陳文靜,賀 剛,吳 斌,方春林,林鵬程
(1:江西省水產(chǎn)科學研究所,南昌330039)(2:中國科學院水生生物研究所,武漢430072)(3:中國科學院水生生物多樣性與保護重點實驗室,武漢430072)
鄱陽湖通江水道魚類空間分布特征及資源量評估?
陳文靜1,賀 剛1,吳 斌1,方春林1,林鵬程2,3??
(1:江西省水產(chǎn)科學研究所,南昌330039)
(2:中國科學院水生生物研究所,武漢430072)
(3:中國科學院水生生物多樣性與保護重點實驗室,武漢430072)
于2014年9月24至26日在鄱陽湖通江水道湖口至屏峰段使用SIMRAD EY60回聲探測儀對魚類資源進行水聲學調(diào)查.結(jié)果顯示,鄱陽湖通江水道魚類目標強度平均值為-56.4±6.4 dB,范圍為-69.9~-32.1 dB;估算的平均全長為7.6 cm,范圍為1.2~98.0 cm;魚類資源的平均密度為53.7 ind./1000m3,范圍為0~441.7 ind./1000m3.在水平分布上,魚類主要分布在湖口縣、鞋山和屏峰附近3個水域.區(qū)域Ⅰ和區(qū)域Ⅲ的魚類密度顯著高于區(qū)域Ⅱ的魚類密度;區(qū)域Ⅲ的魚類個體大小顯著小于區(qū)域Ⅰ和區(qū)域Ⅱ.在垂直分布上,多數(shù)魚類棲息于主河槽的深水區(qū),且大個體更傾向于深水區(qū).在此基礎(chǔ)上,利用ArcGIS地統(tǒng)計插值方法估算鄱陽湖通江水道湖口至屏峰山水域魚類總數(shù)量約為6.2×107ind.,總生物量約620 t.結(jié)果表明,鄱陽湖通江水道是魚類重要的棲息地,建議加強該水域的保護,保持鄱陽湖與長江的自然連通.
鄱陽湖;通江水道;生態(tài)通道;水聲學;空間分布特征;魚類資源量
鄱陽湖是我國最大的淡水湖泊.充足的水資源和優(yōu)越的自然環(huán)境孕育了鄱陽湖豐富的水生生物資源.據(jù)記載,鄱陽湖分布有魚類136種,隸屬于12目25科78屬[1].鄱陽湖流域是長江中下游魚類生存的重要場所及重要經(jīng)濟魚類的種質(zhì)資源庫.近年來,受過度捕撈、生境破壞、濫采砂礫、環(huán)境污染等不合理的人為干擾[2-4],鄱陽湖魚類資源現(xiàn)狀已不容樂觀,主要表現(xiàn)為:漁獲物明顯以鯉、鯽、、鲇、黃顙魚屬等湖泊定居性魚類為主;“四大家魚”在漁獲物中所占比例較低;刀鱭等洄游性魚類非常少見;漁獲量逐年下降,漁獲物趨于低齡化、小型化[5-6].因此在鄱陽湖開展魚類資源監(jiān)測,準確及時地評估魚類資源的分布特征及其數(shù)量是鄱陽湖魚類資源保護及可持續(xù)利用的基本需求.
在內(nèi)陸水域,網(wǎng)具捕撈是傳統(tǒng)魚類資源調(diào)查的常用方法.然而隨著魚類資源的不斷減少,為了保護魚類資源,在內(nèi)陸水域開展全面禁漁的呼聲越來越高[7].全面禁漁的實施,將導致傳統(tǒng)的調(diào)查方法受到制約,另一些技術(shù)和方法將逐步取代網(wǎng)具捕撈,成為監(jiān)測的主要方法,其中水聲學方法日益成為魚類資源監(jiān)測與評估的主要手段.該方法具有快速高效、調(diào)查區(qū)域廣、不損壞生物資源、能實時掌握魚類空間分布、準確估算魚類密度和資源量等優(yōu)勢[8].21世紀以來,水聲學方法已廣泛應(yīng)用于我國長江中上游、三峽水庫及一些內(nèi)陸湖泊的魚類資源監(jiān)測工作中[9-17],但對于鄱陽湖這種大型的吞吐型湖泊,目前尚未見有關(guān)水聲學方法的調(diào)查研究報道.
湖口是鄱陽湖唯一的入江口.鄱陽湖通江水道起始于湖口水域而止于水道末端的新池鄉(xiāng)(今蓼南鄉(xiāng))水域,全長約40 km[18].已有的研究指出,鄱陽湖通江水道是多種洄游性魚類完成生活史過程的重要通道,具有重要的生態(tài)功能,對于長江中下游魚類資源的養(yǎng)護及其多樣性維持至關(guān)重要[6,19-20].在此背景下,本研究選取鄱陽湖通江水道作為調(diào)查區(qū)域,于2014年9月采用水聲學方法對該水域的魚類資源進行調(diào)查,分析水道內(nèi)魚類資源的空間分布特征,估算其資源量,以期為鄱陽湖通江水道魚類資源的保護和科學管理提供理論依據(jù).
1.1 研究區(qū)域
鄱陽湖通江水道范圍為星子縣老爺廟至湖口縣入長江口,南北長約45 km,東西寬3~8 km,入長江口最窄處僅約1 km.湖底水道高程自南向北逐漸下降,由海拔12m降至湖口約1m,鞋山附近為-1m.該段入江水道湖床第四系覆蓋層厚度大,地層分布、巖性特征等基本相同[18].本研究中水聲學探測范圍從湖口碼頭(29°44′52.47″N,116°13′45.49″E)至屏峰山(29°31′42.48″N,116°08′2.06″E),探測江段長約30 km.探測水域的平均水深為8.2 m,最大水深為24.5 m,最小水深為3.2 m.根據(jù)河道距離,將探測范圍均分為3個水域:區(qū)域Ⅰ、區(qū)域Ⅱ和區(qū)域Ⅲ(圖1),以便于整體分析通江水道魚類資源的空間格局.
1.2 水聲學調(diào)查
水聲學調(diào)查設(shè)備為SIMRAD EY60型分束(Split-beam)回聲探測儀(換能器工作頻率為200 kHz,半功率角為7°).調(diào)查時間為2014年9月24-26日.由于探測水域地形復(fù)雜,并且有過往的航運船只,為安全起見,探測時間為每天的上午8時至下午6時.探測過程中,換能器固定于監(jiān)測船的船舷中部,入水深度為0.5 m,波束發(fā)射方向垂直向下.探測路線呈“之”字形,累計航程162.6 km(圖1).數(shù)據(jù)采集過程中,換能器的發(fā)射功率為150W,脈沖寬度(Pulse Duration)為64μs.導航定位設(shè)備為Garmin 60CS型GPS.利用Latitude E6430型筆記本電腦對聲學數(shù)據(jù)和GPS數(shù)據(jù)同步存儲.
按照Aglen[21]覆蓋率公式計算水聲學調(diào)查的覆蓋率:
式中,L為水聲學調(diào)查走航航程(m),A為探測水域水面面積(m2),D c為水聲學調(diào)查覆蓋率.經(jīng)計算,本研究的聲學覆蓋率為13.1,達到了6以上.為消除不同介質(zhì)條件對換能器的影響,確?;夭◤姸鹊臏蚀_,在探測之前按照設(shè)備的出廠說明,采用直徑為13.7 mm的鎢銅金屬球?qū)x器進行實地校準[22-23].
圖1 鄱陽湖通江水道水聲學探測區(qū)域及航線Fig.1 The detection area and routes of hydroacoustic survey in the channel connecting Lake Poyang and the Yangtze River
1.3 數(shù)據(jù)分析
1.3.1 聲學數(shù)據(jù)處理 采用Sonar-5分析軟件對聲學數(shù)據(jù)進行轉(zhuǎn)換和分析.回聲圖像使用CFT(Cross-filter tracking)方法進行濾波與平滑,有效消除噪音干擾并準確地提取信噪比比較低的信號.采用單回波檢測與跟蹤分析(STM)方法進行信號判別與目標強度(TS).聲學數(shù)據(jù)分析的基本積分航程單元設(shè)為750 m.聲吶數(shù)據(jù)處理的相關(guān)參數(shù)分別為:單回聲檢波(SED)回波閾值為-70 dB;最小回波長度為0.8;最大回波長度為2.0;最大相差為1.2;聲學截面的最大增益補償為6 dB;時變增益(TVG)為40 lgR;最少單體目標數(shù)為3 pings;最少脈沖數(shù)為3 pings;單體目標間最大間隔為2 pings.最后對提取的魚類回聲信號進行人工檢視以保證數(shù)據(jù)的準確性.
魚體長度由Foote[22]提出的魚體目標強度(TS,dB)和全長(TL,cm)的經(jīng)驗公式換算得出:
1.3.2 魚類密度估算 采用回聲計數(shù)法(即魚類回聲計數(shù)結(jié)果除以探測水體體積)估算鄱陽湖通江水道的魚類密度[24-25],計算公式為:
式中,V為每一個ping探測的水體體積(m3),θ為回聲探測儀的角度(7°),R為探測位置的水深,r為換能器入水水深(m),ρ為魚類體積密度(ind./1000 m3),N為回聲計數(shù)得到魚類回聲信號個數(shù),p為單元總的ping數(shù).
1.3.3 基于地統(tǒng)計學的魚類資源量估算 使用ArcGIS 9.3軟件進行水下地形和魚類密度分布的空間分析.將計算出的各單元魚類密度、對應(yīng)的水深及中心坐標數(shù)據(jù)導入ArcGIS 9.3,采用反距離加權(quán)(IDW)方法進行柵格插值運算.本研究設(shè)定柵格大小為0.0004°,約為45 m×35 m.利用導出的每個柵格的魚類密度、水深和柵格面積數(shù)據(jù)計算得到各柵格的魚類尾數(shù),最后統(tǒng)計所有柵格的魚類總尾數(shù),從而獲得魚類的資源總量.
各探測區(qū)域魚類回聲信號TS值差異性的非參數(shù)檢驗、魚類密度空間分布的單因素方差分析以及魚類密度與分布水深的相關(guān)性分析等均采用統(tǒng)計分析軟件SPSS 20.0進行.
2.1 魚類個體特征
2014年9月在鄱陽湖通江水道共探測到魚類信號12032個,TS均值為-56.4±6.4 dB,最小TS值為-69.9 dB,最大TS值為-32.1 dB.其中TS值介于-70~-60 dB的個體有3053個,占總體的25.4%;TS值介于-60~-55 dB的個體有3509個,占總體的29.2%;TS值介于-55~-50 dB的個體有3992個,占總體的33.2%,TS值介于-50~-45 dB的個體有1225個,占總體的10.2%;TS值大于-40 dB的目標信號共15個,約占總體的0.12%(圖2a).可見,魚類TS值主要集中在-60~-50 dB之間,累計占總數(shù)的62.1%.魚類以體型較小者為主.
根據(jù)Foote提出的魚體長度與目標強度關(guān)系式,推算2014年9月鄱陽湖通江水道魚類平均全長為7.6 cm,范圍為1.2~98.0 cm.2014年9月通江水道魚類以全長介于10~15 cm的個體為主,累計占總數(shù)的79.7%(圖2b).
圖2 鄱陽湖通江水道魚類目標強度(a)和全長(b)分布Fig.2 The distribution of target strengths(a)and total length(b)among the observed fish in the channel connecting Lake Poyang and the Yangtze River
2.2 魚類密度與空間分布特征
2014年9月鄱陽湖通江水道魚類平均密度為53.7±63.2 ind./1000m3,范圍為0~441.7 ind./1000m3(圖3).在空間分布上,魚類主要分布在3個水域:①湖口縣附近通江水域;②鞋山附近水域;③屏峰山附近水域.其中魚類分布最集中的區(qū)域位于鄱陽湖鐵路橋至鞋山之間的水域,GPS中心位點為29°41′26.34″N,116°10′23.41″E.
在水平方向,對3個水域的魚類密度差異進行統(tǒng)計檢驗.結(jié)果表明,區(qū)域Ⅰ(平均密度為62.2± 63.4 ind./1000 m3)和區(qū)域Ⅲ(平均密度為72.2±68.0 ind./1000 m3)之間的魚類密度無顯著性差異(One-way ANOVA,P>0.05),而區(qū)域Ⅱ(平均密度為30.2±52.3 ind./1000 m3)的魚類密度顯著小于區(qū)域Ⅰ和區(qū)域Ⅲ(One-way ANOVA,P<0.05).在個體大小方面,區(qū)域Ⅰ(平均TS值為-55.9±7.0 dB)和區(qū)域Ⅱ(平均TS值為-55.8±5.6 dB)之間的魚類個體大小無顯著性差異(非參數(shù)K-S檢驗,P>0.05),而區(qū)域Ⅲ(平均TS值為-57.5±6.5 dB)的魚類個體大小顯著小于區(qū)域Ⅰ和區(qū)域Ⅱ(非參數(shù)K-S檢驗,P<0.05)(圖4).
在水體垂直方向,將數(shù)據(jù)分析單元的水深分為3層,水深的0~33%為上層,33%~66%為中層,66%~100%為下層.結(jié)果顯示,86.9%的魚類棲息于水體下層,平均目標強度為-56.0±5.9 dB;9.9%的魚類棲息于水體中層,平均目標強度為-60.0±6.2 dB;3.2%的魚類棲息于水體上層,平均目標強度為-60.2±5.9 dB(圖5).回歸分析顯示,魚類數(shù)量分布與水深呈顯著正相關(guān)(R2=0.651,P<0.01).綜合可知,多數(shù)魚類棲息于主河槽的深水區(qū),且大個體更傾向于深水區(qū).鄱陽湖通江水道水體下層的生物量高于中上層(圖6).
2.3 鄱陽湖通江水道魚類資源量
采用ArcGIS柵格化的魚類密度及各個柵格的面積,對魚類資源總量進行估算.鄱陽湖通江水道湖口至屏峰山水域魚類資源約為6.2×107ind..結(jié)合多種漁具(刺網(wǎng)和拖網(wǎng))的漁獲物調(diào)查數(shù)據(jù),該水域魚類平均體重約為10 g[15],估算得出鄱陽湖湖口至屏峰山水域的魚類生物量約為620 t.
圖3 鄱陽湖通江水道魚類密度水平分布(a)及水深分布(b)Fig.3 The horizontal distribution of fish density(a)and water depth(b)in the channel connecting Lake Poyang and the Yangtze River
圖4 鄱陽湖通江水道不同水域魚類密度及目標強度Fig.4 The fish density and target strengths in different areas in the channel connecting Lake Poyang and the Yangtze River
利用水聲學研究魚類資源是在不擾動水生生物和自然環(huán)境的情況下對魚類分布及集群進行原位觀測.除了能夠快速地對整個水體進行探測,還可實現(xiàn)對水體連續(xù)的聲學覆蓋,具有較高的分辨率[8-11].盡管調(diào)查過程中,探測任務(wù)受到風浪、船體運行等外部環(huán)境的影響,結(jié)合研究實踐,認為水聲學探測仍是魚類分布和資源統(tǒng)計較為全面的方法,可以準確地給出魚類大小特征、空間分布和資源量情況,在調(diào)查過程中克服了其他傳統(tǒng)方法工作效率低、難以得到大尺度下的魚類密度、無法準確獲得魚類自然分布狀態(tài)下連續(xù)數(shù)據(jù)等局限性,獲得的數(shù)據(jù)更有生態(tài)學意義.
相關(guān)研究指出,魚類回聲信號TS值受魚類大小、脈沖發(fā)射頻率、魚類在波束中的位置、游泳行為和河流環(huán)境等因素的影響[8].我國淡水水體魚類多樣性豐富,目前缺乏特定種類回聲信號TS值與魚體大小關(guān)系的系統(tǒng)研究,各項研究中均無法準確根據(jù)魚類TS值計算出相應(yīng)的魚類大小,對于魚類大小的估算需借鑒國外的一些垂直探測的經(jīng)驗公式[13-17].
圖5 鄱陽湖通江水道不同水層魚類密度及目標強度分布Fig.5 The fish density and target strengths in different layers in the channel connecting Lake Poyang and the Yangtze River
本研究探測到的魚類回聲信號平均TS值為-56.4 dB,使用Foote提出的TS與全長的經(jīng)驗公式推算出對應(yīng)的全長為7.6 cm.結(jié)果表明,9月鄱陽湖通江水道魚類個體較小.而多種網(wǎng)具結(jié)合的漁獲物調(diào)查顯示,湖口水域秋季主要優(yōu)勢種為貝氏、似鳊、鯉和光澤黃顙魚等小型魚類,尾均重約10 g[6,20].因此,在魚類個體大小方面,水聲學調(diào)查結(jié)果與漁獲物調(diào)查結(jié)果基本一致,能較好地反映魚類個體大小.推測通江水道魚類個體較小的原因主要有:①長江中下游水域大多數(shù)魚類的繁殖時期為5-7月.9月,通江水道仍是多種幼魚索餌育肥的場所,故秋季通江水道以體型較小的魚類為主;②近年來,隨著過度捕撈等人為原因,鄱陽湖魚類資源呈現(xiàn)小型化趨勢,漁獲物結(jié)構(gòu)以當年魚類為主[6,26-27].
圖6 鄱陽湖通江水道魚類數(shù)量與水深的關(guān)系Fig.6 Correlation between the fish number and water depth in the channel connecting Lake Poyang and the Yangtze River
研究指出,魚類時空分布與水深、水溫、流速、河床質(zhì)及營養(yǎng)化水平等因素有關(guān)[28-31].Van Nguyen等[32]在研究巖礁魚類的空間分布時發(fā)現(xiàn),水深和離岸距離是影響魚類水平分布的主要原因.Marchetti等[33]在研究魚類集群和棲息地時發(fā)現(xiàn)土著魚類多分布在流速較高的河段.杜浩等[34]對長江中游江口至涴市江段的魚類分布研究也表明魚類密度分布較高的區(qū)域往往是在深水區(qū)(平均水深為9.72±4.18 m).本研究結(jié)果表明,秋季鄱陽湖通江水道的魚類分布具有明顯的區(qū)域性.空間上,鄱陽湖通江水道的魚類主要分布在湖口縣、鞋山和屏峰山附近3個水域;在水層分布上,魚類主要棲息于水體下層,偏好主河槽的深水區(qū).該結(jié)果與多數(shù)內(nèi)陸水體研究揭示的分布格局一致[34-36].究其原因可能有:①深水區(qū)不僅可提供不同規(guī)格個體喜好的環(huán)境,同時也可提供更多的容納空間;②通江水道航運繁忙,淺水區(qū)域魚類對船只的規(guī)避行為要比深水區(qū)明顯,這也會造成主河槽之外水域魚類密度較低[35].
生態(tài)交錯帶理論認為,該區(qū)域的一個重要特征就是生境異質(zhì)性高,具有較高的生物多樣性和生產(chǎn)力. Fernandas等[36]和R?pke等[37]認為河流交匯有利于提高魚類多樣性.對于鄱陽湖通江水道而言,季節(jié)性的洪水淹沒,使得河漫灘為魚類棲息提供豐富的生境.湖濱帶植被及水中的植被為幼魚或?qū)谥脖坏男⌒汪~類提供了庇護所.在洪泛季節(jié)為也可為鯉、鯽等魚類提供產(chǎn)卵場[27].由于匯流口處形成的溫度梯度和漩渦,營養(yǎng)物質(zhì)、木質(zhì)殘骸和有機物在此聚集,有利于浮游動、植物的生長,進而為魚類提供了豐富的餌料來源[38].作為連通長江和鄱陽湖的生態(tài)通道,通江水道也可看做是一個生態(tài)交錯帶.這種江湖時空上的連續(xù)性和生境異質(zhì)性也是導致鄱陽湖通江水道魚類密度較高的一個重要原因.更有學者認為,像通江水道這樣的生態(tài)通道應(yīng)作為優(yōu)先保護區(qū)加以保護[37].
本研究首次利用水聲學方法對鄱陽湖通江水道魚類空間分布特征進行研究報道,但是仍存在一定的不足,缺乏魚類分布與上述生態(tài)因子的定量關(guān)系研究,有待以后作進一步的研究.盡管如此,本研究體現(xiàn)了水聲學技術(shù)在魚類資源監(jiān)測研究中優(yōu)勢.該技術(shù)的推廣應(yīng)用可以提高魚類資源分布和資源量調(diào)查的效率,而且聲學數(shù)據(jù)可以長期保存,通過數(shù)據(jù)的累積和對比分析可為揭示江湖魚類的生態(tài)行為規(guī)律提供科學依據(jù).此外,建議加強對鄱陽湖通江水道的保護,持續(xù)監(jiān)測水道內(nèi)魚類分布及江湖交流活動,并結(jié)合水環(huán)境因子,深入研究該水域魚類資源的時間動態(tài)特征、魚類群集機制和生境偏好等科學問題,以期為長江中下游魚類資源保護提供科學依據(jù).
[1] Zhang Tanglin,Li Zhongjie.Fish resources and fishery utilization of Lake Poyang.J Lake Sci,2007,19(4):434-444. DOI:10.18307/2007.0412.[張?zhí)昧?,李鐘?鄱陽湖魚類資源及漁業(yè)利用.湖泊科學,2007,19(4):434-444.]
[2] Chen Yiyu,Chang Jianbo.Wetlands loss and alteration of the floodplain in the lower and middle reaches of Yangtze River. In:Chen Yiyu ed.Study ofwetlands in China.Changchun:Jilin Science and Technology Press,1995:153-160.[陳宜瑜,常劍波.長江中下游泛濫平原環(huán)境結(jié)構(gòu)改變與濕地喪失.見:陳宜瑜編.中國濕地研究.長春:吉林科學技術(shù)出版社,1995:153-160.]
[3] Chang Jianbo,Cao Wenxuan.Fishery significance of the river-communicating lakes and strategies for themanagement of fish resources.Resources and Environment in the Yangtze Basin,1999,8(2):153-157.[常劍波,曹文宣.通江湖泊的漁業(yè)意義及其資源管理對策.長江流域資源與環(huán)境,1999,8(2):153-157.]
[4] Wu Ruijin.Lake water resources and environments in China and countermeasures.Bulletin of the Chinese Academy ofSciences,2001,16(3):176-181.[吳瑞金.我國湖泊資源環(huán)境現(xiàn)狀與對策.中國科學院院刊,2001,16(3):176-181.]
[5] Huang Xiaoping,Gong Yan.Fishery resources status and conservation in Lake Poyang.Jiangxi Fishery Sciences and Technology,2007,(4):2-6.[黃曉平,龔雁.鄱陽湖漁業(yè)資源現(xiàn)狀與養(yǎng)護對策研究.江西水產(chǎn)科技,2007,(4):2-6.]
[6] Hu Maolin,Wu Zhiqiang,Liu Yinlan.Fish diversity and community structure in Hukou area of Lake Poyang.JLake Sci,2011,23(2):246-250.DOI:10.18307/2011.0213.[胡茂林,吳志強,劉引蘭.鄱陽湖湖口水域魚類群落結(jié)構(gòu)及種類多樣性.湖泊科學,2011,23(2):246-250.]
[7] Tang Qiongying,LiMingzheng.Fish diversity in Yangtze River and Yangtze River Fishery.Nature,2014,2:8-11.[唐瓊英,黎明政.“休漁十年”何時實現(xiàn)——長江魚類多樣性及長江漁業(yè).大自然,2014,2:8-11.]
[8] Simmonds J,MacLennan DN.Fisheries acoustics:Theory and practice.Oxford:Blackwell Science Ltd,2005:437.
[9] Tao J,Gong Y,Tan X etal.Spatiotemporal patterns of the fish assemblages downstream of the Gezhouba Dam on the Yangtze River.Science China Life Sciences,2012,55(7):626-636.DOI:10.1007/s11427-012-4349-0.
[10] Lin PC,Gao X,Zhu QG etal.Hydroacoustic survey on the spatialdistribution pattern and day-night rhythmic behaviour of fishes in the Xiaonanhai reach of the upper Yangtze River.Journal of Applied Ichthyology,2013,29(6):1402-1407. DOI:10.1111/jai.12342.
[11] Lin PC,Brosse S,Gao X etal.Species composition and temporal pattern of fish passing through the navigation locks in the middle reach of Yangtze River:Implications for fish conservation.Journal of Applied Ichthyology,2013,29(6):1441-1444.DOI:10.1111/jai.12362.
[12] Sun M,Chen DQ,Wang K et al.Hydroacoustic surveys on temporal and spatial distribution of fishes in the section from Chenglingji to Yichang of the Yangtze Rivermiddle reaches.Journal of Applied Ichthyology,2013,29(6):1459-1462. DOI:10.1111/jai.12368.
[13] Ren Yuqin,Chen Daqing,Liu Shaoping et al.Spatio-temporal distribution of fish in the Pengxi River arm of the Three Gorges reservoir.Acta Ecologica Sinica,2012,32(6):1734-1744.DOI:10.5846/stxb201103010249.[任玉芹,陳大慶,劉紹平等.三峽庫區(qū)澎溪河魚類時空分布特征的水聲學研究.生態(tài)學報,2012,32(6):1734-1744.]
[14] Lian Yuxi,Huang Geng,Godlewska M et al.Hydroacoustic assessment of spatial-temporal distribution and abundance of fish resources in the Xiangxi River.Acta Hydrobiologica Sinica,2015,39(5):920-929.DOI:10.7541/2015.121.[連玉喜,黃耿,Godlewska M等.基于水聲學探測的香溪河魚類資源時空分布特征評估.水生生物學報,2015,39(5):920-929.]
[15] Mou Hongmin,Yao Junjie,Ni Chaohui et al.Hydroacoustic survey of fish resource and spatial distribution in Hongfeng Lake.South China Fisheries Science,2012,8(4):62-69.[牟洪民,姚俊杰,倪朝輝等.紅楓湖魚類資源及空間分布的水聲學調(diào)查研究.南方水產(chǎn)科學,2012,8(4):62-69.]
[16] Sun Mingbo,Gu Xiaohong,Zeng Qingfei et al.Ecologicalmonitoring of the fish resources catching and stocking in Lake Tianmu basing on the hydroacoustic method.Acta Ecologica Sinica,2013,33(23):7553-7562.DOI:10.5846/stxb201209071265.[孫明波,谷孝鴻,曾慶飛等.基于水聲學方法的天目湖魚類資源捕撈與放流的生態(tài)監(jiān)測.生態(tài)學報,2013,33(23):7553-7562.]
[17] Sun Mingbo,Gu Xiaohong,Zeng Qingfei et al.Hydroacoustic assessmentof fish resources in reservoirswith different fisherymanagement.Chinese Journal ofApplied Ecology,2013,24(1):235-242.[孫明波,谷孝鴻,曾慶飛等.不同漁業(yè)方式水庫魚類資源的水聲學評估.應(yīng)用生態(tài)學報,2013,24(1):235-242.]
[18] Editorial Committee for studies on Lake Poyang ed.Studies on Lake Poyang.Shanghai:Publishing House of Science and Technology,1988.[鄱陽湖研究編委會.鄱陽湖研究.上海:上??茖W技術(shù)出版社,1988.]
[19] LiMingzheng.Study on the life history strategies of fishes in the Yangtze River and its adaption to environment during early life history stage[Dissertation].Wuhan:Institute of Hydrobiology,CAS,2012.[黎明政.長江魚類生活史對策及其早期生活史階段對環(huán)境的適應(yīng)[學位論文].武漢:中國科學院水生生物研究所,2012.]
[20] Yang Shaorong,LiMingzheng,Zhu Qiguang etal.Spatial and temporal variationsof fish assemblages in Lake Poyang.Resources and Environment in the Yangtze Basin,2015,24(1):54-64.DOI:10.11870/cjlyzyyhj201501008.[楊少榮,黎明政,朱其廣等.鄱陽湖魚類群落結(jié)構(gòu)及其時空動態(tài).長江流域資源與環(huán)境,2015,24(1):54-64.]
[21] Aglen A.Random errorsof acoustic fish abundanceestimates in relation to the survey grid density applied.Norway:Symposium on Fisheries Acoustics,1983:293-298.
[22] Foote KG.Fish target strengths for use in echo integrator survey s.Journal of the Acoustical Society ofAmerican,1987,82(3):981-987.
[23] Balk Helge.Development of hydroacoustic methods for fish detection in shallow water[Dissertation].Norway:University of Oslo,2001.
[24] Misund OA.Underwater acoustics in marine fisheries and fisheries research.Reviews in Fish Biology and Fisheries,1997,7(1):1-34.DOI:10.1023/A:1018476523423.
[25] Tao Jiangping,AiWeiming,Gong Yitian etal.Assessmentof fish abundance and distribution using fisheries acoustics and GISmodeling in the NanxiRiver ofWenzhou City.Acta Ecologica Sinica,2010,30(11):2992-3000.[陶江平,艾為明,龔昱田等.采用漁業(yè)聲學方法和GIS模型對楠溪江魚類資源量及空間分布的評估.生態(tài)學報,2010,30(11):2992-3000.]
[26] Hu Maolin,Wu Zhiqiang,Liu Yinlan.Time course of the juvenilemajor Chinese carps in the Hukou waters of Lake Poyang.Resourcesand Environment in the Yangtze Basin,2011,20(5):534-539.[胡茂林,吳志強,劉引蘭.鄱陽湖湖口水域四大家魚幼魚出現(xiàn)的時間過程.長江流域資源與環(huán)境,2011,20(5):534-539.]
[27] Qian Xin'e,Huang Chungen,Wang Yamin et al.The status quo of fishery resources of Lake Poyang and its environmental monitoring.Acta Hydrobiologica Sinica,2002,26(6):612-617.[錢新娥,黃春根,王亞民等.鄱陽湖漁業(yè)資源現(xiàn)狀及其環(huán)境監(jiān)測.水生生物學報,2002,26(6):612-617.]
[28] Jackson DA,Peres-Neto PR,Olden JD.What controls who is where in freshwater fish communities-the roles of biotic,abiotic,and spatial factors.Canadian Journal ofFisheriesand Aquatic Sciences,2001,58(1):157-170.DOI:10.1139/cjfas-58-1-157.
[29] Godlewska M,Swierzowski A.Hydroacoustical parameters of fish in reservoirs with contrasting levels of eutrophication.A-quatic Living Resources,2003,16(3):167-173.DOI:http://dx.doi.org/10.1016/S0990-7440(03)00014-7.
[30] Bret V,Bergerot B,Capra H et al.Influence of discharge,hydraulics,water temperature,and dispersal on density synchrony in brown trout populations(Salmotrutta).Canadian Journal ofFisheriesand Aquatic Sciences,2015,73(3):319-329.DOI:10.1139/cjfas-2015-0209.
[31] Zhou L,Zeng L,F(xiàn)u D et al.Fish density increases from the upper to lower parts of the Pearl River Delta,China,and is influenced by tide,chlorophyll-a,water transparency,and water depth.Aquatic Ecology,2015,50(1):59-74.DOI:10. 1007/s10452-015-9549-9.
[32] Van Nguyen L,Phan HK.Distribution and factors influencing on structure of reef fish communities in NhaTrang Bay Marine Protected Area,South-Central Vietnam.Environmental Biology of Fishes,2008,82(3):309-324.DOI:10.1007/s10641-007-9293-7.
[33] Marchetti MP,Moyle PB.Effects of flow regime on fish assemblages in a regulated California stream.Ecological Applica-tions,2001,11(2):530-539.DOI:10.1890/1051-0761(2001)011[0530:EOFROF]2.0.CO;2.
[34] Du Hao,Ban Xuan,Zhang Hui etal.Preliminary observation on preference of fish in natural channel towater velocity and depth:Case study in reach of Yangtze River from Jiangkou Town to Yuanshi Town.Journal ofYangtze River Scientific Research Institute,2010,27(10):70-71.[杜浩,班璇,張輝等.天然河道中魚類對水深、流速選擇特性的初步觀測.長江科學院院報,2010,27(10):70-71.]
[35] Dra?tík V,Kubecˇka J.Fish avoidance of acoustic survey boat in shallow waters.FisheriesResearch,2005,72(2/3):219-228.DOI:10.1016/j.fishres.2004.10.017
[36] Fernandas CC,Podos J,Lundberg JC.Amazonian ecology:Tributaries enhance the diversity of electric fishes.Science,2004,305(5692):1960-1962.DOI:10.1126/science.1101240.
[37] R?pke CP,Amadio SA,Winemiller KO etal.Seasonal dynamics of the fish assemblage in a floodplain lake at the confluence of the Negro and Amazon Rivers.Journal of Fish Biology,2015,89(1):194-212.DOI:10.1111/jfb.12791.
[38] Gayoso AM,Podesta GP.Surface hydrography and phytoplankton of the Brazil-Malvinas currents confluence.Journal of Plankton Research,1996,18(6):941-951.DOI:10.1093/plankt/18.6.941.
Spatial distribution and biomass assessment of fish in the channel connecting the Lake Poyang and the Yangtze River
CHENWenjing1,HEGang1,WU Bin1,F(xiàn)ANG Chunlin1&LIN Pengcheng2,3??
(1:Fishery Research Institute of Jiangxi Province,Nanchang 330039,P.R.China)
(2:Institute ofHydrobiology,Chinese Academy ofSciences,Wuhan 430072,P.R.China)
(3:Key Laboratory of Aquatic Biodiversity and Conservation,Chinese Academy of Sciences,Wuhan 430072,P.R.China)
Channels between lakes and rivers play a crucial role in maintaining fish population dynamics and their diversity in floodplains.In order to better understand the spatial distribution and the biomassof fish in the channel connecting the Lake Poyang and the Yangtze River,a mobile hydroacoustic survey was conducted in September 2014,using Simrad EY60 split-beam echo sounder(200 kHz).The spatial distribution of fish density and biomass for each cellof the studied region was derived from the spatial interpolation with geostatistics of ArcGIS.The results showed that the mean target strength(TS)in the investigated areas is -56.4±6.4 dB and themean total length is about 7.6 cm,ranging from 1.2 to 98.0 cm.Average fish density in the channel was 53.7 ind./1000 m3,ranging from 0-441.7 ind./1000m3.Horizontally,fish assemblageswere unevenly distributed in the investigated areas and concentrated mainly in three areas,that is,the section near Hukou Country,Xieshan and Pingfeng Hill,respectively.Themost striking feature in fish density was the concave-shaped distribution in the channel along the water flow direction(from lake to river).The fish size(total length)in the area near Lake Poyang(AreaⅢ)was significantly smaller than that in the waters near Yangtze River(AreaⅠ)and the transition zones(AreaⅡ).One possible reason for thismight be a large number of young-of-the-year fish emerged after spawning period.Fish density increased vertically from the upper layer of thewater to the lower layers.Meanwhile,our results supported the generality of the phenomenon of increasing fish size with increasing depth(i.e.,bigger-deeper phenomenon).In addition,the total amount of fish biomass in the investigated area was estimated to be 6.2×107ind.,up to 620 tons.Our findings suggested the need to enhance the protection for these essential fish habitats.This study also contributes to the knowledge of the current state of fish resources and can be useful for proper resources conservation and effective ecosys-tem management of the floodplain biodiversity.
Lake Poyang;connections between lakes and rivers;ecological corridor;hydroacoustics;characteristics of spatial distribution;fish biomass
DOI 10.18307/2017.0416
?2017 by Journal of Lake Sciences
?江西省科技重大專項(20114ABG01100-1-02-2)資助.2016-06-22收稿;2016-10-26收修改稿.陳文靜(1965~),女,研究員;E-mail:418215117@qq.com.
??通信作者;E-mail:linpc@ihb.ac.cn.