韓昕男 武淑芬 黑黽哲
摘要 脂肪酶抑制劑通過抑制脂肪酶的活性減少油脂的消化吸收,對肥胖癥及其并發(fā)癥有良好的治療和預(yù)防作用。重點闡述了化學(xué)合成、微生物發(fā)酵和植物提取3種不同來源的脂肪酶抑制劑的研究現(xiàn)狀,并對其后期的研究趨勢進行探討。
關(guān)鍵詞 脂肪酶抑制劑;化學(xué)合成;微生物發(fā)酵;植物提取
中圖分類號 Q814.9;TQ925+.6 文獻標識碼 A 文章編號 0517-6611(2017)03-0138-03
Abstract Lipase inhibitors control and reduce the digestion and absorption of fat by inhibiting the activity of lipase, having a good therapeutic effect on obesity as well as its complications. The research status of lipase inhibitor from chemical synthesis, microbial fermentation and plant extraction were elaborated, research trends were discussed.
Key words Lipase inhibitor;Chemical synthesis;Microbial fermentation;Plant extraction
肥胖是導(dǎo)致眾多慢性疾病的高危因素,與過早死亡風(fēng)險的增加密切相關(guān)[1]?!吨袊用駹I養(yǎng)與慢性病狀況報告(2015年)》顯示,我國超重與肥胖人口已達3.25億,而兒童肥胖率高達8.1%,面對如此重大的公共衛(wèi)生問題,預(yù)防和治療肥胖癥狀成為當(dāng)前研究的熱點。體內(nèi)脂肪積聚過多是導(dǎo)致肥胖的重要原因。目前,肥胖的治療方法主要包括減少食物攝入、促進能量消耗、降低脂肪細胞分化、調(diào)節(jié)脂肪代謝以及抑制脂肪酶活性等[2]。現(xiàn)代研究表明,脂肪酶抑制劑可有效降低消化道脂肪酶活性,達到減少脂肪吸收、預(yù)防和改善肥胖癥狀的目的[3],因此其研究與應(yīng)用受到廣泛關(guān)注。筆者綜述了不同來源脂肪酶抑制劑的研究進展。
1 化學(xué)合成來源的脂肪酶抑制劑
化學(xué)合成的有機磷化合物對脂肪酶的抑制作用明顯,但這類脂肪酶抑制劑主要用來研究脂肪酶的催化反應(yīng)機理[4]。近年來,由英國Alizyme公司開發(fā)合成并于2013年9月在日本上市的新利司他(Cetilistat)是一種新型強效的脂肪酶抑制劑,具有不作用于神經(jīng)系統(tǒng)、不被血液吸收的優(yōu)點[5]。
2 微生物發(fā)酵來源的脂肪酶抑制劑
微生物種類豐富,代謝產(chǎn)物繁多,是產(chǎn)生脂肪酶抑制劑的重要來源。Umezawa等[6]在1978年從Streptomyces lavendulae MD4-Cl的發(fā)酵液中通過抽提、硅膠柱洗脫等步驟獲得一種強效胰脂酶抑制劑(Esterastin),其IC50值為0.000 2 μg/mL。Lipstatin(IC50=0.14 μmol/L)是來源于Streptomyces tocytricini的代謝產(chǎn)物[7],其氫化衍生物奧利司他(Orlistat)已被羅氏公司成功開發(fā)為減肥藥物 Xenical,后者較前者性質(zhì)更加穩(wěn)定。Orlistat是目前唯一一類由美國FDA和歐盟批準且可長期(> 3個月)管理控制肥胖患者體重的減肥藥物[8],然而其長期服用仍會引起胃腸道反應(yīng)、肝損害等副作用[9]。隨后,羅氏公司從Streptomyces sp.NR 0619 菌株中分離得到其他的胰脂肪酶抑制劑,命名為Panclicin A、B、C、D、E,IC50值分別為2.90、2.60、0.62、0.66、0.89 μmol/L,經(jīng)結(jié)構(gòu)分析,Panclicin C、D、E為甘氨酸型化合物,而 Panclicin A、B 為丙氨酸型化合物,其脂肪酶抑制活性低于前三者[10]。
Liu等[11]成功地從云南高等真菌中分離獲得全新結(jié)構(gòu)的活性物質(zhì)韌革菌素,并被證實對脂肪酶有強烈的抑制作用(IC50=0.4 μg/mL),目前已申請國際專利。2007年,KIM等[12]研究表明,一些紅曲色素衍生物具有脂肪酶抑制活性。近年來,研究證實植物內(nèi)生菌代謝產(chǎn)物中存在脂肪酶抑制活性物質(zhì)[13-14]。
目前已報道的脂肪酶抑制劑產(chǎn)生菌主要集中于放線菌或真菌,許多學(xué)者強調(diào)并嘗試從不同種屬微生物獲取脂肪酶抑制劑[15-17],未來將會有更多微生物源脂肪酶抑制劑被發(fā)現(xiàn)報道。
3 植物提取來源的脂肪酶抑制劑
植物也是脂肪酶抑制劑的重要來源。天然植物資源種類豐富,安全系數(shù)高,從中篩選有效的抑制劑得到廣泛關(guān)注。已報道的植物來源脂肪酶抑制劑主要集中于以下幾類化合物。
3.1 黃酮類化合物
甘草黃酮是甘草的重要活性成分,從其根部提取得到黃酮類化合物L(fēng)icochalcone A,對脂肪酶有抑制作用,IC50值為35 μmol/L[18]。Wang等[19]研究發(fā)現(xiàn)中藥TZQ-F中的荷葉黃酮和山楂葉黃酮對胰脂肪酶有抑制作用,IC50值分別為317.9 和324.0 μmol/L。Tao等[20]分析表明荷葉中的3種黃酮化合物Quercetin-3-O-β-D-arabinopyranosyl-(1D-)-β-D-ga-lactopyranoside、Quercetin-3-O-β-D-glucuronide和Kaempferol-3-O-β-D -glucuronide 可有效抑制脂肪酶的活性,其IC50值分別為 66.86、94.89和135.01 μmol/L。 Wan 等[21]借助固定化脂肪酶從黃芩提取物中分離得到3種黃酮類化合物,IC50值分別為(229.22±12.67)、(153.71±9.21)、(56.07±4.90)μmol/L。
3.2 皂苷類化合物
Yoshikawa等[22]研究發(fā)現(xiàn)山茶花中的齊墩果酸型皂苷Chakasaponins Ⅰ、Ⅱ、Ⅲ均對胰脂肪酶具有抑制活性,IC50值分別為0.15、0.17和0.53 mmol/L。Morikawa 等[23]也發(fā)現(xiàn)毛瓣無患子中含有的齊墩果烷型皂苷具有脂肪酶抑制性。Kimura 等[24]分析發(fā)現(xiàn)日本七葉樹中的七葉樹皂苷(Escins)及其衍生物去酰基七葉樹皂苷(Desacylescins)和去乙酰七葉樹皂苷(Deacetylescins)均具有顯著的脂肪酶抑制活性。另外,來源于刺加五、桔梗、茶葉、薯蕷的皂苷也具有脂肪酶抑制活性[25-28]。
3.3 萜類化合物
Handa 等[29]從杉樹中分離出6種三萜類化合物,均具有較強的脂肪酶抑制活性。Luyen等[30]從杭白菊中分離出的倍半萜化合物10α-hydroxy-1α,4α-endoperoxy-guaia-2-en-12,6α-olide 對脂肪酶有抑制活性,IC50值為161.0 μmol/L。Ninomiya等[31]研究發(fā)現(xiàn)鼠尾草中含有5種對脂肪酶有顯著抑制作用的化合物,包括4種二萜化合物(Carnosic acid、Carnosol、Royleanonic acid、7-methoxyrosmanol)和1種三萜化合物(Oleanolic acid),IC50值分別為12.0、4.4、35.0、32.0和83.0 μg/mL。此外,在軟棗獼猴桃根中分離到的熊果酸等6個三萜類化合物,馬薄荷中提取出的單萜化合物香芹酚、巴拉圭冬青葉中分離得到的3個三萜類化合物均具有抑制脂肪酶的效果[32-34]。
3.4 多酚類化合物
植物中提取的富含多酚的成分[35]對脂肪酶有很強的抑制作用。 Eom 等[36]測定了褐藻中分離出的6 種多酚類化合物的脂肪酶抑制活性,發(fā)現(xiàn)6 種物質(zhì)均對脂肪酶有顯著的抑制作用,其中Fucofuroeckol A和7-phloro-eckol對脂肪酶的抑制率較高,IC50值分別為(37.2±2.3)和(12.7±1.0)μmol/L。Wu等[37]測定了荔枝花中提取的多酚類化合物的脂肪酶活性的抑制效果,發(fā)現(xiàn)當(dāng)多酚提取物濃度為7.0 mg/mL時,對脂肪酶的抑制率為44.69%。You等[38]測定了麝香葡萄及其葡萄籽對胰脂肪酶活性的抑制效果,其IC50值為8.63 mg/mL。另外,構(gòu)樹、苦丁冬青苦丁茶、烏龍茶、水翁花、燕麥中的多酚類物質(zhì)對脂肪酶活性也有較強的抑制作用[39-43]。
3.5 生物堿類化合物
荷葉中的生物堿成分可以降脂[44],范婷婷等[45]研究發(fā)現(xiàn)荷葉提取物(1 mg/mL)對脂肪酶的抑制率為11.25%,而荷葉堿、N-降荷葉堿、O-降荷葉堿對脂肪酶的抑制率分別為25.77%、 21.37%、24.63%。Birari等[46]發(fā)現(xiàn)咖喱葉中含有對胰脂肪酶有抑制作用的生物堿成分,其中Mahanimbin、Koenimbin和Koenigicine的IC50值分別為17.9、168.6和428.6 μmol/L。Wang等[47]在研究治療糖尿病藥物中發(fā)現(xiàn),添加荷葉生物堿和桑葉生物堿成分對脂肪酶的抑制作用明顯。
3.6 多糖類化合物
除上述小分子化合物外,多糖類物質(zhì)對脂肪酶活性也有抑制作用。Huang等[48]測定了決明子水溶性多聚糖提取物對脂肪酶活性的抑制率,發(fā)現(xiàn)當(dāng)多糖提取物的質(zhì)量濃度為20.00 mg/mL時,Cassia obtusifolia和Cassia tora對脂肪酶的抑制率分別為94.5%和95.3%。Kumar 等[49]利用鹽酸和檸檬酸提取蘋果渣中的果膠物質(zhì),發(fā)現(xiàn)脂肪酶抑制率可高達94.30%。
3.7 其他類化合物
早在1984 年 Gargouri 等[50]就從大豆種子中分離得到一種分子量大約在7 萬的蛋白,經(jīng)測定可有效抑制胰脂肪酶的活性。Chanmee 等[51]從黃果茄中分離得到具有脂肪酶抑制活性的甾醇類成分,Kumar等[52]研究了蘋果渣提取物對脂肪酶的抑制作用。
4 展望
隨著肥胖人群的激增,開發(fā)安全有效的減肥藥迫在眉睫,其中通過抑制脂肪酶的活性來達到減肥目的成為研究熱點,吸引了眾多研究者的關(guān)注。脂肪酶抑制劑的來源主要包括化學(xué)合成、微生物發(fā)酵與植物提取。化學(xué)合成類脂肪酶抑制劑由于往往存在副作用,因此研究者對天然來源的,即微生物發(fā)酵與植物提取的脂肪酶抑制劑研究較多,并且發(fā)現(xiàn)很多對脂肪酶有顯著抑制作用的成分。然而,植物中的活性成分含量較低,難以大量提取,這是制約植物提取來源脂肪酶抑制劑工業(yè)化發(fā)展的關(guān)鍵因素。 微生物發(fā)酵源脂肪酶抑制劑具有周期短、產(chǎn)量大的優(yōu)點,這為研究微生物源脂肪酶抑制劑奠定了良好的物質(zhì)基礎(chǔ)。同時,植物與微生物源脂肪酶抑制劑的構(gòu)效關(guān)系與其作用機制尚不完全明晰,可作為今后研究的方向。
參考文獻
[1] ANGELANTONIO E D,BHUPATHIRAJU S N,WORMSER D,et al.Bodymass index and allcause mortality:Individualparticipantdata metaanalysis of 239 prospective studies in four continents[J].Lancet,2016,388(10046):776-786.
[2] YUN J W.Possible antiobesity therapeutics from nature:A review[J].Phytochemistry,2010,71(14/15):1625-1641.
[3] MERA Y,KAWAI T,OGAWA N,et al.JTT130,a novel intestinespecific inhibitor of microsomal triglyceride transfer protein,ameliorates lipid metabolism and attenuates atherosclerosis in hyperlipidemic animal models[J].Journal of pharmacological sciences,2015,129(3):169-176.
[4] GARGOURI Y,RANSAC S,VERGER R.Covalent inhibition of digestive lipases:An in vitro study[J].Biochimica et biophysica acta,1997,1344(1):6-37.
[5] GRAS J.Cetilistat for the treatment of obesity[J].Drugs of today,2013,49(12):755-759.
[6] UMEZAWA H,AOYAGI T,HAZATO T,et al.Esterastin,an inhibitor of esterase,produced by actinomycetes[J].Journal of antibiotics,1978,31(6):639-641.
[7] WEIBEL E K,HADVARY P,HOCHULI E,et al.Lipstatin,an inhibitor of pancreatic lipase,produced by Streptomyces toxytricini[J].African journal of biotechnology,2008,5(5):1437-1455.
[8] HASLAM D.Weight management in obesitypast and present[J].International journal of clinical practice,2016,70(3):206-217.
[9] DREW B S,DIXON A F,DIXON J B.Obesity management:Update on orlistat[J].Vascular health & risk management,2007,3(6):817-821.
[10] MUTOH M,NAKADA N,MATSUKUMA S,et al.Panclicins,novel pancreatic lipase inhibitors.I.Taxonomy,fermentation,isolation and biological activity[J].Journal of antibiotics,1995,47(12):1369-1375.
[11] LIU D Z,WANG F,LIAO T G,et al.Vibralactone:A lipase inhibitor with an unusual fused βlactone produced by cultures of the basidiomycete Boreostereum vibrans[J].Organic letters,2006,8(25):5749-5752.
[12] KIM J H,KIM H J,KIM C,et al.Development of lipase inhibitors from various derivatives of monascus pigment produced by Monascus fermentation[J].Food chemistry,2007,101(1):357-364.
[13] GUPTA M,SAXENA S,GOYAL D.Lipase inhibitory activity of endophytic fungal species of Aegle marmelos:Abioresource for potential pancreatic lipase inhibitors[J].Symbiosis,2014,64(3):149-157.
[14] GUPTA M,SAXENA S,GOYAL D.Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species[J].Journal of enzyme inhibition & medicinal chemistry,2015,30(1):15-21.
[15] 劉蘭,周培華,曾偉,等.脂肪酶抑制劑產(chǎn)生菌的篩選和鑒定[J].食品與生物技術(shù)學(xué)報,2013,32(2):219-223.
[16] 孫菲,鄭榕,楊煌建,等.胰脂肪酶抑制劑產(chǎn)生菌的篩選[J].生物技術(shù)進展,2014(1):40-43.
[17] 朱珺,吳石金.胰脂肪酶抑制劑產(chǎn)生菌的篩選和鑒定[J].發(fā)酵科技通訊,2015,44(4):10-14.
[18] WON S R,KIM S K,KIM Y M,et al.Licochalcone A:A lipase inhibitor from the roots of Glycyrrhiza uralensis[J].Food research international,2007,40(8):1046-1050.
[19] WANG T,ZHANG D Q,LI Y H,et al.Regulation effects on abnormal glucose and lipid metabolism of TZQF,a new kind of traditional Chinese medicine[J].Journal of ethnopharmacology,2010,128(3):575-582.
[20] TAO Y,ZHANG Y F,WANG Y,et al.Hollow fiber based affinity selection combined with high performance liquid chromatographymass spectroscopy for rapid screening lipase inhibitors from lotus leaf[J].Analytica chimica acta,2013,785:75-81.
[21] WAN L H,JIANG X L,LIU Y M,et al.Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism[J].Analytical & bioanalytical chemistry,2016,408(9):2275-2283.
[22] YOSHIKAWA M,SUGIMOTO S,KATO Y,et al.Acylated oleananetype triterpene saponins with acceleration of gastrointestinal transit and inhibitory effect on pancreatic lipase from flower buds of chinese tea plant(Camellia sinensis)[J].Chemistry & biodiversity,2009,6(6):903-915.
[23] MORIKAWA T,XIE Y Y,ASAO Y,et al.Oleananetype triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak[J].Phytochemistry,2009,70(9):1166-1172.
[24] KIMURA H,OGAWA S,KATSUBE T,et al.Antiobese effects of novel saponins from edible seeds of Japanese horse chestnut(Aesculus turbinata BLUME)after treatment with wood ashes[J].Journal of agricultural & food chemistry,2008,56(12):4783-4788.
[25] LI F,LI W,F(xiàn)U H W,et al.Pancreatic lipaseinhibiting triterpenoid saponins from fruits of Acanthopanax senticosus[J].Chemical & pharmaceutical bulletin,2007,55(7):1087-1089.
[26] HAN L K,KIMURA Y,KAWASHIMA M T,et al.Antiobesity effects in rodents of dietary teasaponin,a lipase inhibitor[J].International journal of obesity,2001,25(10):1459-1464.
[27] HAN L K,ZHENG Y N,XU B J,et al.Saponins from platycodi radix ameliorate high fat dietinduced obesity in mice[J].Journal of nutrition,2002,132(8):2241-2245.
[28] KWON C S,SOHN H Y,KIM S H,et al.Antiobesity effect of Dioscorea nipponica Makino with lipaseinhibitory activity in rodents[J].Bioscience biotechnology & biochemistry,2003,67(7):1451-1456.
[29] HANDA M,MURATA T,KOBAYASHI K,et al.Lipase inhibitory and LDL antioxidative triterpenes from Abies sibirica[J].Phytochemistry,2013,86(2):168-175.
[30] LUYEN N T,TRAM L H,HANH T T H,et al.Inhibitors of αglucosidase,αamylase and lipase from Chrysanthemum morifolium[J].Phytochemistry letters,2013,6(3):322-325.
[31] NINOMIYA K,MATSUDA H,SHIMODA H,et al.Carnosic acid,a new class of lipid absorption inhibitor from sage[J].Bioorganic & medicinal chemistry letters,2004,14(8):1943-1946.
[32] JANG D S,LEE G Y,KIM J,et al.A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta[J].Archives of pharmacal research,2008,31(5):666-670.
[33] YAMADA K,MURATA T,KOBAYASHI K,et al.A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata[J].Phytochemistry,2010,71(16):1884-1891.
[34] SUGIMOTO S,NAKAMURA S,YAMAMOTO S,et al.Brazilian natural medicines.III.Structures of triterpene oligoglycosides and lipase inhibitors from mate,leaves of ilex paraguariensis[J].Chemical & pharmaceutical bulletin,2009,57(3):257-261.
[35] BUCHHOLZ T,MELZIG M F.Polyphenolic compounds as pancreatic lipase inhibitors[J].Planta medica,2015,81(10):771-783.
[36] EOM S H,LEE M S,LEE E W,et al.Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis[J].Phytotherapy research,2013,27(1):148-151.
[37] WU Y H S,CHIU C H,YANG D J,et al.Inhibitory effects of litchi(Litchi chinensis Sonn.)flowerwater extracts on lipase activity and dietinduced obesity[J].Journal of functional foods,2013,5(2):923-929.
[38] YOU Q,CHEN F,WANG X,et al.Antidiabetic activities of phenolic compounds in muscadine against alphaglucosidase and pancreatic lipase[J].LWTFood Science and Technology,2012,46(1):164-168.
[39] AHN J H,LIU Q,LEE C,et al.Cheminform abstract:A new pancreatic lipase inhibitor from Broussonetia kanzinoki[J].Cheminform,2012,43(35):2760-2763.
[40] 張麗娜.水翁花對胰脂肪酶和α-淀粉酶抑制活性及作用機制初步探討[D].上海:華東理工大學(xué),2012.
[41] 張文芹.苦丁冬青苦苦丁茶多酚類物質(zhì)抗肥胖作用的研究[D].南京:南京農(nóng)業(yè)大學(xué),2011.
[42] CAI S B,WANG O,WANG M Q,et al.In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats(Avena sativa L.)and synergistic effect of three phenolic acids[J].Journal of agricultural & food chemistry,2012,60(29):7245-7251.
[43] ZHU Y T,REN X Y,YUAN L,et al.Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLCMS/MS[J].Food chemistry,2015,173:521-526.
[44] CHEN X P,YANG P,ZHANG Y D.Studies on separation and purification of alkaloid from lotus leaves and inhibition effects of extracts on lipase activity[J].Research of agricultural modernization,2009,30(6):748-751,760.
[45] 范婷婷,法魯克,方芳,等.荷葉總生物堿降脂減肥作用的體內(nèi)外試驗[J].浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版),2013,39(2):141-148.
[46] BIRARI R,ROY S K,SINGH A,et al.Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves[J].Natural product communications,2009,4(8):1089-1092.
[47] WANG T,ZHANG D Q,LI Y H,et al.Regulation effects on abnormal glucose and lipid metabolism of TZQF,a new kind of Traditional Chinese Medicine[J].J Ethnopharmacol,2010,128(3):575-582.
[48] HUANG Y L,CHOW C J,TSAI Y H.Composition,characteristics,and invitro physiological effects of the watersoluble polysaccharides from Cassia seed[J].Food chemistry,2012,134(4):1967-1972.
[49] KUMAR A,CHAUHAN G S.Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin)inhibitor[J].Carbohydrate polymers,2010,82(2):454-459.
[50] GARGOURI Y,JULIEN R,PIERONI G,et al.Studies on the inhibition of pancreatic and microbial lipases by soybean proteins[J].Journal of lipid research,1984,25(11):1214-1221.
[51] CHANMEE W,CHAICHAROENPONG C,PETSOM A.Lipase inhibitor from fruits of Solanum stramonifolium Jacq.[J].Food & nutrition sciences,2013,4(5):554-558.
[52] KUMAR A,CHAUHAN G S.Extraction and characterization of pectin from apple pomace and its evaluation as lipase(steapsin)inhibitor[J].Carbohydrate polymers,2010,82(2):454-459.