国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

減氮及硝化抑制劑對菜地氧化亞氮排放的影響*

2017-08-31 11:03:32熊正琴
土壤學(xué)報 2017年4期
關(guān)鍵詞:施氮集約化菜地

陳 浩 李 博 熊正琴

(江蘇省低碳農(nóng)業(yè)和溫室氣體減排重點實驗室,南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,南京 210095)

減氮及硝化抑制劑對菜地氧化亞氮排放的影響*

陳 浩 李 博 熊正琴?

(江蘇省低碳農(nóng)業(yè)和溫室氣體減排重點實驗室,南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,南京 210095)

利用靜態(tài)暗箱—氣相色譜法,周年監(jiān)測集約化菜地四種蔬菜種植過程中N2O的排放和蔬菜產(chǎn)量變化,探究減氮(640、960 kg hm-2a-1)以及施用硝化抑制劑氯甲基吡啶(CP)對菜地N2O排放的影響。結(jié)果表明,與常規(guī)施氮(Nn)處理相比,減量施氮(Nr)在不顯著降低產(chǎn)量的情況下平均降低菜地N2O排放27.1%;與僅施用尿素的處理相比,在減量和常規(guī)施氮水平的基礎(chǔ)上添加硝化抑制劑又分別能降低菜地N2O排放總量29.4%、26.0%,降低N2O排放系數(shù)60.9%、42.4%,而對蔬菜產(chǎn)量沒有顯著影響,因此顯著降低菜地單位產(chǎn)量N2O排放量32.1%、30.3%,以減氮結(jié)合CP(CP-Nr)處理減排效果最佳。因此,減氮結(jié)合CP應(yīng)用于集約化蔬菜生產(chǎn)是一種有效的菜地減排農(nóng)業(yè)措施。

集約化菜地;N2O排放;氮肥減量;硝化抑制劑

氧化亞氮(N2O)是最重要的溫室氣體之一[1]。在所有已知的N2O排放源中,農(nóng)業(yè)活動是其中最重要的釋放源[2]。研究表明,農(nóng)田土壤N2O排放占全球人為活動引起N2O排放的70%[3]。據(jù)統(tǒng)計,中國化肥用量從1978年的8.8×106t增加至2012年的5.8×107t[4],而化學(xué)氮肥投入的增加是農(nóng)田N2O排放增加的重要原因[5-6]。我國是蔬菜生產(chǎn)大國,蔬菜種植面積由1989年的6.3×106hm2發(fā)展到2014年的2.1×107hm2,占當(dāng)年農(nóng)作物總播種面積的12.9%[4]。集約化菜地具有灌溉頻繁、復(fù)種指數(shù)高、施肥量大[7]等特點,是重要的農(nóng)田N2O排放源。

通常,一季蔬菜的施氮量可高達300~700 kg hm-2[8],遠超過推薦施肥量,造成氮肥利用率低[9],N2O大量排放[10],甚至減產(chǎn)、土壤酸化等一系列負面影響[11]。氮肥合理優(yōu)化施用,是實現(xiàn)集約化蔬菜生產(chǎn)可持續(xù)發(fā)展的重要措施。劉兆輝等[12]研究表明農(nóng)業(yè)生產(chǎn)中,在一定范圍內(nèi)減少施氮量可能不影響作物產(chǎn)量甚至增產(chǎn),但在部分區(qū)域減氮仍然會導(dǎo)致減產(chǎn),或者并不明顯影響作物產(chǎn)量[13]。因此,在集約化蔬菜生產(chǎn)過程中減量優(yōu)化施氮值得關(guān)注。

近年來,硝化抑制劑作為提高氮肥利用率、減少N2O排放的“良藥”被廣泛關(guān)注。硝化抑制劑對作物產(chǎn)量表現(xiàn)為增產(chǎn)[14]或沒有顯著影響[15]等。水稻[16]、小麥[17]及牧草[18]等生長期內(nèi)施用硝化抑制劑對土壤N2O排放有很好的抑制效果,但在集約化菜地生態(tài)系統(tǒng)中的研究較少。硝化抑制劑在集約化菜地中的施用效果以及與減量施氮配合運用的效果均亟待研究。

本試驗以南京高橋門菜地周年復(fù)種的四種蔬菜為研究對象,周年監(jiān)測減量施氮以及施用硝化抑制劑氯甲基吡啶(CP)對菜地N2O排放和蔬菜產(chǎn)量的影響,以期為我國集約化菜地保產(chǎn)減排提供理論依據(jù)。

1 材料與方法

1.1 研究區(qū)概況

試驗于江蘇省南京市高橋門鎮(zhèn)(32°01′N,118°52′E)進行。該地區(qū)的氣候?qū)儆诘湫偷拈L江中下游亞熱帶季風(fēng)氣候,年平均氣溫15.4 ℃,年均降水量1 107 mm。此地區(qū)集約化種植蔬菜長達數(shù)十年。通過在寒冷季節(jié)使用塑料大棚進行增溫,一年可以種植3~5茬蔬菜,是南方集約化蔬菜生產(chǎn)的典型代表。試驗地土壤類型為旱耕熟化人為土,pH為5.2,容重為1.2 g cm-3,有機碳為19.2 g kg-1,有機氮為2.0 g kg-1。

1.2 試驗設(shè)計

本試驗共設(shè)置4個處理,包含減量施氮(Nr,施氮 640 kg hm-2a-1)和常規(guī)施氮(Nn,施氮 960 kg hm-2a-1),在兩個氮肥水平分別設(shè)施用硝化抑制劑CP(CP-N)、不施用CP(N)。按照當(dāng)?shù)爻R?guī)種植方法,試驗期內(nèi)共種植4茬蔬菜,每季蔬菜施氮量相等。所用氮肥為普通尿素,含硝化抑制劑氯甲基吡啶(CP)的尿素由浙江奧復(fù)托化工有限公司生產(chǎn),含量為尿素態(tài)氮的0.24%,對分解銨態(tài)氮的單細胞硝化桿菌具有抑制作用。常規(guī)施氮量根據(jù)當(dāng)?shù)剞r(nóng)民常規(guī)施肥水平確定的。每個處理3次重復(fù),小區(qū)面積3 m×2.2 m。

試驗期間共種植四種蔬菜,分別為莧菜、空心菜、香菜和小白菜,其中香菜和小白菜種植過程中有塑料大棚覆蓋。具體的蔬菜生長時間與農(nóng)事操作見表1。

蔬菜播種前翻耕平整土壤,其余田間操作與管理措施,如施肥方式、澆水灌溉、病蟲害防治等與當(dāng)?shù)剞r(nóng)戶習(xí)慣一致。每季鉀肥(氯化鉀,60% K2O)和磷肥(鈣鎂磷肥,12% P2O5)施用量均為960 kg hm-2a-1,氮、磷、鉀肥全部作基肥在每季蔬菜種植前一次性施入,施肥方式為表施。

表1 四種蔬菜生長時間及農(nóng)事操作情況Table 1 Growth periods and farming practices of four vegetable crops

1.3 樣品采集與分析

采用靜態(tài)密閉暗箱—氣相色譜法測定菜地N2O排放通量。采樣箱由PVC材質(zhì)制成,采樣底座固定在試驗小區(qū)內(nèi),底座面積為50 cm×50 cm,高度為40 cm。采樣時扣上采樣箱并及時向底座凹槽注水以密封土壤與采樣箱的連接。采樣頻率通常為一周一次,施肥與灌溉后加密采樣,2~3 d一次,持續(xù)7~10 d。采樣時間為當(dāng)天上午9:00~11:00,用20 ml注射性針筒采集氣體樣品,在箱子密閉后0、10、20和30 min共采集4個氣體樣品。采好的樣品帶回實驗室于48 h內(nèi)用安捷倫氣相色譜儀(Agilent 7890A)測定樣品中N2O含量。安捷倫氣相色譜(Agilent 7890A)檢測器為ECD,檢測器溫度300 ℃,載氣為5%氬甲烷。每次采樣時同時測定采樣箱內(nèi)溫度、土壤溫度、大氣溫度。根據(jù)四個樣品N2O濃度和采樣時間的直線回歸斜率求得N2O排放通量,按下式計算:

式中,F(xiàn)是N2O排放通量(μg m-2h-1);ρ是標(biāo)準狀態(tài)下的氣體密度(mg m-3h-1);h是箱高(m);dC/dt為采樣箱內(nèi)的氣體濃度變化率;T為采樣過程中采樣箱內(nèi)的平均溫度(℃)。

土壤樣品采集采用五點取樣法,深度為0~15 cm,約7~15 d采集一次。分析時用2 mol L-1的KCl浸提,濾液中的銨態(tài)氮(-N)濃度采用靛酚藍比色法測定,硝態(tài)氮(-N)濃度采用紫外分光光度法測定。土壤孔隙含水量(WFPS)根據(jù)每次測定的土壤質(zhì)量含水量與土壤容重計算得到。

1.4 數(shù)據(jù)處理

采用Excel 2010軟件進行數(shù)據(jù)計算及圖表制作,采用JMP 9.0軟件對各處理N2O累積排放量、N2O排放系數(shù)、蔬菜產(chǎn)量和單位產(chǎn)量N2O排放量進行多重比較(LSD法)及相關(guān)性分析,N2O排放系數(shù)等于施氮處理的N2O排放量減去未施氮處理的N2O排放量并除以施氮量,未施氮處理的N2O排放量在本文中未呈現(xiàn)。采用SPSS 16.0對菜地N2O排放主要驅(qū)動因子進行偏相關(guān)以及成對相關(guān)分析。

2 結(jié) 果

2.1 各處理菜地N2O排放通量以及相關(guān)因子動態(tài)變化

試驗期內(nèi),各處理菜地N2O排放通量的季節(jié)性變化規(guī)律基本一致,而不同蔬菜季N2O排放情況各有差異(圖1)。菜地N2O排放主要集中在5—9月份,而在其他季節(jié)排放相對較少(圖1),與溫度變化極顯著正相關(guān)(表2,p<0.01)。莧菜生長季的N2O排放峰出現(xiàn)在施肥后10 d左右,這與該季節(jié)的溫度逐漸上升有關(guān),其峰值為N 2 594 μg m-2h-1;空心菜生長季的排放通量最大,在施肥后很快達到排放峰,其峰值為N 6 426 μg m-2h-1。因為該生長季(2015/07/15—2015/09/29)的氣溫最高,導(dǎo)致其土壤溫度偏高,溫度變化范圍為23.4~31.2℃;同時頻繁的降雨導(dǎo)致空心菜季土壤WFPS達到49.1%~74.0%,促進菜地土壤N2O排放(表2,p<0.05);香菜和小白菜生長期間由于過低的溫度導(dǎo)致未產(chǎn)生明顯的排放峰。此外,各處理的N2O排放通量范圍為N 1.2~6 427 μg m-2h-1,且隨著施肥量的增加而升高;相同施氮量下添加CP處理明顯降低了N2O排放通量。

由圖2可知,菜地土壤的銨態(tài)氮、硝態(tài)氮含量變化范圍為10.8~247.2 mg kg-1和1.8~186.8 mg kg-1。各處理的銨態(tài)氮與硝態(tài)氮含量平均值變化范圍為50.9~60.4 mg kg-1和31.6~43.3 mg kg-1。隨著施氮量的增加,各處理的土壤無機氮含量增加;與僅施尿素的處理相比,常規(guī)施氮量添加CP處理菜地土壤銨態(tài)氮含量平均值顯著增加12.3%,在常規(guī)和減氮兩個水平上添加硝化抑制劑處理菜地土壤硝態(tài)氮的含量均增加。

圖1 菜地不同處理N2O排放通量、土壤溫度、土壤孔隙含水量動態(tài)變化Fig. 1 Dynamics of N2O flux,soil temperature(T)and soil water filled pore space(WFPS)in vegetable field under different treatments

表2 土壤孔隙含水量、土壤溫度及土壤銨態(tài)氮、硝態(tài)氮與N2O排放通量的相關(guān)性(右上部分)、偏相關(guān)性(左下部分)Table 2 Pairwise correlations(top right)and partial correlations(bottom left)of the main driving factors of WFPS,soil temperature(T),-N and-N concentrations on N2O emissions during the whole observation period

表2 土壤孔隙含水量、土壤溫度及土壤銨態(tài)氮、硝態(tài)氮與N2O排放通量的相關(guān)性(右上部分)、偏相關(guān)性(左下部分)Table 2 Pairwise correlations(top right)and partial correlations(bottom left)of the main driving factors of WFPS,soil temperature(T),-N and-N concentrations on N2O emissions during the whole observation period

注:*,p<0.05,**,p<0.01

N2OWFPSTNH4+-NNO3--N N2O-0.208**0.521**0.781**0.700** WFPS0.221*--0.061-0.1440.081 T 0.345**-0.065-0.423**0.230** NH4+-N0.539**0.327**0.108-0.667** NO3--N0.383**0.133-0.207*0.316**-

圖2 不同處理銨態(tài)氮、硝態(tài)氮動態(tài)變化Fig. 2 Dynamics of NH4+-N and NO3--N concentrations within the 0~15 cm soils

2.2 菜地各處理N2O排放量及蔬菜產(chǎn)量的相關(guān)指標(biāo)

菜地土壤N2O排放隨施氮量增加而增加,試驗期內(nèi)Nn處理的菜地N2O累積排放量最大,為N 59.2±4.4 kg hm-2;CP-Nr處理的菜地N2O累積排放量最小,為N 31.2±2.2 kg hm-2。如圖3所示,相比常規(guī)施氮處理(Nn),減氮處理(Nr)降低了菜地N2O排放量(p<0.01)與排放系數(shù)(不顯著);此外,蔬菜產(chǎn)量隨施氮量的增加而增加,而減氮處理的單位產(chǎn)量N2O排放量則低于常規(guī)施氮處理。與僅施氮肥的處理相比,等量施氮情況下,添加CP能夠減少N2O累積排放量(圖3,表3),同時顯著地降低單位產(chǎn)量N2O排放量(圖3,p<0.01)??傆^測期內(nèi),在Nr、Nn兩個施氮水平上,添加CP菜地N2O排放量分別減少29.4%、 26.0%,菜地N2O排放系數(shù)分別降低60.9%、42.4%,而產(chǎn)量未有顯著影響,因此單位產(chǎn)量N2O排放量分別降低32.1%、30.3%。

3 討 論

3.1 減氮及CP對菜地N2O排放的影響

土壤N2O排放的季節(jié)性變化主要是受土壤水分和溫度的影響[19-20]。本試驗各蔬菜季N2O排放量差異較大(表3),空心菜季菜地N2O累積排放量巨大,占總累積排放量的47.5%。這是由于夏季高溫多雨,頻繁的降水和強烈的干濕交替環(huán)境促進菜地硝化作用與反硝化作用,為土壤N2O的大量產(chǎn)生與排放提供了有利條件[21-22]。據(jù)相關(guān)研究[23]表明,當(dāng)土壤WFPS高于70%,N2O主要產(chǎn)生于反硝化作用,反之則主要產(chǎn)生于硝化作用;鄒國元等[24]的研究表明當(dāng)土壤WFPS低于50%反硝化作用很弱,本試驗中土壤WFPS平均為50%左右,因此推測硝化作用是菜地N2O產(chǎn)生的主要途徑。此外,該季蔬菜種植期間土壤平均溫度達到27.4 ℃,平均土壤WFPS達到55.8%,且該季蔬菜種植時間長達76 d,導(dǎo)致菜地N2O大量排放。莧菜季N2O排放量也較大,同樣是由于該季蔬菜種植期間具有較高的土壤溫度,同時進入梅雨季節(jié)(2015/05/03—2015/06/15),頻繁的降雨促進

了N2O的大量排放。而香菜季未發(fā)生大量的N2O排放,因其土壤溫度相對較低,同時降雨較少。小白菜季雖然中后期溫度有所回升,但施肥初期過低的溫度導(dǎo)致無N2O排放峰的形成。本試驗中N2O排放系數(shù)整體較高(圖3),這與之前關(guān)于菜地N2O排放系數(shù)的研究結(jié)果一致[25]。賈俊香等[26]的研究中菜地N2O排放系數(shù)高達4.6%。而在Wang等[10]的研究中,通過模型計算中國菜地生產(chǎn)氮肥引起的排放系數(shù)為0.55%,遠低于本試驗測定值。這是由于本試驗施氮處理土壤中的無機氮背景值較高,導(dǎo)致各處理N2O排放量大,而對照處理在長期未施肥狀態(tài)下無機氮含量較低,排放的N2O也較低,因此造成菜地N2O排放系數(shù)偏高。

表3 各季蔬菜生長期間N2O累積排放量Table 3 Cumulative seasonal N2O emissions of each vegetable growing period(N kg hm-2)

圖3 各處理菜地的N2O累積排放量、N2O排放系數(shù)、蔬菜產(chǎn)量、單位產(chǎn)量N2O排放量Fig. 3 Cumulative N2O emission,N2O emission factor,total fresh vegetable output and yield-scaled N2O emission relative to treatment

減氮措施顯著降低了試驗期內(nèi)菜地N2O累積排放量(圖3,p<0.05)。這是由于Nr處理中氮肥施入量較Nn低,降低Nr處理土壤銨態(tài)氮含量(圖2)。而銨態(tài)氮為土壤中的硝化作用提供底物[27],因此菜地N2O的排放量顯著降低。此外,CP的施用顯著降低了菜地N2O的累積排放量(圖3,p<0.05),也因此顯著降低了N2O排放系數(shù)。同時,因CP的添加量與氮素具有固定比例,在高施氮水平下CP含量也高,因此隨施氮量增加,CP對N2O排放的抑制效果越顯著。在兩個氮肥梯度上CP對周年N2O排放均起到了明顯的抑制效果,這是因為CP影響氮素在土壤中的轉(zhuǎn)化過程,直接抑制硝化作用,從而減少了菜地N2O排放。李游[28]的研究結(jié)果表明硝化抑制劑雙氰胺(DCD)的施用能夠減少菜地N2O排放,這與本研究結(jié)果接近。而不同種類硝化抑制劑對集約化菜地種植N2O排放的結(jié)果也有不同。Zhang等[29]的研究結(jié)果表明,施用CP較DCD有更好的菜地N2O減排效果,這主要是由于集約化菜地灌溉措施頻繁,DCD極易溶于水會在蔬菜土壤中大量流失,減排效果下降。

3.2 減氮及CP對各處理蔬菜產(chǎn)量的影響

為了滿足持續(xù)增長的人口對食物的需求,過量施氮在中國農(nóng)業(yè)生產(chǎn)是一個普遍的現(xiàn)象[30]。在集約化菜地生產(chǎn)中,過高的施肥量會造成土壤酸化以及無機氮大量累積的結(jié)果,從而導(dǎo)致減產(chǎn)等負面影響[11]。本試驗中相對Nn處理,Nr處理并未顯著降低蔬菜產(chǎn)量,這是因為長期集約化種植導(dǎo)致菜地土壤無機氮本底值較高,而減氮的氮肥用量足以滿足蔬菜生長對氮素的需求;Peng等[31]及劉學(xué)軍等[32]的研究表明,由于我國普遍過量施氮的國情,在多地采取減氮三分之一措施甚至一半施氮量并未造成減產(chǎn),與我們的研究結(jié)果一致。

本試驗中,施用CP具有一定的增產(chǎn)效果,但不顯著。這是因為CP能直接抑制土壤中氮素的硝化作用,減少淋溶損失和硝化-反硝化損失,增加土壤-N的含量以及土壤氮素的有效性,從而提高作物產(chǎn)量[33]。由圖2也可看出添加CP的處理-N含量相對較高。Zhang等[29]和Li等[34]的研究表明CP能夠增加蔬菜產(chǎn)量。聶文靜[35]對溫室黃瓜種植施用DCD的研究也得出,硝化抑制劑能增加黃瓜產(chǎn)量20.6%~31.8%,高于本試驗中增產(chǎn)5.7%~6.7%的結(jié)果,原因可能是不同的硝化抑制劑自身化學(xué)性質(zhì)不同,對于不同農(nóng)田生態(tài)系統(tǒng)的作物產(chǎn)量影響會有差異。

3.3 減氮及CP對各處理單位產(chǎn)量N2O排放量的影響

本試驗中,在不降低蔬菜產(chǎn)量的情況下,Nr處理顯著降低了菜地N2O排放量和單位產(chǎn)量N2O排放量(圖3,p<0.05)。Zhang等[25]的結(jié)果表明,減少1/3的施氮量能夠有效降低菜地單位產(chǎn)量N2O排放量,這與我們的研究結(jié)果一致。因此在菜地中實施減氮合理優(yōu)化施肥是一種有效的降低菜地N2O排放的方式。而在相同施氮水平下,CP的施用均未顯著影響蔬菜產(chǎn)量,并且減少了N2O排放量,因此能減少菜地單位產(chǎn)量N2O排放量,這與Li等[34]的研究結(jié)果相同。充分說明施用CP是一種既能保證產(chǎn)量又可以減排的有效措施。同時,也有研究表明硝化抑制劑的施用能降低葉類菜體內(nèi)硝酸鹽含量[36-37],提高蔬菜品質(zhì)[35]以及減少土壤銨態(tài)氮、硝態(tài)氮的徑流損失[38]??梢?,硝化抑制劑施用于集約化蔬菜生產(chǎn)效果可觀。CP的成本約為氮肥本身的5%,價格低廉,若在農(nóng)業(yè)生產(chǎn)中進行推廣,菜地經(jīng)營者容易接受,可行性很高,其應(yīng)用于集約化蔬菜生產(chǎn)將會有很廣闊的前景。

4 結(jié) 論

在本研究觀測期內(nèi),不同蔬菜季N2O排放量差異較大,且與土壤孔隙含水量及土壤溫度極顯著正相關(guān)。減量施氮在不顯著影響產(chǎn)量的情況下降低了N2O排放量和N2O排放系數(shù),并降低了單位產(chǎn)量N2O排放量。相同施氮量下,CP能有效抑制菜地N2O排放量,保持蔬菜產(chǎn)量,從而顯著削減單位產(chǎn)量N2O排放量,對菜地集約化生產(chǎn)具有減排保產(chǎn)效應(yīng)。因此,在集約化蔬菜生產(chǎn)過程中,氮肥減量施用并結(jié)合CP能同時實現(xiàn)保產(chǎn)減排,是一種值得推薦的措施。

[1] IPCC. Climate change 2013:the physical science basis:contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge:Cambridge University Press,2013

[2] 黃麗華,沈根祥,顧海蓉,等. 肥水管理方式對蔬菜田N2O釋放影響的模擬研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2009,28(6):1319—1324

Huang L H,Shen G X,Gu H R,et al. Simulation of some impacts of fertilization and water management on nitrous oxide emission from vegetable field(In Chinese). Journal of Agro-Environment Science,2009,28(6):1319—1324

[3] Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere // Bouwman A F. Soil sand greenhouse effect. New York:Wiley,1990:61—127

[4] 中華人民共和國國家統(tǒng)計局. 中國統(tǒng)計年鑒2015. 北京:中國統(tǒng)計出版社,2015

National Bureau of Statistics of China. China statistical yearbook 2015(In Chinese). Beijing:China Statistics Press,2015

[5] 鄭循華,王明星,王躍生,等. 華東稻麥輪作生態(tài)系統(tǒng)的N2O排放研究. 應(yīng)用生態(tài)學(xué)報,1997,8(5):495—499

Zheng X H,Wang M X,Wang Y S,et al. N2O emission from rice-wheat ecosystem in southeast China(In Chinese). Chinese Journal of Applied Ecology,1997,8(5):495—499

[6] Mogge B,Kaiser E A,Munch J C. Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhved Lake region:Influence of organic fertilizers and land-use. Soil Biology & Biochemistry,1999,31(9):1245—1252

[7] 杜蓮鳳. 長江三角洲地區(qū)蔬菜地系統(tǒng)氮肥利用與土壤質(zhì)量變異研究. 北京:中國農(nóng)業(yè)科學(xué)院,2005

Du L F. The nitrogen fertilizer use efficiency and soil quality variation of vegetable-soil system in Yangtze Delta area(In Chinese). Beijing:Chinese Academy of Agricultural Sciences,2005

[8] Li D J,Wang X M. Nitric oxide emission from a typical vegetable field in the Pearl River Delta,China. Atmospheric Environment,2007,41:9498—9505

[9] 曹兵,徐秋明,李亞星,等. 不同控釋肥品種對大白菜產(chǎn)量、氮素吸收和品質(zhì)的影響,華北農(nóng)學(xué)報,2006,21(3):41—45

Cao B,Xu Q M,Li Y X,et al. Effects of different controlled release fertilizer types on yield,N uptake,and quality of Chinese cabbage(In Chinese). Acta Agriculturae Boreali-Sinica,2006,21(3):41—45

[10] Wang J Y,Xiong Z Q,Yan X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmospheric Environment,2011,45(38):6923—6929

[11] Li B,Bi Z C,Xiong Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China. Global Change Biology Bioenergy,2016,DOI:10.1111/gcbb.12356

[12] 劉兆輝,薄錄吉,李彥,等. 氮肥減量施用技術(shù)及其對作物產(chǎn)量和生態(tài)環(huán)境的影響綜述. 中國土壤與肥料,2016(4),DOI:10. 11838/sfsc. 20160401

Liu Z H,Bo L J,Li Y,et al. Effect of nitrogen fertilizer reduction on crop yield and ecological environment:A review(In Chinese). Soil and Fertilizer Sciences in China,2016(4),DOI:10. 11838/sfsc. 20160401

[13] 劉宇,章瑩,楊文亭,等. 減量施氮與大豆間作對蔗田氮平衡的影響. 應(yīng)用生態(tài)學(xué)報,2015,26(3):817—825

Li Y,Zhang Y,Yang W T,et al. Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field(In Chinese). Chinese Journal of Applied Ecology,2015,26(3):817—825

[14] 戴宇,賀紀正,沈菊培. 雙氰胺在農(nóng)業(yè)生態(tài)系統(tǒng)中的應(yīng)用效果及其影響因素. 應(yīng)用生態(tài)學(xué)報,2014,25(1):279—286

Dai Y,He J Z,Shen J P,et al. Effects and influence factors of dicyandiamide(DCD)application in agricultural ecosystem(In Chinese). Chinese Journal of Applied Ecology,2014,25(1):279—286

[15] 吳得峰,姜繼韶,高兵,等. 添加DCD對雨養(yǎng)區(qū)春玉米產(chǎn)量、氧化亞氮排放及硝態(tài)氮殘留的影響. 植物營養(yǎng)與肥料學(xué)報,2016,22(1):30—39

Wu D F,Jiang J S,Gao B,et al. Effects of DCD application on grain yield,N2O emission and residual nitrate-N of spring maize in rain-fed agriculture(In Chinese). Journal of Plant Nutrition and Fertilizer,2016,22(1):30—39

[16] 李香蘭,徐華,蔡祖聰. 氫醌、雙氰胺組合影響稻田甲烷和氧化亞氮排放研究進展. 土壤學(xué)報,2009,46(5):917—924

Li X L,Xu H,Cai Z C. Effect of combined use of hyfroquinone and dicyandlamide on CH4and N2O emissions from rice paddy field:A review(In Chinese). Acta Pedologica Sinica,2009,46(5):917—924

[17] Bhatia A,Sasmal S,Jain N,et al. Mitigation nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agriculture,Ecosystem & Environment,2010,136(3/4):247—253

[18] Di H J,Cameron K C,Sherlock R R,et al. Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor,dicyandiamide,and relationship with ammonia oxidizing bacteria and archaea. Journal of Soils and Sediments,2010,10(5):943—954

[19] Wang Y S,Xue M H,Zheng X,et al. Effects of environmental factors on N2O emission from and CH4uptake by the typical grasslands in the Inner Mongolia. Chemosphere,2005,58(2):205—215

[20] 徐文彬,洪業(yè)湯. 貴州省旱田土壤N2O釋放及其環(huán)境影響因素. 環(huán)境科學(xué),2000,21(1):7—11

Xu W B,Hong Y T. N2O emission from upland soils in Guizhou and its environmental controlling factors(In Chinese). Environmental Science,2000,21(1):7—11

[21] Smith K A. Greenhouses gas fluxes between land surfaces and the atmosphere. Progress in Physical Geography,1990,14(3):349—372

[22] Cui P Y,F(xiàn)an F L,Yin C,et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biology & Biochemistry,2016,93:131—141

[23] 孫英杰,吳昊,王亞楠. 硝化反硝化過程中N2O釋放影響因素. 生態(tài)環(huán)境學(xué)報,2011,20(2):384—388

Sun Y J,Wu H,Wang Y N. Influencing factors of N2O emission from nitrification and denitrification process(In Chinese). Ecology and Environmental Sciences,2011,20(2):384—388

[24] 鄒國元,張福鎖,陳新平,等. 農(nóng)田土壤硝化-反硝化作用與N2O的排放. 土壤與環(huán)境,2001,10(4):273—277

Zou G Y,Zhang F S,Chen X P,et al. Nitrificationdenitrification and N2O emission from arable soil(In Chinese). Soil and Environmental Sciences,2001,10(4):273—277

[25] Zhang M,Chen Z Z,Li Q L,et al. Quantitative relationship between nitrous oxide emissions and nitrogen application rate for a typical intensive vegetable cropping system in Southeastern China. CLEAN - Soil,Air,Water,2015,DOI:10.1002/clen. 201400266

[26] 賈俊香,張曼,熊正琴,等. 南京市郊區(qū)集約化大棚蔬菜地N2O的排放. 應(yīng)用生態(tài)學(xué)報,2012,23(3):161—166

Jia J X,Zhang M,Xiong Z Q,et al. N2O emission from an intensively managed greenhouse vegetable field in Nanjing suburb,Jiangsu Provence of East China(In Chinese). Chinese Journal of Applied Ecology,2012,23(3):161—166

[27] Wrage N,Velthof G L,Beusichem M L V,et al. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry,2001,33(12/13):1723—1732

[28] 李游. 不同輪作制度和硝化抑制劑DCD對菜地氧化亞氮排放的調(diào)控. 武漢:華中農(nóng)業(yè)大學(xué),2012

Li Y. Studies on mitigate nitrous oxide emission by crop rotation system and exert nitrification inhibitor DCD from vegetable field(In Chinese). Wuhan:Huazhong Agricultural University,2012

[29] Zhang M,F(xiàn)an C H,Li Q L,et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agriculture,Ecosystems & Environment,2015,201:43—50

[30] Ju X T,Xing G X,Chen X P,et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences,2009,106:3041—3046

[31] Peng S,Buresh R J,Huang J,et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development,2010,30(3):649—656

[32] 劉學(xué)軍,巨曉棠,張福鎖. 減量施氮對冬小麥-夏玉米種植體系中氮利用與平衡的影響. 應(yīng)用生態(tài)學(xué)報,2004,15(3):458—462

Liu X J,Ju X T,Zhang F S. Effect of reduced N application on N utilization and balance in winter wheatsummer maize cropping system(In Chinese). Chinese Journal of Applied Ecology,2004,15(3):458—462

[33] O’connor P,Hennessy D,Brophy C,et al. The effect of the nitrification inhibitor dicyandiamide(DCD)on herbage production when applied at different times and rates in the autumn and winter. Agriculture,Ecosystems & Environment,2012,152:79—89

[34] Li B,F(xiàn)an C H,Xiong Z Q,et al. The combined effects of nitrification inhibitor and biochar incorporation onyield-scaled N2O emissions from an intensively managed vegetable field in southeastern China. Biogeosciences,2015,12:2003—2017

[35] 聶文靜. 氮肥與雙氰胺配施對棚室黃瓜生長的影響及其環(huán)境效應(yīng)研究. 河北保定:河北農(nóng)業(yè)大學(xué),2012

Nie W J. Effects of nitrogen fertilizer and DCD application on cucumber growth and environment in greenhouse(In Chinese). Baoding,Hebei:Hebei Agricultural University,2012

[36] 王煌平. 硝化抑制劑及其組合對小白菜產(chǎn)量、品質(zhì)的影響與土壤殘留分析. 福建農(nóng)業(yè)學(xué)報,2009,24(5):580—585

Wang H P. Effect of nitrification inhibitors and their combinations on yield and quality of Brassica chinensis and analysis of their inhibitor residue in soil(In Chinese). Fujian Journal of Agricultural Sciences, 2009,24(5):580—585

[37] 孫志梅,劉艷軍,梁文舉,等. 新型脲酶抑制劑 LNS與雙氰胺配合施用對菜田土壤尿素氮轉(zhuǎn)化及蔬菜生長的影響. 土壤通報,2005,36(5):803—805

Sun Z M,Liu Y J,Liang W J,et al. Synergistic effect of a novel urease inhibitor LNS and a nitrification inhibitor DCD on urea-N transformation and vegetable growth(In Chinese). Chinese Journal of Soil Science,2005,36(5):803—805

[38] 倪秀菊,李玉中,徐春英,等. 土壤脲酶抑制劑和硝化抑制劑的研究進展. 中國農(nóng)學(xué)通報,2009,25(12):145—149

Ni X J,Li Y Z,Xu C Y,et al. Advance of research on urease inhibitor and nitrification inhibitor in soil(In Chinese). Chinese Agricultural Science Bulletin,2009,25(12):145—149

Effects of N Reduction and Nitrification Inhibitor on N2O Emissions in Intensive Vegetable Field

CHEN Hao LI Bo XIONG Zhengqin?
(Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation,College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China)

【Objective】 A one-year-round field experiment,monitoring nitrous oxide(N2O)emissions during the growing seasons of four consecutive vegetable crops and yields of the crops,was conducted to investigate effects of reduced application of nitrogen(N)fertilizer and application of chlorinated pyridine(CP),a kind of nitrification inhibitor,on N2O emission and vegetable yield. 【Method】 During the observation period from May,2015 to May,2016,four different species of vegetables were cultivated one by one,namely,amaranth,water spinach,cilantro and baby bok choy. The experiment was designed to have two treatments in N input i.e. 640 and 960 kg hm-2a-1,or a reduced N dose(Nr)and a normal N dose(Nn). Urea was applied as N fertilizer coupled with CP(CP-N)or without CP(N). Phosphate and potassium fertilizers were applied in the form of calcium/magnesium phosphate(12% P2O5)and potassium chloride(60% K2O)at a rate of 960 kg hm-2a-1. All the fertilizers were evenly distributed among the four crops. Each treatment had three replicates. N2O fluxes were monitored with the static-closed chamber method and gas phase chromatography. Air samples were collected normally once a week and once every two or three days during the 7~10 days after the application of N fertilizer. 【Result】 Results show that N2O flux varied significantly with the season in all the treatments,showing a trend of rising higher in the period from May to September and staying lower in the rest of the year. The N2O flux during the growing season of water spinach was the highest and reached N 6 426 μg m-2h-1soon after N fertilization,which could probably be attributed to the high temperature in the season. But no apparent peaks were observed during the growing seasons of cilantro and baby bok choy,when the highest N2O flux reached N 664.9 and 914.9 μg m-2h-1respectively. N2O flux was found significantly and positively related to soil water content and soil temperature(p<0.05)and to N fertilizer application rate too. In treatment Nr,CP-Nr,Nn and CP-Nn,N2O flux varied in the range of N3.2~4 280,5.0~3 293,3.2~6 427 and 1.2~6 097 μg m-2h-1,respectively. During all the four vegetable growing seasons,treatment Nr was always lower than treatment Nn in N2O flux. Compared with treatment Nn,treatment Nr could reduce cumulative N2O emission by 27.1% on average without significantly affecting yield of the crops(p<0.05). In the treatments equal in N application rate,amendment of CP reduced cumulative N2O flux,which indicates that CP is capable of mitigating N2O emission in the vegetable field. During the year of the experiment,treatment Nn was found to be the highest in cumulative N2O emission,reaching up to N 59.2±4.4 kg hm-2,while treatment CP-Nr the lowest,getting down to 31.2±2.2 kg hm-2. Comparison between treatments equal in N application rate,CP amendment reduced total cumulative N2O emission by 29.4% and 26.0%,N2O emission factor by 60.9% and 42.4%,and yield-scaled N2O emission by 32.1% and 30.3%,respectively,in treatment CP-Nn and CP-Nr,without significantly affecting crop yield. In the soil of the vegetable field,the content of-N and-N varied in the range of 10.8~803.9 and 0.9~520.0 mg kg-1,respectively. The average-N content in the soil of treatment Nr,CP-Nr,Nn and CP-Nn was 31.6,33.2,35.7 and 43.3 mg kg-1,respectively,and the average-N content,51.0,50.9,53.8 and 60.4 mg kg-1,respectively. Obviously,with rising N application rate,the content of inorganic N gradually increases in all the treatments. 【Conclusion】Taking into account cumulative N2O emission,N2O emission factor,yield and yield-scaled N2O emission,Treatment CP-Nr is capable of reducing N2O emission and getting high vegetable yields simultaneously. Hence,the practice of reducing N fertilizer application rate by one third coupled with CP amendment can be used as an effective vegetable field management measure in intensive vegetable production to mitigate N2O emission and maintain crop yield.

Intensive vegetable field;Nitrous oxide emission;N reduction;Nitrification inhibitor

S15

A

(責(zé)任編輯:盧 萍)

10.11766/trxb201611250525

* 國家自然科學(xué)基金面上項目(41471192)和科技部支撐計劃項目(2013BAD11B01)資助 Supported by the National Natural

Science Foundation of China(No. 41471192)and the National Key Technology R & D Program of China(No. 2013BAD11B01)? 通訊作者 Corresponding author:熊正琴,教授,主要研究方向為農(nóng)田碳氮循環(huán)與碳氮管理。E-mail:zqxiong@njau.edu.cn

陳 浩(1991—),男,碩士研究生,主要研究方向為碳氮循環(huán)與氣候變化

2016-11-25;

2014-04-01;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-05-02

猜你喜歡
施氮集約化菜地
小白兔進菜地
菜地游樂園
不同施氮水平對春玉米光合參數(shù)及產(chǎn)量的影響
菜地的周長
菜地里的狂歡
關(guān)于無線移動通信室內(nèi)覆蓋的集約化建設(shè)探討
電子測試(2018年9期)2018-06-26 06:46:02
探究縣供電企業(yè)財務(wù)集約化實踐分析
施氮水平對冬小麥冠層氨揮發(fā)的影響
番茄集約化育苗關(guān)鍵技術(shù)
城市土地集約化利用研究
雷州市| 台北市| 开平市| 江孜县| 墨竹工卡县| 多伦县| 高尔夫| 宜春市| 六枝特区| 阜南县| 富宁县| 铁岭县| 泉州市| 绩溪县| 博罗县| 红原县| 永仁县| 马尔康县| 德昌县| 巧家县| 内江市| 桐柏县| 白城市| 澜沧| 巴青县| 偃师市| 佛教| 旬阳县| 达孜县| 金湖县| 奎屯市| 永定县| 宜兰市| 辉县市| 尼木县| 孝义市| 高唐县| 青川县| 南溪县| 六枝特区| 邻水|