范育鵬,喬 琦,方 琳
中國(guó)環(huán)境科學(xué)研究院, 北京 100012
產(chǎn)業(yè)生態(tài)系統(tǒng)新型定量研究方法綜述
范育鵬,喬 琦*,方 琳
中國(guó)環(huán)境科學(xué)研究院, 北京 100012
產(chǎn)業(yè)生態(tài)系統(tǒng)研究已成為當(dāng)今學(xué)術(shù)界、產(chǎn)業(yè)界的研究重點(diǎn)和熱點(diǎn),對(duì)于充分利用資源、減輕環(huán)境壓力、改造升級(jí)傳統(tǒng)產(chǎn)業(yè)都具有不可估量的科學(xué)指導(dǎo)意義。目前,國(guó)內(nèi)外對(duì)產(chǎn)業(yè)生態(tài)系統(tǒng)的研究定性較多,包括概念,特點(diǎn),建設(shè)原則和經(jīng)營(yíng)理念的描述,而定量較少。然而,產(chǎn)業(yè)生態(tài)系統(tǒng)在發(fā)展當(dāng)中也出現(xiàn)了大量的實(shí)際問(wèn)題,急需加強(qiáng)對(duì)其定量研究,從而發(fā)現(xiàn)、提高和改進(jìn)產(chǎn)業(yè)生態(tài)系統(tǒng)的結(jié)構(gòu)及效率,增強(qiáng)可持續(xù)性。從近些年生態(tài)學(xué)的先進(jìn)理論成果入手探討了定量研究產(chǎn)業(yè)生態(tài)系統(tǒng)的一些方法——能值、(火用)、生態(tài)足跡和生態(tài)信息的方法。對(duì)這些方法的理論基礎(chǔ)、發(fā)展歷程、實(shí)踐應(yīng)用和適用特點(diǎn)依次進(jìn)行了詳細(xì)的梳理和歸納,并基于3個(gè)基本原則(生態(tài)維度和經(jīng)濟(jì)維度的整合,系統(tǒng)長(zhǎng)期的恢復(fù)力,系統(tǒng)的廣度和強(qiáng)度性質(zhì))對(duì)各個(gè)方法進(jìn)行了綜合比較分析,旨在為產(chǎn)業(yè)生態(tài)系統(tǒng)研究提供方向和理論指導(dǎo)。
定量分析;整合;產(chǎn)業(yè)生態(tài)系統(tǒng);核算框架;彈性
產(chǎn)業(yè)生態(tài)系統(tǒng)是一個(gè)特殊的人工復(fù)合生態(tài)系統(tǒng),有賴于自然界提供的資源和服務(wù),具有物質(zhì)、能量和信息流動(dòng)的特定分布,其核心是通過(guò)對(duì)自然生態(tài)系統(tǒng)運(yùn)行規(guī)則的模仿,推進(jìn)產(chǎn)業(yè)系統(tǒng)的發(fā)展和進(jìn)化,形成一個(gè)與自然相互協(xié)調(diào)發(fā)展的復(fù)合生態(tài)系統(tǒng)[1]。它通過(guò)企業(yè)間的工業(yè)共生充分利用生產(chǎn)過(guò)程中產(chǎn)生的各種副產(chǎn)品/廢物,達(dá)到物質(zhì)能量利用效率最優(yōu)化。建立產(chǎn)業(yè)生態(tài)系統(tǒng)是實(shí)現(xiàn)循環(huán)經(jīng)濟(jì)的關(guān)鍵,是實(shí)施可持續(xù)發(fā)展具體而重要的實(shí)踐工具。然而在發(fā)展當(dāng)中,也出現(xiàn)了大量的實(shí)際問(wèn)題[2-3]。有必要加強(qiáng)對(duì)其分析,從而發(fā)現(xiàn)、提高和改進(jìn)系統(tǒng)結(jié)構(gòu)及效率。產(chǎn)業(yè)生態(tài)系統(tǒng)研究除了定性的研究方法外,使用較多的定量方法有:產(chǎn)業(yè)代謝分析,物質(zhì)流分析,生命周期評(píng)價(jià),投入產(chǎn)出分析,及指標(biāo)評(píng)價(jià)法。前四種方法比較直觀,但更多強(qiáng)調(diào)于產(chǎn)業(yè)生態(tài)系統(tǒng)的某些環(huán)節(jié), 忽略了整體的結(jié)構(gòu)性和協(xié)調(diào)性[4],雖可以很好地確定產(chǎn)業(yè)系統(tǒng)的物質(zhì)、能量流動(dòng),但很難確定系統(tǒng)各單元之間的關(guān)系,以及系統(tǒng)整體表現(xiàn)所對(duì)應(yīng)的內(nèi)在功能和特征[4];而指標(biāo)評(píng)價(jià)法則容易割裂系統(tǒng)單元之間的聯(lián)系,不能從內(nèi)在機(jī)理上反映系統(tǒng)的本質(zhì)。模擬自然生態(tài)網(wǎng)絡(luò)等方法過(guò)于依賴與自然生態(tài)系統(tǒng)的類比,而忽略了產(chǎn)業(yè)生態(tài)系統(tǒng)的特殊性[5]。同時(shí)這些研究很少有針對(duì)系統(tǒng)機(jī)理的探索,也很少辨析研究方法的不同特點(diǎn),對(duì)研究背景的發(fā)展演變以及適用性的分析也涉及不多。
本文圍繞4種在產(chǎn)業(yè)系統(tǒng)運(yùn)用中較為創(chuàng)新的方法——能值、(火用)、生態(tài)足跡和生態(tài)信息的方法,對(duì)其內(nèi)涵及發(fā)展、研究應(yīng)用、方法特點(diǎn)等方面進(jìn)行詳細(xì)梳理和歸納、分析和展望。
1.1 內(nèi)涵及發(fā)展
1.1.1 能值分析
對(duì)產(chǎn)業(yè)生態(tài)系統(tǒng)的能物流、貨幣流、信息流進(jìn)行能值分析,建立能值指標(biāo)體系。1環(huán)境負(fù)荷率(ELR):購(gòu)買能值(F)與不可再生能值(N)之和與可再生能值(R)的比率((F+N)/R),可反映產(chǎn)業(yè)生態(tài)系統(tǒng)的壓力和負(fù)荷。比率大表明能值使用水平高,是先進(jìn)系統(tǒng)的典型特征,也表明產(chǎn)業(yè)發(fā)展對(duì)環(huán)境資源的壓力高[8];2環(huán)境產(chǎn)出率(EYR):過(guò)程產(chǎn)出能值(Y)與從外界購(gòu)買能值(F)的比率(Y/F),是購(gòu)買能值的產(chǎn)出量度。高環(huán)境產(chǎn)出率表明系統(tǒng)只需較少的能值輸入便可產(chǎn)出較高能值;3可持續(xù)性指標(biāo)(SI)可用EYR/ELR表示,可描述單位環(huán)境負(fù)荷的資源產(chǎn)出對(duì)系統(tǒng)貢獻(xiàn)的量度。SI越高,系統(tǒng)就越可持續(xù)。
1.1.2 火用分析
(火用)來(lái)自熱力學(xué)定律,是對(duì)能量有用部分的度量。和能值不同,火用在一個(gè)封閉系統(tǒng)中不守恒,故能評(píng)價(jià)能量利用的有效性?;鹩每衫斫鉃橄到y(tǒng)變化到與環(huán)境平衡的狀態(tài)時(shí)可完全轉(zhuǎn)化為其他形式能的能量[8]。J?rgensen提出了火用在生態(tài)學(xué)特定背景下的利用——生態(tài)火用??紤]到系統(tǒng)成熟態(tài)與平衡態(tài)之間結(jié)構(gòu)和信息內(nèi)容的不同[9],一個(gè)具有較多生物量和信息量的系統(tǒng),就意味著具有較高水平的復(fù)雜度和生態(tài)火用[9]。生物系統(tǒng)的生態(tài)火用必須根據(jù)信息復(fù)雜度以及系統(tǒng)的化學(xué)自由能和其他物理形式的火用來(lái)計(jì)量[9]。已有多種生物和環(huán)境系統(tǒng)的生態(tài)火用被計(jì)算出來(lái),而經(jīng)濟(jì)流的生態(tài)火用計(jì)算仍在發(fā)展中[10]。
產(chǎn)業(yè)系統(tǒng)產(chǎn)品生命周期內(nèi)所有的火用耗可用積累火用耗法計(jì)算,包含從自然環(huán)境到最終產(chǎn)品的全部過(guò)程?;鹩梅ú荒苤苯佑?jì)算非能量流,如產(chǎn)業(yè)系統(tǒng)中的勞動(dòng)力和資本流。需開(kāi)發(fā)積累火用耗法的擴(kuò)展方法,尤其是延伸火用分析法,來(lái)計(jì)算勞力、資本和環(huán)境污染修復(fù)成本的火用值[11-12]。非能量流通過(guò)消耗環(huán)境資源才能實(shí)現(xiàn),故可用等量的火用值來(lái)表達(dá)。根據(jù)熱力學(xué)第二定律,所有過(guò)程(不可逆)均導(dǎo)致火用損失,使得火用輸出少于輸入。因此可用火用的輸出與輸入值的比表示一個(gè)過(guò)程或產(chǎn)品的火用效率,包括物質(zhì)流、資本流、勞動(dòng)力和環(huán)境損失。為此需要利用延伸火用分析法為資本、勞動(dòng)力和環(huán)境損失分配轉(zhuǎn)換因子,如資本和勞動(dòng)力的延伸火用轉(zhuǎn)換因子可用從環(huán)境輸入的火用EXin與投資金額和工作時(shí)數(shù)的比來(lái)表示[12-13]。
式中,M指從社會(huì)中可獲得的現(xiàn)金量,即廣義貨幣,n代表給定系統(tǒng)中的工作時(shí)數(shù),eecC是單位資本的火用耗,eecL指單位勞力的火用耗。環(huán)境損失可用環(huán)境修復(fù)成本表示,如通過(guò)把污水處理到環(huán)境基準(zhǔn)狀態(tài)所消耗的火用來(lái)測(cè)量。每個(gè)處理過(guò)程的火用都要用延伸火用分析法從能量、資本流和勞動(dòng)力依次計(jì)算。
1.1.3 生態(tài)足跡分析
生態(tài)足跡的概念來(lái)源于生態(tài)經(jīng)濟(jì)學(xué),自然資產(chǎn)的評(píng)估和維護(hù)是生態(tài)經(jīng)濟(jì)學(xué)的主要議題[14-15]。生態(tài)足跡支持者認(rèn)為,傳統(tǒng)的自然資產(chǎn)貨幣價(jià)值不足以反映自然資本的實(shí)際損耗。目前使用恒定貨幣估值的自然資產(chǎn)估值方法在實(shí)際存貨縮水的情形下會(huì)產(chǎn)生誤導(dǎo)。生態(tài)足跡旨在提供一個(gè)測(cè)量真實(shí)自然資產(chǎn)的方法[16-21],故能進(jìn)行產(chǎn)業(yè)生態(tài)系統(tǒng)的分析[22-23]。
生態(tài)足跡之所以吸引學(xué)者是因?yàn)樗峁┝艘粋€(gè)直觀地表達(dá)生態(tài)資源的方法。生態(tài)足跡是指生產(chǎn)一定量的資源和吸納廢棄物所需要的生物生產(chǎn)性土地面積[24],生態(tài)足跡供給是指某一區(qū)域所能提供的生物生產(chǎn)性土地面積,也稱生態(tài)承載力,表征該地區(qū)的生態(tài)容量,如維持光合作用和積累可用生物量的土地和水體的面積[25]。生物生產(chǎn)性面積分為6類:牧場(chǎng)、耕地、林地、漁場(chǎng)、建設(shè)地、及碳地[25](吸收產(chǎn)業(yè)系統(tǒng)排放的CO2所需用地)。生態(tài)足跡大于生態(tài)承載力為生態(tài)赤字,反之則為生態(tài)盈余,此結(jié)果可測(cè)度產(chǎn)業(yè)系統(tǒng)人均占有資源量與生態(tài)承載力之間的關(guān)系,衡量系統(tǒng)可持續(xù)的程度。
與能值法和火用法相似,生態(tài)足跡分析把不同土地類型的生態(tài)資源轉(zhuǎn)化成共同單位——全球公頃。每種類型土地的全球公頃基于其生產(chǎn)能力確定。如耕地比混合型用地生產(chǎn)力更強(qiáng),故可轉(zhuǎn)化為一個(gè)相對(duì)較多的全球公頃。不同國(guó)家和類型的土地生產(chǎn)力也隨著當(dāng)?shù)刈匀痪坝^和土地管理的不同而不同[15,26]。
產(chǎn)品和廢物的生態(tài)足跡由食物、住房、運(yùn)輸、消費(fèi)品、服務(wù)的類別所決定。6種類型土地需要維持各自消耗所需的面積都被估算出來(lái),如生產(chǎn)生物資源的生態(tài)足跡通過(guò)下式得出:
式中,P是產(chǎn)品數(shù)量,如食物產(chǎn)量、碳排放量等,Yn是P值的國(guó)家平均值,Fy和Fe是土地利用類型的產(chǎn)量因子和均衡因子。產(chǎn)量因子測(cè)量當(dāng)?shù)睾褪澜绺鞣N土地類型平均生產(chǎn)力的差異,隨著國(guó)家、土地類型和時(shí)間的不同而不同。均衡因子把特定土地?fù)Q算成全球公頃,即世界平均生物生產(chǎn)面積,它隨著土地類型和時(shí)間的不同而不同。資源消耗的生態(tài)足跡EFC可用下式計(jì)算:
EFC=EFP+EFI-EFE
式中,EFP是產(chǎn)業(yè)系統(tǒng)實(shí)際生產(chǎn)的生態(tài)足跡,EFI和EFE是進(jìn)口和出口的生態(tài)足跡。若自然資源消耗大于可用資源,意味著產(chǎn)業(yè)系統(tǒng)超負(fù)荷發(fā)展或資源供給不足[27]。
1.1.4 生態(tài)信息方法
生態(tài)信息方法是一種利用信息科學(xué)的整體測(cè)量法,包含系統(tǒng)強(qiáng)度和廣度維度。生態(tài)信息方法源自概率論和圖論,可分析網(wǎng)絡(luò)中的能/物流并從整體上分析產(chǎn)業(yè)系統(tǒng)的結(jié)構(gòu)[28]。該方法采用面向系統(tǒng)的模式,強(qiáng)調(diào)網(wǎng)絡(luò)整體性能,對(duì)節(jié)點(diǎn)關(guān)注可能不太明顯,而是著重考慮節(jié)點(diǎn)之間的關(guān)聯(lián)[29]。生態(tài)信息法審查系統(tǒng)中交互網(wǎng)絡(luò)內(nèi)流動(dòng)配置的情況,可以揭示系統(tǒng)應(yīng)對(duì)壓力的彈性。生態(tài)信息法和工程柔性更加相關(guān),可測(cè)量系統(tǒng)穩(wěn)健地傳輸資源的能力。它也為定量研究生態(tài)韌性提供了重要的一步。利用香農(nóng)多樣性指數(shù),這個(gè)方法用系統(tǒng)總不確定性H代表網(wǎng)絡(luò)在任何觀察之前的總不確定性,用生態(tài)術(shù)語(yǔ)來(lái)講就是系統(tǒng)進(jìn)化或自組織的潛力。H可分解為兩個(gè)變量H=X+Ψ[30]。Ψ是觀察到Tij流后系統(tǒng)剩下的不確定性,X表示通過(guò)觀察流之間的連接確定的不確定度。對(duì)一個(gè)網(wǎng)絡(luò)系統(tǒng)而言,上述變量可用下式表示[31]:
式中,Tij是節(jié)點(diǎn)i到j(luò)的流,Ti·=∑jTij是離開(kāi)節(jié)點(diǎn)i的總流量,T·j=∑iTij是進(jìn)入節(jié)點(diǎn)j的總流量,T..=∑ijTij是系統(tǒng)總流量。
信息理論中,變量X指平均交互信息,是離開(kāi)節(jié)點(diǎn)i的流的不確定性與觀察到Tij以后的不確定性之間的差別,可以理解為網(wǎng)絡(luò)中所有流的限制度。變量Ψ為條件熵,是網(wǎng)絡(luò)中所有流的平均自由度。給定一個(gè)離開(kāi)節(jié)點(diǎn)i的流的限制度,Ψ可以看作去往節(jié)點(diǎn)j的流剩下的路徑選擇。X和Ψ均無(wú)量綱,取決于所用的對(duì)數(shù)底數(shù)。
系統(tǒng)總流量代替常數(shù)k可產(chǎn)生3個(gè)新參數(shù):聚集的系統(tǒng)不確定性C,被稱為系統(tǒng)容量,平均交互限制因子A被稱為系統(tǒng)優(yōu)勢(shì),條件熵Ф則為系統(tǒng)冗余度[32]。
過(guò)度冗余的系統(tǒng)將停滯增長(zhǎng),而過(guò)度有效的系統(tǒng)較脆弱,在遭受壓力時(shí)易崩潰。為了確定效率和彈性間的平衡,引入系統(tǒng)的相對(duì)階:α=A/C,0≤,0≤α≤≤1。相對(duì)階是系統(tǒng)內(nèi)反對(duì)效率和冗余趨勢(shì)的結(jié)果[33],以相對(duì)階乘以自身的負(fù)對(duì)數(shù),魯棒性R可以表示為[34]:
R=-αlog (α)
式中,R是描述系統(tǒng)限制度、優(yōu)勢(shì)度和系統(tǒng)冗余、自由度之間平衡的度量指標(biāo)。1的對(duì)數(shù)為0,很明顯系統(tǒng)朝任一方向發(fā)展都會(huì)走向極端,如具有很少的優(yōu)勢(shì)或很少的冗余時(shí),系統(tǒng)的魯棒性趨于零。一個(gè)系統(tǒng)最佳的魯棒性水平依賴于環(huán)境、發(fā)展階段、壓力水平和形成機(jī)制。找到產(chǎn)業(yè)系統(tǒng)最佳水平的魯棒性需要模仿自然系統(tǒng)。然而自然系統(tǒng)受到強(qiáng)有力且無(wú)情的演化動(dòng)力學(xué)機(jī)制形成,在產(chǎn)業(yè)系統(tǒng)的網(wǎng)絡(luò)中利用相同的過(guò)程實(shí)現(xiàn)類似的活力,不大可能或不會(huì)令人滿意[35]。
1.2 應(yīng)用
1.2.1 能值分析
能值分析經(jīng)常被運(yùn)用到跨學(xué)科研究中,如評(píng)價(jià)區(qū)域和國(guó)家的可持續(xù)性[36-37],評(píng)價(jià)自然生態(tài)系統(tǒng)[38-39]和城市生態(tài)系統(tǒng)的代謝[40-41];評(píng)價(jià)農(nóng)業(yè)生態(tài)系統(tǒng)的生產(chǎn)效率[42-43]。在工業(yè)生態(tài)系統(tǒng)的評(píng)價(jià)方面,Wang等人對(duì)朔州生態(tài)工業(yè)園進(jìn)行了能值分析[44];Taskhiri等人對(duì)生態(tài)工業(yè)園區(qū)的中水回用網(wǎng)絡(luò)進(jìn)行了能值分析[45];Geng等學(xué)者利用能值分析法對(duì)沈陽(yáng)經(jīng)濟(jì)開(kāi)發(fā)區(qū)的工業(yè)共生情況進(jìn)行了評(píng)價(jià)[46]。這些研究均成功地對(duì)產(chǎn)業(yè)系統(tǒng)進(jìn)行了清晰分析,剖析了能值輸入及過(guò)度依賴當(dāng)?shù)夭豢稍偕Y源所致的風(fēng)險(xiǎn)。為決策者深入了解資源效率、制定政策提供了依據(jù)。
1.2.2 火用分析
火用的首次運(yùn)用是在20世紀(jì)70年代確定工業(yè)過(guò)程和裝備的效率。目前多種能物流的火用值均有計(jì)算,如化學(xué)燃料[47],農(nóng)產(chǎn)品[48-49]。積累火用耗法能夠貫穿產(chǎn)品生命周期表明火用消耗的效率,已經(jīng)用在有詳細(xì)統(tǒng)計(jì)資料地方的整體經(jīng)濟(jì)分析中,包括沙特阿拉伯[50],丹麥[51],墨西哥[52],西班牙[53],伊朗[54]甚至全球[55]。Valero[56]等人利用火用分析法對(duì)生態(tài)工業(yè)園區(qū)的工業(yè)共生進(jìn)行了分析。
延伸火用分析法已被許多國(guó)家和地區(qū)采用,包含加拿大[57],土耳其[58],中國(guó)[59-60],和北京[61]。這些研究對(duì)象分為不同產(chǎn)業(yè),如交通、農(nóng)業(yè)、金融、服務(wù)業(yè)、工業(yè)及周邊環(huán)境等,代表各部門之間能量、物質(zhì)、資金、勞力的火用流被計(jì)算出來(lái)。研究結(jié)果強(qiáng)調(diào)了各部門的火用效率并指出政策可以提高效率水平。Sciubba等[12]利用延伸火用法分析了錫耶納省,發(fā)現(xiàn)此法可用來(lái)指導(dǎo)區(qū)域產(chǎn)業(yè)高效使用能源。Sciubba[13]將延伸火用分析運(yùn)用到熱電聯(lián)產(chǎn)企業(yè)的優(yōu)化設(shè)計(jì)中,表明延伸火用分析是進(jìn)行系統(tǒng)優(yōu)化的有效工具。
1.2.3 生態(tài)足跡分析
生態(tài)足跡分析可運(yùn)用到不同規(guī)模上,然而多數(shù)都集中在國(guó)家尺度上因?yàn)榇蟛糠謹(jǐn)?shù)據(jù)都可從國(guó)際組織獲得。許多生態(tài)足跡分析表明大多數(shù)發(fā)達(dá)國(guó)家都是不可持續(xù)的[25,62-63]。Wackernagel[62]等研究得出在給定時(shí)間人類總生態(tài)足跡超過(guò)了地球資源再生的能力。生態(tài)足跡分析的支持者認(rèn)為一個(gè)系統(tǒng)的足跡若大于自身的生態(tài)承載力,將會(huì)毀壞系統(tǒng)自然資產(chǎn)的再生能力,為此必須引入外部資源,減少資源消耗,加強(qiáng)技術(shù)創(chuàng)新[63- 64]。除此外生態(tài)足跡廣泛應(yīng)用于多個(gè)產(chǎn)業(yè)。有一些學(xué)者對(duì)水產(chǎn)養(yǎng)殖業(yè)進(jìn)行了研究[65-66];G?ssling[67]、Castellani[68]等人都運(yùn)用生態(tài)足跡對(duì)旅游業(yè)進(jìn)行了研究;Wright[69]、Flint[70]分別對(duì)學(xué)校的生態(tài)足跡進(jìn)行了分析。Budihardjo等[71]對(duì)印尼三堡壟工業(yè)園區(qū)進(jìn)行了生態(tài)足跡分析,發(fā)現(xiàn)三堡壟工業(yè)園區(qū)的發(fā)展已超出了其環(huán)境承載力,需要加強(qiáng)園區(qū)的生態(tài)化建設(shè)促進(jìn)其可持續(xù)發(fā)展。
1.2.4 生態(tài)信息方法
生態(tài)信息法最初用來(lái)分析食物網(wǎng)[72],測(cè)量生態(tài)系統(tǒng)的壓力水平[73-74]。最近這種方法已用來(lái)從結(jié)構(gòu)和組織關(guān)系的角度定量探索系統(tǒng)的魯棒性[75-76]。生態(tài)信息法不僅應(yīng)用于自然系統(tǒng)[77-78],也有一些應(yīng)用到產(chǎn)業(yè)系統(tǒng)[79,75]。Lu[80]等人應(yīng)用生態(tài)信息的方法對(duì)北京生態(tài)工業(yè)園區(qū)的碳代謝進(jìn)行了分析,研究表明整個(gè)系統(tǒng)受來(lái)自外部環(huán)境初級(jí)產(chǎn)品的供應(yīng)和最終需求支配,通過(guò)一個(gè)部門的碳流量越多,它對(duì)整個(gè)系統(tǒng)的影響就越大,生態(tài)工業(yè)園區(qū)的碳代謝可以看作是一個(gè)高效發(fā)展中系統(tǒng),但這可能是以更高水平的彈性為代價(jià)的。
1.3 方法特點(diǎn)
1.3.1 能值分析
能值分析法在生態(tài)建模初期可能是定量評(píng)估系統(tǒng)最強(qiáng)有力的工具,客觀地量化了環(huán)境輸入,最早在生態(tài)和經(jīng)濟(jì)領(lǐng)域之間建立了聯(lián)系。然而具體分析中仍存在一些挑戰(zhàn)。首先,可持續(xù)性指標(biāo)是建立在EYR和ELR關(guān)系的基礎(chǔ)之上,但這種關(guān)系尚不清晰??沙掷m(xù)性指標(biāo)在很大程度上依賴于所研究系統(tǒng)的特殊性[81-82]。此外可持續(xù)性指標(biāo)僅偏好于較多的可再生能值,較低的環(huán)境壓力和較少的能值輸入,并沒(méi)有考慮能值流入和環(huán)境壓力的最小限制,這些限制對(duì)于系統(tǒng)抵抗沖擊和抗干擾的能力是關(guān)鍵的。能值分析法在保持統(tǒng)一各種流的優(yōu)勢(shì)時(shí),在很多情形下也由于能值轉(zhuǎn)換率缺乏而不能計(jì)算。經(jīng)濟(jì)學(xué)家從以人類為中心的視角批判了能值分析法,認(rèn)為統(tǒng)一系統(tǒng)內(nèi)各種流的能值忽視了生產(chǎn)需要和經(jīng)濟(jì)效用的基本原則[83],能值方法支持者則認(rèn)為此方法原則上就應(yīng)是反對(duì)以人類為中心,而要支持自然是一個(gè)整體系統(tǒng),人類只是其中的一部分[7]。支持者還認(rèn)為能值分析法使用以生態(tài)為中心的模式評(píng)價(jià)所有流,這與系統(tǒng)穩(wěn)定發(fā)展和環(huán)境福祉更為相關(guān)。
能值分析法在選擇合適的時(shí)空邊界時(shí)遇到了挑戰(zhàn)。特別是要計(jì)算跨越地質(zhì)年代的所有太陽(yáng)能輸入,才與能值的概念真正相符合,這是不可能達(dá)到的。某些學(xué)者如Cleveland[83]等人認(rèn)為能值分析僅能獲取能流的熱力學(xué)質(zhì)量的這一方面,尤其是將一個(gè)單一總括的轉(zhuǎn)換系數(shù)運(yùn)用到各種產(chǎn)品和服務(wù)中,而不考慮時(shí)空變化,會(huì)造成嚴(yán)重錯(cuò)誤。
能值分析法沒(méi)有被大范圍采用的另一個(gè)主要原因是能值轉(zhuǎn)換率的不確定性。另外有很多嘗試去建立能值分析法和其他熱力學(xué)分析法之間的聯(lián)系,但這種關(guān)聯(lián)尚未形成[84-85]。因此能值分析被生態(tài)學(xué)以外學(xué)科的從業(yè)者多少有些懷疑[81]。
1.3.2 火用分析
火用最初應(yīng)用于工程學(xué)的技術(shù)體系,漸漸地應(yīng)用到其它學(xué)科,在環(huán)境科學(xué)方面尤其具有深刻的見(jiàn)解,對(duì)資源核算及確定低效都很重要?;鹩梅治龅淖钚掳l(fā)展,尤其是延伸火用分析法,試圖把產(chǎn)業(yè)方面如資金流和勞力流與環(huán)境資源流統(tǒng)一到一個(gè)普通的分析當(dāng)中,旨在研究和模擬產(chǎn)業(yè)系統(tǒng)。運(yùn)用延伸火用分析法可說(shuō)明不同部門如何能以不同的效率利用勞力和資金,然而這要假設(shè)系統(tǒng)所有效率增加都是積極貢獻(xiàn),沒(méi)有權(quán)衡效率增加產(chǎn)生的利弊。在火用的文獻(xiàn)中沒(méi)有與能值分析中的評(píng)價(jià)指標(biāo)體系相似的指標(biāo)體系。這可能是由于能值分析區(qū)別設(shè)置了可再生、不可再生、引進(jìn)、產(chǎn)生的物/能流,并在之上建立指標(biāo)體系,火用分析法沒(méi)有做出這樣的區(qū)分。
火用在數(shù)學(xué)上是強(qiáng)健的,但用來(lái)量化研究產(chǎn)業(yè)生態(tài)系統(tǒng)有許多基本限制。首先,嘗試去計(jì)算一切能流的轉(zhuǎn)換和效率,非常困難或不能實(shí)現(xiàn),尤其在積累火用耗法和延伸火用分析法中,由于系統(tǒng)中各種流之間相互關(guān)系的復(fù)雜性很難得到精確評(píng)估[86]。其次雖然在產(chǎn)業(yè)系統(tǒng)的模型中包含經(jīng)濟(jì)流是必需的,延伸火用分析法所用的方法從經(jīng)濟(jì)學(xué)角度來(lái)看不符合常規(guī)。如Dewulf[87]所述,在延伸火用分析法中包含經(jīng)濟(jì)流的嘗試并不成熟,需進(jìn)一步發(fā)展。
1.3.3 生態(tài)足跡分析
生態(tài)足跡分析的主要優(yōu)勢(shì)就是能夠用統(tǒng)一的土地面積來(lái)表達(dá)人類開(kāi)采自然的總量。這需要兩個(gè)假定,其一,所有生態(tài)、生物資源和產(chǎn)生的廢物都能被測(cè)量;其二,資源和產(chǎn)生的廢物可轉(zhuǎn)換為相應(yīng)的生物生產(chǎn)性面積[88]。與其他聚合指標(biāo)相似,生態(tài)足跡在統(tǒng)一各種物/能流時(shí)因失去細(xì)節(jié)而被指責(zé)。第二種假設(shè)受到了較多批評(píng)。尤其是各種土地類型的換算方法中只有一種功能與土地面積相關(guān)。許多情形下,土地提供了多種功能,因此將影響到計(jì)算結(jié)果[65]。目前還有許多土地類型生態(tài)足跡方法還沒(méi)有考慮,如地下資源[89-90]。
生態(tài)足跡法因把碳地當(dāng)作固定產(chǎn)業(yè)系統(tǒng)排放CO2的實(shí)際土地需求量而受到批判。生態(tài)足跡分析碳地時(shí)假設(shè)光合作用是唯一減少大氣中CO2的方法。如此以來(lái)該方法只測(cè)量林地,而忽略了其他土地。只要是認(rèn)為僅有一種土地可以固定碳,就會(huì)導(dǎo)致對(duì)區(qū)域總足跡的估值偏高[15]。此外別的溫室氣體,如CH4和N2O,在生態(tài)足跡方法中沒(méi)有考慮[91]。
采用國(guó)家邊界來(lái)進(jìn)行生態(tài)足跡分析也受到了批判[92]。這意味著研究是以國(guó)家的自然資產(chǎn)自給自足[93-94]為先決條件, 忽視了不同國(guó)家獲取生態(tài)資源的優(yōu)勢(shì)差異。一種替代方法是從環(huán)境角度確定邊界,如基于水文或生態(tài)的邊界。生態(tài)資源供需的時(shí)空維度需進(jìn)一步調(diào)整,尤其是生態(tài)足跡分析不但要能審查進(jìn)出口生態(tài)資源總量,還要能對(duì)自然資產(chǎn)交易的原產(chǎn)地和目的地進(jìn)行詳細(xì)設(shè)計(jì)[28]。
1.3.4 生態(tài)信息方法
生態(tài)信息方法的優(yōu)勢(shì)在于衡量產(chǎn)業(yè)系統(tǒng)魯棒性的能力。生態(tài)信息方法擅長(zhǎng)確定系統(tǒng)效率和冗余之間的均衡,然而它還沒(méi)有找到這兩個(gè)參數(shù)之間的最優(yōu)平衡,需要進(jìn)一步研究開(kāi)發(fā)一個(gè)規(guī)范的判據(jù)。這個(gè)方法在整合系統(tǒng)各種維度方面的能力較弱。盡管系統(tǒng)的總流量反映了資源流的總量,該指標(biāo)卻不能表達(dá)資源的可用性。此外,很難直觀地理解這些度量系統(tǒng)的指標(biāo)如優(yōu)勢(shì)、效率和冗余[95]。
本文基于以下三方面:①有能力把生態(tài)維度和經(jīng)濟(jì)維度整合起來(lái),②考慮系統(tǒng)長(zhǎng)期的彈性,③考慮系統(tǒng)的廣度和強(qiáng)度性質(zhì),對(duì)上述方法進(jìn)行了比較分析(表1),提出了優(yōu)勢(shì),劣勢(shì)和進(jìn)一步的研究方向。
定量研究產(chǎn)業(yè)生態(tài)系統(tǒng)必須把生態(tài)和經(jīng)濟(jì)維度整合起來(lái)[96]。上述方法僅有能值、火用值和生態(tài)足跡可整合生態(tài)和經(jīng)濟(jì)維度。生態(tài)信息法只能用于單一的生態(tài)流或經(jīng)濟(jì)流,還沒(méi)有用于整合生態(tài)和經(jīng)濟(jì)維度的物/能流。能值、火用、生態(tài)足跡3種方法是以生態(tài)視角為中心,系統(tǒng)所需的資源消耗量通過(guò)統(tǒng)一標(biāo)準(zhǔn)來(lái)核算。在能值分析中,資源消耗用太陽(yáng)能焦耳描述,挑戰(zhàn)主要考慮如何把經(jīng)濟(jì)流折算成能值單位。在火用分析中,能量單位用來(lái)表達(dá)系統(tǒng)有用的火用耗,火用分析提供了一個(gè)考慮生態(tài)維度的強(qiáng)大理論框架,但在經(jīng)濟(jì)維度測(cè)量上仍需進(jìn)一步發(fā)展。生態(tài)足跡分析中,全球公頃作為一個(gè)共同土地單位得到應(yīng)用。盡管生態(tài)足跡法的方法論有缺陷,卻最具傳播力,專家和非專業(yè)人士都很容易把資源聯(lián)系到土地單位。
表1 研究方法對(duì)比分析表
另外如何權(quán)衡多個(gè)系統(tǒng)級(jí)別的性能,對(duì)系統(tǒng)可持續(xù)發(fā)展有著重要影響。3種會(huì)計(jì)核算方法—能值,火用和生態(tài)足跡,根據(jù)破壞環(huán)境再生能力的低效產(chǎn)出或過(guò)度消耗突出自然資源的不可持續(xù)利用。然而它們?cè)谙到y(tǒng)的拓?fù)渚S度方面是沒(méi)有貢獻(xiàn)的,也忽視了系統(tǒng)內(nèi)實(shí)體間物/能流交換的變化和大小。生態(tài)信息方法尤其關(guān)注系統(tǒng)的拓?fù)渚S度,能夠確認(rèn)增加系統(tǒng)效率的利弊得失。然而有些系統(tǒng)級(jí)別的權(quán)衡被所有方法都忽略了,如杰文斯悖論所提出的效應(yīng)——系統(tǒng)效率的增加會(huì)導(dǎo)致資源總消耗的增加[97],需進(jìn)一步探索這個(gè)系統(tǒng)隱含的平衡關(guān)系。
若在核算方法中缺乏網(wǎng)絡(luò)視角,會(huì)產(chǎn)生兩方面的問(wèn)題。第一,系統(tǒng)健康發(fā)展是否能夠單獨(dú)地通過(guò)降低資源總消耗來(lái)實(shí)現(xiàn)。第二,核算視角沒(méi)有考慮系統(tǒng)對(duì)變化如擾動(dòng)、壓力或外部沖擊的動(dòng)態(tài)響應(yīng)。由壓力如經(jīng)濟(jì)衰退所致的網(wǎng)絡(luò)恢復(fù)力的改變,是影響系統(tǒng)健康發(fā)展的一個(gè)重要方面[98]。核算方法考慮增加效率作為減少資源總消耗的一種方法,然而這些方法沒(méi)有考慮效率增加的限制。因?yàn)橄到y(tǒng)效率和冗余之間存在著權(quán)衡,這是生態(tài)信息方法的關(guān)注點(diǎn)[99]。若一個(gè)系統(tǒng)效率過(guò)高,這將減弱系統(tǒng)對(duì)抗外部沖擊和干擾的能力,而如果一個(gè)系統(tǒng)過(guò)度冗余,將使得系統(tǒng)維護(hù)成本昂貴,阻礙系統(tǒng)內(nèi)部發(fā)展,并且削弱系統(tǒng)有序分配流的能力[76]。論述方法中僅有生態(tài)信息方法考慮到系統(tǒng)的恢復(fù)力。然而確切地講,生態(tài)信息方法考慮的是工程柔性或魯棒性,將來(lái)的研究需要擴(kuò)展此方法以涵蓋生態(tài)韌性的自適應(yīng)能力。
上述方法均不同程度地考慮了系統(tǒng)的廣度和強(qiáng)度性質(zhì)。能值、火用、生態(tài)足跡的核算方法主要考慮低效生產(chǎn)和資源過(guò)度消耗。在系統(tǒng)規(guī)模確定的情況下核算方法假定提高效率是降低系統(tǒng)受到影響的唯一方法。因此核算方法主要考慮系統(tǒng)的廣度性質(zhì),唯一考慮的強(qiáng)度性質(zhì)是效率。生態(tài)信息法主要考慮強(qiáng)度性質(zhì)如恢復(fù)力、效率和冗余度,而在測(cè)量廣度性質(zhì)方面是薄弱的。將來(lái)的一個(gè)研究熱點(diǎn)是生態(tài)信息方法和核算方法能夠以某種方式融合,更好地考慮系統(tǒng)的廣度和強(qiáng)度性質(zhì)。
本文對(duì)研究產(chǎn)業(yè)生態(tài)系統(tǒng)的四種方法進(jìn)行綜述,認(rèn)為對(duì)產(chǎn)業(yè)生態(tài)系統(tǒng)進(jìn)行量化研究正在發(fā)展和完善,具有十分重要的意義,可闡明其運(yùn)行的內(nèi)在機(jī)理與演化機(jī)制,要整合系統(tǒng)的生態(tài)和經(jīng)濟(jì)維度,同時(shí)又要考慮強(qiáng)度和廣度性質(zhì),才能全面合理地反映系統(tǒng)本質(zhì)。定量研究也可為研究者、決策者制定更加切實(shí)的方法、政策策略提供依據(jù)。
下一步研究要把生態(tài)信息方法和會(huì)計(jì)核算方法有機(jī)結(jié)合,更全面地考慮系統(tǒng)的廣度和強(qiáng)度性質(zhì),加強(qiáng)生態(tài)和經(jīng)濟(jì)耦合。本研究所探討的量化整合方法可以作為測(cè)量系統(tǒng)績(jī)效的工具。然而這些方法是實(shí)際情形的自然簡(jiǎn)單化,隱含地假設(shè)了系統(tǒng)性質(zhì)的某些重要方面。因此推進(jìn)這些方法的進(jìn)一步研究,對(duì)于指導(dǎo)產(chǎn)業(yè)生態(tài)系統(tǒng)的構(gòu)建及其可持續(xù)發(fā)展是關(guān)鍵的,可更好地指導(dǎo)政策制定。
[1] Gertler N. Industry ecosystems: Developing sustainable industrial structures [D]. Cambridge, Massachusetts: Massachusetts Institute of Technology, 1995.
[2] Baldwin J S, Ridgway K, Winder B, Murray R. Modelling industrial ecosystems and the “problem” of evolution. Progress in Industrial Ecology, 2004, 1(1/3): 39- 60.
[3] 鄧華. 我國(guó)產(chǎn)業(yè)生態(tài)系統(tǒng)穩(wěn)定性影響因素研究[D]. 大連: 大連理工大學(xué), 2006.
[4] 陳亮, 王如松, 楊建新. 魯北工業(yè)生態(tài)系統(tǒng)分析. 環(huán)境科學(xué)學(xué)報(bào), 2005, 25(6): 721- 726.
[5] Allenby B R, Cooper W E. Understanding industrial ecology from a biological systems perspective. Environmental Quality Management, 1994, 3(3): 343- 354.
[6] Odum H T. Environmental Accounting: Emergy and Environmental Decision Making. New York: John Wiley & Sons Inc., 1995.
[7] Brown M T, Ulgiati S. Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecological Engineering, 1997, 9(1/2): 51- 69.
[8] Szargut J, Morris D R, Steward F R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. Washington, DC: Taylor & Francis Inc, 1987.
[9] J?rgensen S E, Nielsen S N. Application of exergy as thermodynamic indicator in ecology. Energy, 2007, 32(5): 673- 685.
[10] J?rgensen S E. Eco-Exergy as Sustainability. Southampton: Wit Press, 2006.
[11] Hau J L, Bakshi B R. Expanding exergy analysis to account for ecosystem products and services. Environmental Science & Technology, 2004, 38(13): 3768- 3777.
[12] Sciubba E, Bastianoni S, Tiezzi E. Exergy and extended exergy accounting of very large complex systems with an application to the province of Siena, Italy. Journal of Environmental Management, 2008, 86(2): 372- 382.
[13] Sciubba E. Beyond thermoeconomics? The concept of extended exergy accounting and its application to the analysis and design of thermal systems. Exergy, An International Journal, 2001, 1(2): 68- 84.
[14] H?yh? T, Franzese P P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecological Modelling, 2014, 289: 124- 132.
[15] Monfreda C, Wackernagel M, Deumling D. Establishing national natural capital accounts based on detailed ecological footprint and biological capacity assessments. Land Use Policy, 2004, 21(3): 231- 246.
[16] Chen B, Chen G Q, Yang Z F, Jiang M. M. Ecological footprint accounting for energy and resource in China. Energy Policy, 2007, 35(3): 1599- 1609.
[17] 黃林楠, 張偉新, 姜翠玲, 范曉秋. 水資源生態(tài)足跡計(jì)算方法. 生態(tài)學(xué)報(bào), 2008, 28(3): 1279- 1286.
[18] Cerutti A K, Bagliani M, Beccaro G L, Bounous G. Application of Ecological Footprint Analysis on nectarine production: methodological issues and results from a case study in Italy. Journal of Cleaner Production, 2010, 18(8): 771- 776.
[19] Wang S, Yang F L, Xu L, Jing D. Multi-scale analysis of the water resources carrying capacity of the Liaohe Basin based on ecological footprints. Journal of Cleaner Production, 2013, 53: 158- 166.
[20] 陳敏, 王如松, 張麗君. 中國(guó)2002年省域生態(tài)足跡分析. 應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(3): 424- 428.
[21] Galli A. On the rationale and policy usefulness of ecological footprint accounting: the case of morocco. Environmental Science & Policy, 2015, 48: 210- 224.
[22] Herva M, Franco A, Ferreiro S,lvarez A, Roca E. An approach for the application of the Ecological Footprint as environmental indicator in the textile sector. Journal of Hazardous Materials, 2008, 156(1/3): 478- 487.
[23] Butnariu A, Avasilcai S. Research on the possibility to apply ecological footprint as environmental performance indicator for the textile industry. Procedia-Social and Behavioral Sciences, 2014, 124: 344- 350.
[24] Wackernagel M, Rees W E. Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island, BC, Canada: New Society Publishers, 1998.
[25] Kitzes J, Peller A, Goldfinger S, Wackernagel M. Current methods for calculating National Ecological Footprint Accounts. Science for Environment and Sustainable Society, 2007, 4(1): 1- 9.
[26] Kitzes J, Galli A, Bagliani M, Barrett J, Dige G, Ede S, Erb K, Giljum S, Haberl H, Hails C, Jolia-Ferrier L, Jungwirth S, Lenzen M, Lewis K, Loh J, Marchettini N, Messinger H, Milne K, Moles R, Monfreda C, Moran D, Nakano K, Pyh?l? A, Rees W, Simmons C, Wackernagel M, Wada Y, Walsh C, Wiedmann T. A research agenda for improving National Ecological Footprint Accounts. Ecological Economics, 2009, 68(7): 1991- 2007.
[27] Turner K, Lenzen M, Wiedmann T, Barrett J. Examining the global environmental impact of regional consumption activities-Part 1: A technical note on combining input-output and ecological footprint analysis. Ecological Economics, 2007, 62(1): 37- 44.
[28] Wiedmann T, Minx J, Barrett J, Wackernagel M. Allocating ecological footprints tonal consumption categories with input-output analysis. Ecological Economics, 2006, 56(1): 28- 48.
[29] Ulanowicz R E. Growth and Development: Ecosystems Phenomenology. New York: Springer, 1986.
[30] Rutledge R W, Basore B L, Mulholland R J. Ecological stability: an information theory viewpoint. Journal of Theoretical Biology, 1976, 57(2): 355- 371.
[31] Ulanowicz R E, Kay J J. A package for the analysis of ecosystem flow networks. Environmental Software, 1991, 6(3): 131- 142.
[32] Ulanowicz R E. Information theory in ecology. Computers & Chemistry, 2001, 25(4): 393- 399.
[33] Boltzmann L. Weitere studien über das w?rmegleichgewicht unter gas-molekülen. Sitzungs Berichte Keiserl Akad der Wissenschaften, 1872, 66(2): 275- 370.
[34] Ulanowicz R E. Quantitative methods for ecological network analysis. Computational Biology and Chemistry, 2004, 28(5/6): 321- 339.
[35] Tisdell C. Ecosystems functions and genetic diversity: TEEB raises challenges for the economics discipline. Economic Analysis and Policy, 2014, 44(1): 14- 20.
[36] Baral A, Bakshi B R. Emergy analysis using US economic input-output models with applications to life cycles of gasoline and corn ethanol. Ecological Modelling, 2010, 221(15): 1807- 1818.
[37] Cai Z F, Zhang L X, Zhang B, Chen Z M. Emergy-based analysis of Beijing-Tianjin-Tangshan region in China. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(12): 4319- 4331.
[38] Morandi F, Campbell D E, Bastianoni S. Set theory applied to uniquely define the inputs to territorial systems in emergy analyses. Ecological Modelling, 2014, 271: 149- 157.
[39] Li L J, Lu H F, Tilley D R, Qiu G Y. Effect of time scale on accounting for renewable emergy in ecosystems located in humid and arid climates. Ecological Modelling, 2014, 287: 1- 8.
[40] Zhang Y, Yang Z F, Liu G Y, Yu X Y. Emergy analysis of the urban metabolism of Beijing. Ecological Modelling, 2011, 222(14): 2377- 2384.
[41] Liu G Y, Yang Z F, Chen B, Zhang L X. Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis. Ecological Modelling, 2013, 252: 280- 287.
[42] Wang X L, Chen Y Q, Sui P, Gao W S, Qin F, Zhang J S, Wu X. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agricultural Systems, 2014, 128: 66- 78.
[43] Yang J, Chen B. Emergy analysis of a biogas-linked agricultural system in rural China-A case study in Gongcheng Yao Autonomous County. Applied Energy, 2014, 118: 173- 182.
[44] Wang L M, Zhang J T, Ni W D. Emergy evaluation of Eco-Industrial park with power plant. Ecological Modelling, 2005, 189(1/2): 233- 240.
[45] Taskhiri M S, Tan R R, Chiu A S F. Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park. Resources, Conservation and Recycling, 2011, 55(7): 730- 737.
[46] Geng Y, Liu Z X, Xue B, Dong H J, Fujita T, Chiu A. Emergy-based assessment on industrial symbiosis-a case of Shenyang economic and technological development zone. Environmental Science and Pollution Research, 2014, 21(23): 13572- 13587.
[47] Ozbilen A, Dincer I, Rosen M A. Exergetic life cycle assessment of a hydrogen production process. International Journal of Hydrogen Energy, 2012, 37(7): 5665- 5675.
[48] Ahamed J U, Saidur R, Masjuki H H, Mekhilef S, Ali M B, Furqon M H. An application of energy and exergy analysis in agricultural sector of Malaysia. Energy Policy, 2011, 39(12): 7922- 7929.
[49] Chen B, Chen G Q. Resource analysis of the Chinese society 1980- 2002 based on exergy-Part 3: Agricultural products. Energy Policy, 2007, 35(4): 2065- 2078.
[50] Dincer I, Hussain M M, Al-Zaharnah I. Energy and exergy use in public and private sector of Saudi Arabia. Energy Policy, 2004, 32(14): 1615- 1624.
[51] Nielsen S N, J?rgensen S E. Sustainability analysis of a society based on exergy studies-a case study of the island of Sams? (Denmark). Journal of Cleaner Production, 2015, 96: 12- 29.
[52] Kerdan I G, Gálvez D M, Raslan R, Ruyssevelt P. Modelling the energy and exergy utilisation of the Mexican non-domestic sector: A study by climatic regions. Energy Policy, 2015, 77: 191- 206.
[53] Valero A, Carpintero, Valero A, Calvo G. How to account for mineral depletion. The exergy and economic mineral balance of Spain as a case study. Ecological Indicators, 2014, 46: 548- 559.
[54] Sanaei S M, Furubayashi T, Nakata T. Assessment of energy utilization in Iran′s industrial sector using energy and exergy analysis method. Applied Thermal Engineering, 2012, 36: 472- 481.
[55] Jiménez-Muoz J C, Sobrino J A, Mattar C. Recent trends in solar exergy and net radiation at global scale. Ecological Modelling, 2012, 228: 59- 65.
[56] Valero A, Usón S, Torres C, Valero A, Agudelo A, Costa J. Thermoeconomic tools for the analysis of eco-industrial parks. Energy, 2013, 62: 62- 72.
[57] Bligh D C, Ugursal V I. Extended exergy analysis of the economy of Nova Scotia, Canada. Energy, 2012, 44(1): 878- 890.
[58] Seckin C, Sciubba E, Bayulken A R. Extended exergy analysis of Turkish transportation sector. Journal of Cleaner Production, 2013, 47: 422- 436.
[59] Dai J, Fath B, Chen B. Constructing a network of the social-economic consumption system of China using extended exergy analysis. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4796- 4808.
[60] Chen G Q, Chen B. Extended-exergy analysis of the Chinese society. Energy, 2009, 34(9): 1127- 1144.
[61] Jiang M M, Chen B. Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy. Ecological Modelling, 2011, 222(13): 2149- 2165.
[62] Wackernagel M, Onisto L, Bello P, Linares A C, Falfán I S L, García J M, Guerrero A I S, Guerrero M G S. National natural capital accounting with the ecological footprint concept. Ecological Economics, 1999, 29(3): 375- 390.
[63] Wiedmann T, Lenzen M, Turner K, Barrett J. Examining the global environmental impact of regional consumption activities—Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade. Ecological economics, 2007, 61(1): 15- 26.
[64] Opschoor H. The ecological footprint: measuring rod or metaphor. Ecological Economics, 2000, 32(3): 363- 365.
[65] Gyllenhammar A, H?kanson L. Environmental consequence analyses of fish farm emissions related to different scales and exemplified by data from the Baltic-a review. Marine Environmental Research, 2005, 60(2): 211- 243.
[66] Roth E, Rosenthal H, Burbridge P. A discussion of the use of the sustainability index: ‘ecological footprint’for aquaculture production. Aquatic Living Resources, 2001, 13(6): 461- 469.
[67] G?ssling S, Hansson C B, H?rstmeier O, Saggel S. Ecological footprint analysis as a tool to assess tourism sustainability. Ecological Economics, 2002, 43(2/3): 199- 211.
[68] Castellani V, Sala S. Ecological Footprint and Life Cycle Assessment in the sustainability assessment of tourism activities. Ecological Indicators, 2012, 16: 135- 147.
[69] Wright E P, Drossman H. The ecological footprint of the Colorado College: An examination of sustainability. Environmental Science, 2002, 5(1): 23- 23.
[70] Flint K. Institutional ecological footprint analysis-A case study of the University of Newcastle, Australia. International Journal of Sustainability in Higher Education, 2001, 2(1): 48- 62.
[71] Budihardjo S, Hadi S P, Sutikno S, Purwanto P. The ecological footprint analysis for assessing carrying capacity of industrial zone in semarang. Journal of Human Resource and Sustainability Studies, 2013, 1: 14- 20.
[72] Wulff F, Field J G, Mann K H. Network Analysis in Marine Ecology: Methods and Applications. Berlin Heidelberg: Springer-Verlag, 1989.
[73] Christian R R, Baird D, Luczkovich J, Johnson J C, Scharler U M, Ulanowicz R E. Role of network analysis in comparative ecosystem ecology of estuaries // Belgrano A, Scharler J, Dunne U M, Ulanowicz R, eds. Aquatic Food Webs: An Ecosystem Approach. New York, USA: Oxford University Press, 2005: 25- 40.
[74] Baird D, Heymans J J. Assessment of ecosystem changes in response to freshwater inflow of the Kromme River estuary, St Francis Bay, South Africa: a network analysis approach. Water SP, 1996, 22: 307- 318.
[75] Goerner S J, Lietaer B, Ulanowicz R E. Quantifying economic sustainability: implications for free-enterprise theory, policy and practice. Ecological Economics, 2009, 69(1): 76- 81.
[76] Ulanowicz R E, Goerner S J, Lietaer B, Gomez R. Quantifying sustainability: resilience, efciency and the return of information theory. Ecological Complexity, 2009, 6(1): 27- 36.
[77] Chen Z Z, Qiu Y S, Xu S N. Changes in trophicows and ecosystem properties of the Beibu Gulf ecosystem before and after the collapse ofsh stocks. Ocean & Coastal Management, 2011, 54(8): 601- 611.
[78] Vassallo P, Paoli C, Schiavon G, Albertelli G, Fabiano M. How ecosystems adapt to face disruptive impact? The case of a commercial harbor benthic community. Ecological Indicators, 2013, 24: 431- 438.
[79] Bodini A. Building a systemic environmental monitoring and indicators for sustainability: what has the ecological network approach to offer? Ecological Indicators, 2012, 15(1): 140- 148.
[80] Lu Y, Chen B, Feng K S, Hubacek K. Ecological network analysis for carbon metabolism of eco-industrial parks: A case study of a typical eco-industrial park in Beijing. Environmental Science & Technology, 2015, 49(12): 7254- 7264.
[81] Brown M T, Ulgiati S, Can emergy sustainability index be improved? A response to Harizaj. Ecological Modelling, 2011, 222(12): 2034- 2035.
[82] Harizaj P. Can the emergy sustainability index be improved? Ecological Modelling, 2011, 222(12): 2031- 2033.
[83] Cleveland C J, Kaufmann R K, Stern D I. Aggregation and the role of energy in the economy. Ecological Economics, 2000, 32(2): 301- 317.
[84] Sciubba E, Ulgiati S. Emergy and exergy analyses: Complementary methods or irreducible ideological options? Energy, 2005, 30(10): 1953- 1988.
[85] Brown M T, Herendeen R A. Embodied energy analysis and EMERGY analysis: a comparative view. Ecological Economics, 1996, 19(3): 219- 235.
[86] Valero A. Exergy accounting: capabilities and drawbacks. Energy, 2006, 31(1): 164- 180.
[87] Dewulf J, Van Langenhove H, Muys B, Bruers S, Grubb G F, Paulus D M, Sciubba E. Exergy: its potential and limitations in environmental science and technology. Environmental Science & Technology, 2008, 42(7): 2221- 2232.
[88] Chambers N, Simmons C, Wackernagel M. Sharing Nature′s Interest: Ecological Footprints as an Indicator of Sustainability. London, UK: Routledge, 2000.
[89] Moffatt I. Ecological footprints and sustainable development. Ecological Economics, 2000, 32(3): 359- 362.
[90] 向書堅(jiān), 柴士改. 生態(tài)足跡若干不足、修正與完善以及應(yīng)用拓展. 資源科學(xué), 2013, 35(5): 1051- 1058.
[91] Wackernagel M, Monfreda C, Schulz B N, Erb K H, Haberl H, Krausmann F. Calculating national and global ecological footprint time series: resolving conceptual challenges. Land Use Policy, 2004, 21(3): 271- 278.
[92] Van Den Bergh J C J M, Verbruggen H. Spatial sustainability, trade and indicators: an evaluation of the “ecological footprint”. Ecological Economics, 1999, 29(1): 61- 72.
[93] Van Kooten G C, Bulte E H. The ecological footprint: useful science or politics? Ecological Economics, 2000, 32(3): 385- 389.
[94] Simmons C, Lewis K, Barrett J. Two feet-two approaches: a component-based model of ecological footprinting. Ecological Economics, 2000, 32(3): 375- 380.
[95] Blüthgen N. Why network analysis is often disconnected from community ecology: a critique and an ecologist′s guide. Basic and Applied Ecology, 2010, 11(3): 185- 195.
[96] 王如松, 歐陽(yáng)志云. 社會(huì)-經(jīng)濟(jì)-自然復(fù)合生態(tài)系統(tǒng)與可持續(xù)發(fā)展. 中國(guó)科學(xué)院院刊, 2012, 27(3): 337- 345.
[97] Alcott B. Jevons′ paradox. Ecological Economics, 2005, 54(1): 9- 21.
[98] McDaniels T, Chang S, Cole D, Mikawoz J, Longstaff H. Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation. Global Environmental Change, 2008, 18(2): 310- 318.
[99] Ulanowicz R E. The dual nature of ecosystem dynamics. Ecological Modelling, 2009, 220(16): 1886- 1892.
Review of innovative quantitative research methods for studying industrial ecosystems
FAN Yupeng, QIAO Qi*, FANG Lin
Chinese Research Academy of Environmental Sciences,Beijing 100012,China
Industrial ecosystem is an artificial system established in industries under the guidance of the theory of industrial ecology. Similar to a natural ecosystem, an industrial ecosystem achieves circulation of materials and utilization of energy cascade through cooperation between the enterprises and the organizations within a certain range of time and space. Construction of a successful industrial ecosystem can use waste to replace raw materials, utilize energy extracted from nature, reduce raw material and energy consumption, and curtail waste management costs, resulting in economic and environmental benefits. Research on industrial ecosystems, both locally and internationally, has gained importance and has become vital for promoting sustainable development of the society. At the same time, research on industrial ecosystem has been promoted in many areas and fields. Results from these studies provide significant scientific guidance to our society in achieving social and economic development while making optimal use of resources, reducing environmental pressures, transforming the traditional industries into more advanced ones, and upgrading the industrial eco-efficient level. It is increasingly accepted that construction of an industrial ecosystem is the key to realizing a circular economy, and it is a practical and important tool for achieving sustainable development. However, there are a number of practical problems in developing an industrial ecosystem. To address these, there is an urgent need to strengthen the research inputs for industrial ecosystem, especially, in order to discover, enhance, and improve their structure and efficiency, and thus promote its sustainable development. At present, qualitative studies on industrial ecosystems are relatively more, and include studies on their concept, characteristics, construction principles, and business philosophy. Quantitative studies about the system mechanism are few, and many of these are conducted using the Index Evaluation System. This approach, especially for integration research on systems,has drawbacks. The essence of the management of industrial ecosystem is to regard and manage the economic activities and the natural environment as an organic whole, and to establish a new mode of management that integrates the ecological and the economic dimensions. Given these, this paper discusses four innovative quantitative methods to study industrial ecosystem from a systems perspective. These include emergy analysis, exergy method, ecological footprint, and ecological information analysis. The theoretical basis, development process, application, and characteristics of these methods are summarized in detail. Finally, based on the basic principles of the theory of industrial ecology (which are, 1. integration of ecological and economic dimensions, 2. the long term resilience of system, and 3. considering the extensive and intensive properties at the same time), we conducted a comprehensive comparison of these methods with an intent to provide direction and reference for future research on industrial ecosystems.
quantitative analysis; integration; industrial ecosystem; accounting framework; resilience
國(guó)家自然科學(xué)基金項(xiàng)目(71373248)
2016- 01- 20; 網(wǎng)絡(luò)出版日期:2017- 02- 23
10.5846/stxb201601200138
*通訊作者Corresponding author.E-mail: qiaoqi@craes.org.cn
范育鵬,喬琦,方琳.產(chǎn)業(yè)生態(tài)系統(tǒng)新型定量研究方法綜述.生態(tài)學(xué)報(bào),2017,37(13):4599- 4609.
Fan Y P, Qiao Q, Fang L.Review of innovative quantitative research methods for studying industrial ecosystems.Acta Ecologica Sinica,2017,37(13):4599- 4609.