色樣,并在噴水提花織機(jī)上進(jìn)行織造,工藝參數(shù)見(jiàn)表1。

表1 交織混色織物色樣的規(guī)格Tab.1 Specifications of interwoven color mixing fabrics

注:R、G、B、C、M、Y分別代表顏色紅、綠、蘭、青、品紅、黃。

2.2 顏色的測(cè)試條件和計(jì)算

采用Datacolor SF600分光測(cè)色計(jì)測(cè)定色紗和交織混色織物的反射率。分光光度計(jì)測(cè)色孔徑選用SAV(9 mm),不包含鏡面光澤,波長(zhǎng)范圍為400 ~700 nm,間隔為10 nm,儀器校準(zhǔn)后誤差△ECMC為0.14。色紗顏色采用玻片纏繞法進(jìn)行反射率測(cè)定,交織混色織物采用正面單層進(jìn)行反射率測(cè)定。

色紗色樣和織物色樣通過(guò)分光光度計(jì)測(cè)得反射率R(λ)后,根據(jù)CIE標(biāo)準(zhǔn)照明體D65的光譜能量分布和CIE1964 10°標(biāo)準(zhǔn)色度觀察者的光譜三刺激值,求得D65光源、10°視場(chǎng)下紗線和織物對(duì)應(yīng)的CIE1976L*a*b*顏色值。

3 顏色預(yù)測(cè)模型的構(gòu)建

3.1 預(yù)測(cè)模型的推導(dǎo)

正常光照條件下,織物表面不同顏色的色紗會(huì)對(duì)入射光進(jìn)行吸收、反射和散射,間隙則會(huì)對(duì)光線進(jìn)行透射和吸收,由于色紗和色點(diǎn)非常細(xì)小,在一定距離外,人眼不能單獨(dú)分辨這些細(xì)小的顏色,便產(chǎn)生了顏色的混合感覺(jué)。基于二光通理論和混沌介質(zhì)的Kubelka-Munk理論給出色樣反射率R與其吸收系數(shù)K和散色系數(shù)S之間的函數(shù)關(guān)系,可用于交織混色織物顏色預(yù)測(cè)計(jì)算時(shí)反射率R和色深K/S值之間的轉(zhuǎn)換。研究發(fā)現(xiàn),CIEL*a*b*值、反射率R、色深K/S值和三刺激值XYZ等色組分的加權(quán)和模型用于原液著色滌綸長(zhǎng)絲交織織物的顏色預(yù)測(cè)時(shí),預(yù)測(cè)精度和適用性并不好;基于大量的交織混色織物顏色預(yù)測(cè)實(shí)踐,在總結(jié)前人對(duì)纖維混合和色紗混合顏色預(yù)測(cè)研究的基礎(chǔ)上,本文提出如下模型建立思路。

文獻(xiàn)[13]指出利用對(duì)數(shù)函數(shù)降低極值點(diǎn)和端點(diǎn)的思路將色紗K/S值求對(duì)數(shù),建立了基于log(K/S)加權(quán)和的顏色預(yù)測(cè)模型,提高了模型的預(yù)測(cè)精度,表明中間函數(shù)有助于修正某些異常值,提高模型整體的預(yù)測(cè)精度;根據(jù)Stearns-Noechel[14]、Friele[15]等對(duì)有色纖維混色的預(yù)測(cè)經(jīng)驗(yàn)和前期的研究[16],經(jīng)驗(yàn)系數(shù)有助于調(diào)整模型,以適合不同類(lèi)型的纖維混色,提高模型的適用性。基于以上分析,設(shè)想建立關(guān)于色深K/S值的中間函數(shù)f[(K/S)λ],從而使式(6)成立。

(6)

中間函數(shù)的定義如式(7)所示,其中σ為經(jīng)驗(yàn)修正系數(shù),其值根據(jù)實(shí)驗(yàn)和預(yù)測(cè)結(jié)果確定,對(duì)于不同規(guī)格紗線和品種的色樣,σ有不同的最佳取值。

(7)

根據(jù)式(8)中Kubelka-Munk關(guān)于反射率R和K/S值之間的函數(shù)關(guān)系,式(7)可換算為式(9)用于計(jì)算機(jī)程序計(jì)算。

(8)

(9)

根據(jù)色組分i的光譜反射率和式(9),可求得各色紗和組分的f[(K/S)i,λ];根據(jù)色紗比例和式(6),可求得各波長(zhǎng)下織物的f[(K/S)mix,λ];根據(jù)式(7)的逆運(yùn)算式(10)和式(8)的逆運(yùn)算式(11),即可求得相應(yīng)波長(zhǎng)下交織混色織物的反射率Rλ。

(10)

(11)

3.2 經(jīng)驗(yàn)系數(shù)σ的計(jì)算

為適應(yīng)不同類(lèi)型和不同規(guī)格試樣的顏色預(yù)測(cè),在顏色預(yù)測(cè)模型中引入經(jīng)驗(yàn)系數(shù)σ,可對(duì)模型的預(yù)測(cè)進(jìn)行適當(dāng)修正。根據(jù)定義,K/S值不能為負(fù)數(shù),因此,σ的有效取值范圍為0~1。

為尋找合適的σ值,使2.1中制作的所有交織混色織物顏色預(yù)測(cè)的平均色差最小,將288塊交織混色試樣放在同一個(gè)模型中進(jìn)行多次迭代計(jì)算,得到全部交織混色織物顏色預(yù)測(cè)CMC(2∶1)平均色差與σ取值之間的關(guān)系,如圖3所示。由圖可看出σ值與預(yù)測(cè)平均色差呈現(xiàn)一個(gè)明顯的U形分布關(guān)系,因此,必然存在一個(gè)最佳σ值,使得整體預(yù)測(cè)色差最小,預(yù)測(cè)精度最高。從圖中可發(fā)現(xiàn),σ=0.275時(shí),288個(gè)色樣的平均CMC(2∶1)預(yù)測(cè)色差達(dá)到最小,為3.175。同時(shí),從圖中還可看出,σ在底部的一定范圍內(nèi),整體預(yù)測(cè)平均色差的變化比較小。

圖3 經(jīng)驗(yàn)系數(shù)與全部色樣顏色預(yù)測(cè)平均色差之間的關(guān)系Fig.3 Relationship between experience coefficient and average predicted color-difference of all samples

4 模型的比較與評(píng)價(jià)

已報(bào)道的交織混合顏色預(yù)測(cè)模型研究中,部分研究基于理想圓柱形紗線結(jié)構(gòu)模型給出了色紗比例的計(jì)算方法;部分研究直接采用了真實(shí)的色紗比例用于顏色計(jì)算,取得了較好的預(yù)測(cè)結(jié)果。需要指出的是,準(zhǔn)確和可運(yùn)算的色紗比例計(jì)算方法是計(jì)算機(jī)顏色預(yù)測(cè)和配方計(jì)算的前提和基礎(chǔ)。

整體看來(lái),直接采用實(shí)際色紗比例進(jìn)行計(jì)算的模型一般都得到了較好的預(yù)測(cè)結(jié)果,此外,精細(xì)織物的顏色預(yù)測(cè)也比粗糙織物的預(yù)測(cè)精確,因此,色紗比例的準(zhǔn)確性也是顏色模型預(yù)測(cè)精確與否的關(guān)鍵因素。為平行比較各模型用于原液著色滌綸長(zhǎng)絲交織織物顏色預(yù)測(cè)時(shí)的適用性和準(zhǔn)確性,以下模型所用的色紗比例均采用本文提出的修正織物幾何結(jié)構(gòu)模型進(jìn)行計(jì)算。

4.1 新模型的預(yù)測(cè)結(jié)果

根據(jù)1.2的理論色紗比例計(jì)算方法和3.1建立的顏色預(yù)測(cè)模型,紗線壓扁系數(shù)θ取值為1.21,經(jīng)驗(yàn)修正系數(shù)σ=0.28時(shí),采用新模型對(duì)4種規(guī)格色卡的288個(gè)織物色樣進(jìn)行顏色預(yù)測(cè)。為便于比較,符合行業(yè)習(xí)慣并適應(yīng)色度學(xué)發(fā)展,對(duì)預(yù)測(cè)顏色值與實(shí)際光譜顏色值之間的CIELAB、CMC(2∶1)和CIEDE 2000(2∶1∶1)3種色差進(jìn)行統(tǒng)計(jì),結(jié)果如圖4所示。將其中288個(gè)CMC(2∶1)色差按照組織編號(hào)次序進(jìn)行柱狀圖統(tǒng)計(jì),結(jié)果如圖5所示。

圖4 新模型用于全部交織色樣顏色預(yù)測(cè)的色差箱線圖Fig.4 Color-difference box-plots of all samples predicted by new model

圖5 全部交織色樣顏色預(yù)測(cè)的CMC(2∶1)色差分布Fig.5 Color prediction result and CMC(2∶1) color-difference distribution of all interwoven fabric samples

圖4的色差箱體統(tǒng)計(jì)表明,新模型對(duì)單組緯或雙組緯顯色、不同經(jīng)緯密度組合及不同組織結(jié)構(gòu)的原液著色滌綸長(zhǎng)絲交織織物均具有良好的預(yù)測(cè)性能,288個(gè)色樣的平均CMC(2∶1)色差已降至3.18,且在288個(gè)色樣中,有83%的色樣其CMC(2∶1)色差小于或等于5,因此對(duì)于采用理論色紗比例來(lái)計(jì)算的預(yù)測(cè)模型來(lái)說(shuō),新模型具有良好的預(yù)測(cè)精度,并可保持穩(wěn)定的預(yù)測(cè)性能。

圖5中從左至右的色樣序號(hào)為織物色樣的名稱排序,即Ⅱ(A)→Ⅱ(B)→Ⅱ(C)→Ⅰ。Ⅱ系列色樣有幾個(gè)較為明顯的大色差集中區(qū),經(jīng)分析發(fā)現(xiàn),這些大色差主要為綠色緯線與米色經(jīng)線的交織色樣。統(tǒng)計(jì)還發(fā)現(xiàn),192個(gè)Ⅱ系列色樣中,CMC(2∶1)預(yù)測(cè)色差大于4的有57個(gè)色樣,其中只有8個(gè)不是綠色系色樣。經(jīng)多次實(shí)驗(yàn)測(cè)試比較,綠色紗線的反射率測(cè)試結(jié)果是正確且可靠的。對(duì)于出現(xiàn)上述現(xiàn)象的原因,本文有如下2點(diǎn)解釋。

1) 模型的經(jīng)驗(yàn)系數(shù)是根據(jù)色差計(jì)算結(jié)果進(jìn)行迭代計(jì)算得到的,根據(jù)文獻(xiàn)[17]開(kāi)展的對(duì)色差公式顏色辨別特性的研究,所有色差公式,包括CMC色差公式在綠色(green)和藍(lán)綠色(blue-green)區(qū)域的預(yù)測(cè)性能是最差的,因此,這部分織物的色差比較大。

2) 根據(jù)CIE對(duì)光響應(yīng)平均值的研究,人眼對(duì)明視曲線(photopic vision)范圍內(nèi)的綠光辨別能力最強(qiáng)。圖6示出明視曲線和青色、綠色紗線的反射率,450~500 nm區(qū)域?yàn)樗{(lán)光范圍,500~570 nm為綠光范圍。本文研究選用的綠色紗線反射率大部分落在明視范圍內(nèi),而選用的青色紗線只有一小部分落在明視范圍內(nèi),故新模型得到的顏色預(yù)測(cè)結(jié)果中,綠色系交織混色織物的預(yù)測(cè)色差最大。新模型對(duì)于含綠色紗線織物的顏色預(yù)測(cè)較敏感,與明視曲線辨認(rèn)特征相符。

圖6 明視曲線和青色、綠色紗線的反射率Fig.6 Photopic vision curve and reflectance curves of cyan and green yarns

4.2 模型的平行比較

在印刷和染色工業(yè)中,一般要求色差控制在1以內(nèi),但根據(jù)以往對(duì)機(jī)織物顏色預(yù)測(cè)的研究,CIELAB色差控制在2~5之間便被認(rèn)為已具有較好的預(yù)測(cè)精度[18]。將新模型和6個(gè)已報(bào)道的顏色預(yù)測(cè)模型共同用于288塊交織織物色樣的顏色預(yù)測(cè),并將預(yù)測(cè)結(jié)果與分光光度計(jì)測(cè)試結(jié)果進(jìn)行色差比較,結(jié)果如表2所示。

表2 不同模型用于全部色樣顏色的預(yù)測(cè)Tab.2 Color prediction of all fabric samples by different models

7種模型的預(yù)測(cè)結(jié)果中,K/S模型預(yù)測(cè)效果最差,基本不能反映織物交織后的真實(shí)顏色;R和XYZ這2個(gè)預(yù)測(cè)模型預(yù)測(cè)結(jié)果接近,但二者的預(yù)測(cè)精度都不高;CIELAB和LOG(K/S)模型顏色預(yù)測(cè)性能良好,且預(yù)測(cè)精度與Mathur[6]在滌/棉交織混色預(yù)測(cè)中的結(jié)果接近;W-O模型和本文提出的新模型的預(yù)測(cè)性能最好,CMC(2∶1)平均色差已接近3,但預(yù)測(cè)效果最好的還是本文提出的新模型,CIELAB、CMC和CIEDE2000 3種色差的平均值都是最低的。

相比較固定形式的W-O模型,新模型的優(yōu)勢(shì)還在于對(duì)不同規(guī)格的試樣類(lèi)型,可選用不同的經(jīng)驗(yàn)系數(shù),以使得其在各種情況下都有更好的適用性。對(duì)2.1中制作的4種規(guī)格的試樣進(jìn)行單獨(dú)迭代計(jì)算,可得到4種規(guī)格試樣平均顏色預(yù)測(cè)色差最小時(shí)的經(jīng)驗(yàn)系數(shù),結(jié)果如表3所示。

表3 不同經(jīng)驗(yàn)系數(shù)取值時(shí)各系列色樣顏色預(yù)測(cè)結(jié)果Tab.3 Color prediction results of each set of fabrics with different empirical coefficients

注:N表示本文新模型。

當(dāng)經(jīng)驗(yàn)修正系數(shù)σ=0.28時(shí),全部色樣整體預(yù)測(cè)平均色差達(dá)到最小(CMC(2∶1)=3.18)。σ的取值區(qū)間在0.22~0.36時(shí),分別得到不同規(guī)格系列色樣的最佳預(yù)測(cè)結(jié)果。相比較固定形式的顏色預(yù)測(cè)模型,新模型通過(guò)微調(diào)經(jīng)驗(yàn)系數(shù)可更好地適應(yīng)不同規(guī)格的色樣。本文研究中,只要σ的取值在建議的合理范圍內(nèi),并不會(huì)造成其他系列色樣預(yù)測(cè)精度的明顯降低,因此,經(jīng)驗(yàn)系數(shù)σ為0.28可用于本文研究各規(guī)格原液著色滌綸交織混色織物顏色的準(zhǔn)確預(yù)測(cè)。

值得一提的是,本文研究中所用FDY紗線的壓扁系數(shù)(θ=1.21)是基于Ⅰ系列色樣求得的,然后將此壓扁系數(shù)用于所有色樣的色紗比例修正,再將所有288塊織物色樣用本文介紹的7個(gè)模型進(jìn)行顏色預(yù)測(cè),紗線壓扁系數(shù)的引入明顯降低了全部7個(gè)模型的預(yù)測(cè)色差,模型的預(yù)測(cè)精度平均提高1個(gè)CMC(2∶1)色差單位。

5 結(jié) 論

1) 以往圓柱形紗線的織物幾何結(jié)構(gòu)模型在計(jì)算低捻度紗線和非緊密交織織物的理論色紗比例時(shí)存在較大的誤差,引入紗線壓扁系數(shù)有助于修正理論色紗比例。實(shí)際中可采用掃描加直方圖法統(tǒng)計(jì)織物表面的真實(shí)色紗比例,操作方法直觀,設(shè)備要求低,精度高,適用于不同原料和規(guī)格織物紗線壓扁系數(shù)的推算。

2) 交織混色織物的混合顏色為織物表面各色紗組分及間隙的顏色貢獻(xiàn)之和。反射率、三刺激值和CIEL*a*b*等都可用于各顏色組分的貢獻(xiàn)值計(jì)算,但這些模型的預(yù)測(cè)精度不足。

3) 中間函數(shù)和經(jīng)驗(yàn)系數(shù)有助于提高模型的預(yù)測(cè)精度和適用性。較以往固定形式的顏色預(yù)測(cè)模型,新模型在預(yù)測(cè)精度方面取得了明顯的進(jìn)步。另外,新模型的優(yōu)勢(shì)在于在不同場(chǎng)合下可調(diào)整經(jīng)驗(yàn)系數(shù),以適用于不同規(guī)格色樣的更精確預(yù)測(cè)。

FZXB

[1] 金劍, 李鑫, 王穎,等. 原液著色纖維產(chǎn)業(yè)“十三五”發(fā)展路徑[J]. 中國(guó)紡織, 2016(12):64-65. JIN Jian, LI Xin, WANG Ying, et al. Development path of dope-dyed fiber industry in 13th Five Year Plan[J]. China Textiles, 2016(12):64-65.

[2] 章斐燕, 金亦佳, 李啟正, 等. 空間并置混色色織物顏色預(yù)測(cè)方法的比較研究[J]. 絲綢, 2014, 51(11): 22-27. ZHANG Feiyan, JIN Yijia, LI Qizheng, et al. Comparative study of color prediction methods of yarn-dyed fabrics with spatial juxtaposition[J].Journal of Silk, 2014, 51(11): 22-27.

[4] KIYOSAWA T, ZHENG J, KOMATSU T, et al. Color prediction of union fabric considering mutual reflection between yarns[J]. SEN-I Gakkaishi, 2006, 62(9): 212-217.

[5] KIYOSAWA T, ZHENG J, TAKATERA M, et al. Color prediction of union fabrics considering mutual reflection between yarns: a new color prediction model using apposed color mixture theory[J]. SEN-I Gakkaishi, 2007, 63(5): 117-122.

[6] MATHUR K, HINKS D, SEYAM A F M, et al. Towards automation of color/weave selection in jacquard design: model verification[J]. Color Research & Application, 2009, 34(3): 225-232.

[7] 陳子晗. 織物結(jié)構(gòu)設(shè)計(jì)與織物色彩關(guān)系的研究與應(yīng)用[D]. 上海:東華大學(xué), 2015:46-66. CHEN Zihan. Research and application of the relationship between fabaric structure and fabric color[D]. Shanghai: Donghua University, 2015:46-66.

[8] CHAE Y, XIN J H, HUA T. Color prediction models for digital Jacquard woven fabrics[J]. Color Research & Application, 2016, 41(1): 64-71.

[9] ZHANG S S, LIU X Y, YU W D. Evaluation and model of woven fabric color[J]. Advanced Materials Research, 2013, 627: 195-199.

[10] 蔡雨, 鄭天勇, 景書(shū)娟, 等. Peirce 平紋機(jī)織物結(jié)構(gòu)模型的計(jì)算精確度[J]. 紡織學(xué)報(bào), 2012, 33(1): 48-53. CAI Yu, ZHENG Tianyong, JING Shujuan, et al. Verification of the Peirce′s model for the geometric structure of the plain woven fabrics[J]. Journal of Textile Research, 2012, 33(1): 48-53.

[11] 彭淑靜. 圓環(huán)形織物的織造研究[D]. 天津: 天津工業(yè)大學(xué), 2006: 4. PENG Shujing. Research on weaving of annular shaped fabrics[D]. Tianjin: Tianjin Polytechnic University, 2006: 4.

[12] HEARLE J W S, GROSBERG P, BACKER S. Structural mechanics of fibers[J]. Yarns and Fabrics,1969, 28(1): 85-87.

[13] SEYAM A F M, MATHUR K. A general geometrical model for predicting color mixing of woven fabrics from colored warp and filling yarns[J]. Fibers and Polymers, 2012, 13(6): 795-801.

[14] STEARNS E I, NOECHEL F. Spectrophotometric prediction of color of wool blends[J]. American Dyestuff Reporter, 1944, 33(9): 177-180.

[15] FRIELE L F C. The application of color measurement in relation to fibre-blending[J]. Journal of the Textile Institute, 1952, 43: 604-611.

[16] LI Q Z, ZHANG F Y, JIN X K, et al. Optimized stearns-Noechel model to predict mixed color values of yarn-dyed fabrics[J]. Fiber, 2014, 70(9):218-224.

[17] 汪哲弘. 顏色視覺(jué)辨別特性及色差評(píng)價(jià)研究[D]. 杭州: 浙江大學(xué), 2009: 57. WANG Zhehong. Study of color vision discrimination characteristics and color-difference evaluation[D]. Hangzhou: Zhejiang University, 2009: 57.

Model for predicting color mixing of dope-dyed polyester interwoven fabrics

LI Qizheng1,2, ZHU Weijing1,3, JIN Xiaoke1, ZHU Chengyan1

(1.SilkInstitute,CollegeofMaterialsandTextiles,ZhejiangSci-TechUniversity,Hangzhou,Zhejiang310018,China; 2.PeriodicalsAgency,ZhejiangSci-TechUniversity,Hangzhou,Zhejiang310018,China; 3.SchoolofDesign,ZhejiangUniversityofScience&Technology,Hangzhou,Zhejiang310023,China)

In order to more accurately predict the spatial mixed color of dope-dyed polyester interwoven fabrics, the classical cylindrical section fabric geometric structure model was improved, and the computing method of yarn flattening coefficient after interwoven was proposed. Then, a new color prediction model with intermediate function and empirical coefficient was built based on the analyses of existing fiber blended and yarn interwoven color prediction models, which is suitable for the dope-dyed polyester interwoven color mixing fabrics. Meanwhile, the iteration method for determining the optimal empirical coefficient was introduced. Finally, total 288 pieces of dope dyed polyester interwoven fabrics including 2 types of fabric specifications, 4 combinations of warp/weft density, and 32 weave structures, were woven for validation and evaluation on the accuracy and effectiveness of the new model. The results show that the prediction accuracy and applicability of new model are superior to those of the existing fixed form color prediction models. The advantage of new model is that its empirical coefficient can be adjusted for different types of interwoven fabrics so as to obtain a more accurate color prediction.

woven fabric; dope-dyed polyester; interwoven color mixing; spatial color mixing; color prediction; color model; fabric geometric structure

10.13475/j.fzxb.20160506708

2016-05-25

2017-04-14

國(guó)家國(guó)際科技合作專(zhuān)項(xiàng)項(xiàng)目(2011DFB51570);浙江理工大學(xué)科研啟動(dòng)基金資助項(xiàng)目(15012164-Y)

李啟正(1981—),男,講師,博士。主要研究方向?yàn)榧徔楊伾茖W(xué)與技術(shù)。E-mail:liqizheng@zstu.edu.cn。

TS 156;TS 105.1

A

猜你喜歡
交織色差紗線
基于CIEDE2000的紡織品色差檢測(cè)與檢速匹配
美食(2022年2期)2022-04-19 12:56:22
摩擦電紗線耐磨性能大步提升
針織與紗線
交織冷暖
女報(bào)(2019年3期)2019-09-10 07:22:44
彩涂板色差標(biāo)準(zhǔn)板管理方法的探討
上海涂料(2019年3期)2019-06-19 11:52:22
一種改進(jìn)的塊交織方法及FPGA實(shí)現(xiàn)
色差
紗線與針織
紗線與針織
武山县| 洮南市| 都兰县| 合水县| 白河县| 安陆市| 会宁县| 海安县| 正宁县| 神池县| 无棣县| 康马县| 敖汉旗| 武城县| 犍为县| 南木林县| 新沂市| 阳高县| 吐鲁番市| 五家渠市| 通化县| 蓬莱市| 滨海县| 页游| 郴州市| 苏尼特右旗| 逊克县| 尼玛县| 桓台县| 平谷区| 兴安县| 安吉县| 江油市| 孝义市| 永福县| 石楼县| 莒南县| 汶川县| 兴义市| 水城县| 西乡县|